A Deep Dive into Game Development:

Exploring the Intricacies of the Game Development Process

Jared Simonetti
Baldwin Honors Scholar at Drew University
Department of Computer Science, Drew University

Thesis Advisor: Alexander Rudniy

Abstract

In this paper, every step of the game development process is investigated. Five different
game projects and prototypes are created to achieve this: including Pong, Asteroids, Tetris, a 2D
platformer, and a 3D First Person Shooter (FPS). Each of these games are created using the
Godot game engine and are programmed using its built-in scripting language: GDscript. This
scripting language is used in conjunction with the innate classes of Godot to manufacture each
game. Throughout this paper, the process behind the development and systems integrated into
each game is described. Each game created provides its own unique insights into the evolution of
games over time and their increase in complexity. With each game, new tools and methodologies
are investigated and used in order to create the various components of each game, contributing to
a rounded perspective of the process. Each game created shares common principles, but varies in
the way features of gameplay are constructed. This paper is created with an audience of video
game players, video game developers, and programmers in mind, making this background
beneficial to the comprehension and enjoyment of this paper. The purpose of this paper is to
provide understanding of every intricate detail that goes into the process of creating a video

game.

Acknowledgements

I would like to thank all the people who helped me along the way, both in writing this
thesis and for encouraging me to follow my passions. First and foremost, I would like to thank
Professor Barry Burd. It was in his Introduction to Logic course, which I had taken in the first
semester of my junior year, that I found a passion for programming and computer science. This
passion led me to take on the challenge of learning how to code and develop games, later
branching to passions in creating digital art through pixel art and 3D modeling. It was that one
class that changed the trajectory of my academic career as well as aspects of my personal life.

Thank you to Aaran Robinson, a writing specialist at the University Writing Center at
Drew University. In the final revisions of this paper, he had gone through the effort of thoroughly
reviewing my paper, which was integral to my writing and revision process.

To my thesis committee, I thank you for your contributions. Professor Alexander Rudniy,
who helped to guide my progress over the entire course of this thesis. With his interest in my
work I was able to create a thesis on the topics that I love. Professor Barry Burd, for his insights
on my paper from the lens of a computer scientist. Professor Adijat Mustapha, for her insights
from the discipline of psychology.

To my family, I thank you for believing in me and providing your support for me in my
academic pursuits. I could not have done it without you. You are the reason I have gotten to

where [am today.

Table of Contents

ADSTEAC.ccuueiiiiiiiitiiiniticsnineiisseessteseisssesssessssecssnssssesssassssesssassssesssasssssssssssssssssassssesssasssassssasssnes 2
ACKNOWIEUAZGEIMENLS...ccccrirnriicicrraniessssanrecssssssresssssssssssssssssesssssssasssasss 3
Table Of COMLENLS.....coceeiieiiieiireissteisteisstecsseisssessseesssnessessssssssessssesssnssssssssassssssssssssassssassssssssasssassse 4
0 INErOAUCTION..ccccueeieiieieiineeiiinnecineicssntecsstessseesssssesssseessssesssssasssssssssssessssssssssssssssasssssasssssssssssnsses 13
0.1 Introduction to Game DevelopmEent.............ccveviieiiiiiieiiieiie et 14

0.2 Introduction to Game Engines and Frameworks..........c.cccccvivviiiiiiieeiiee e 15

0.3 Introduction t0 GOAOL........couiiiiiiiriieieeieie ettt et sttt 17
Figure 0.3.1: Base & Control NOAES..........eeevuiieeiiiieeiieeeiieeeite et 18

Figure 0.3.2: 2D & 3D NOGES......oecuieiiieiieeiie ettt ettt ettt eveessae st e saee e 20

T POMG..ccunniiiiiinnriicsssnnnicssssssnecsssssssesssasssssssss 24
1.1 DEVELOPING PONE.....ccuiiiiiiiiieiieie ettt ettt ettt et s e et e s e eseeeabeebeessseensaesnsaans 25
Figure 1.1.1: BoArd SCENE.........cociiiiiiieiie ettt e e 26

Figure 1.1.2: Ball & Paddle SCeNes..........cooovieiiiriieiieniecieeie e 27

1.2 Intricacies Behind the Development of PoOng..........ccccoooiveeiiiiiiiiecieceeee e 30
1.2.1 Simulation 0f MOVEMENL.cccuoviiriiiiiniieiieienieeie ettt 30

1.2.2 Collision Detection and Reflection LOZIC........ccveevviieiiieeiiiecieecee e 30

1.2.3 The Impact on the Video Game Industry...........ccceevieeiiieniiiiieniieiiee e 31

2 ASTETOLAS oueeeeneeiineeessnneeninnecssnnecsssnecsssnessssnessssnessssessssseessssesssssesssssesssssessssasssssssssssasssssasssssnssssanse 33
2.1 Developing ASTETOIAS.eeruieiiieiieeiieriie et eeite ettt ettt e bt e seeebeestaeesseessaeeseessaeenseennnas 33

Figure 2.1.1: Asteroid Game SCENE..........cevviieiiieeiiieeiee et e e e e evee e 34

Figure 2.1.2: PLAYET SCONC......cccvieiieeiiieiieeiie ettt ettt ettt e et eebeeseeesseensaeesseeseennne 36

Figure 2.1.3: LaSET SCOMEC......cccuiieiiiieiiieeciiee ettt et e e tte e etee e et e e siveeesabeeesabeeesaseeesaeeenneeens 38

Figure 2.1.4: ASteroid SCENE.......ccuiiiiiiiiiiiiieiieeie ettt ettt et e seae et esebeebeessseensees 39

2.2 Intricacies Behind the Development of ASteroids..........cccvveeveeeiieeeniieeciee e 40
2.2.1 GAME ODJECLS. .. eeeiieeiiieiieeiieetieeie et e eeteeteesiteeteessteebeessseesseensaeesseeseeesseenseesnseesseanns 40

2.2. 1.1 SPACESRIP...eeiiieiiieciie ettt et e e e e e et aeennaeeeans 41

2.2.1.2 ASEETOI. c..eeiiieieceeeee e et 42

2.2.2 ODbject INStANtIATION.eeciiieiieeeiie et e ecte e et e e e tee e e e e e eaeeeebeeeseseeessseeesreeesseesseeenns 42

B TOLIES eeeueerueecnensnnecsnensnnessansssnecsansssnecssesssascssnssssesssessssesssassssesssnsssassssassssesssssssassssassssesssssssansssassnns 44
3.1 DeVEIOPING TOIIS. . uveeeuiieeiiieiiiie ettt e ettt e et e e et e et e e steeesareeessaeessaeesnsseeessseessseeessseeessseennns 45
Figure 3.1.1: TetriSGame SCENEC........cccuveriieriieeiieniieeieeste et esieeeteeseeeebeessaeebeesseesseessnaans 49

Figure 3.1.2: Tetromino SCEME.......ccuueevviieeiieeiiieecieeesiteeerteeeeeeeeeaaeessaeesseeeesseeessseeensseens 50

3.2 Intricacies Behind the Development of Tetris.........coecveriieiierieiiienieeiece e 51
3.2.1 Grid-Based Movement and Tetromino Manipulation.............ccccceeevvveencureencreeenneennns 51

3.2.2 Board ManagemeNnt............cccueerueerieeniienieeiieeieesteesieeeseeseaeeseeseaeeseessaesseensnesnseenseas 52

3.2.3 Timers and Speed Management...........ccceecuereriiieeriieeiieeesieeeriveeeieeeeaeeeeaeeesvee e 53

3.2.4 Informational MEChanICs........cccueruiiriiiiiniiiieieeiesee et 54

4 PlatfOrmer..uucccueeeennieiiineeiiinteissntecssseecsssnecsssnesssseesssseessssesssssesssssesssssssssssesssssssssssssssssssssssssssssssssns 55
4.1 Developing @ PIatfOrmmer.oocuiiiiiiiieiie ettt ettt et ees 56
Figure 4.1.1: Platformer Level SCENe.........cooviiiiiiiiiiiieciieeeieeee et 56

Figure 4.1.2: TIlemap SCENE.ovuiiiiiriiiiiiieiierteeee ettt 58

Figure 4.1.3: Player SCONC......cccviiiiiieiiieiieeiie ettt ettt ettt e ebeeseessseesaeesseeseeenne 59

4.2 Intricacies Behind the Development of a 2D Platformer..........c.ccccccveeeevieeecieeecieeecieeee. 60
4.2.1 Player MOVEIMENL......cc.eeeuieiieeieeniieeieesieeeteesteeeseenseeesreensaessseesseessseeseessseasseesssesnsens 60
4.2.1.1 JumpP MECRANICS.eiieiiieciiieeciee ettt ettt e e e e e sare e e sbeeeaneeens 61
4.2.1.2 Flexible Movement MeChanicCs.c.ceevuerieriieiienienieeiesieieeie e 61

4.2.2 Animation Systems and State Management..............ccceeecuveeeerieeeciieeniieeesiee e 62
4.2.3 LeVEl CT@AtION.ceuieuiieiietieieeiie ettt sttt sttt sae ettt seee b enees 63

5 FiIrst Person SROOET......ueiiiieiiiiiieiiiiiiinneisnieninnicssseecsssesssssnssssseessssessssnssssssssssssssssssssssssssns 65
5.1 Developing a First Person ShOOter.........c.coviiiiiiiiiiiieiecieeece e 66
Figure 5.1.1: MaAIN SCONE.....ccuviiiiiiiiiiie ettt ettt e sae e e siae e s e e e esaeeesaeeeseneeeenns 66
Figure 5.1.2: TIEE SCENEC.....cccuieiiiriiieiieeie ettt ettt ee et e enbe e seeenbeenes 68
Figure 5.1.3: Player SCOMNE.....ccueiiiiiiieiie ettt et e e aae e sneae e 69
Figure 5.1.4: Third Person Camera SCENE..........cccveevierieeiienieeiieieeeie et 70
Figure 5.1.5: Player Model SCENE.........c.eeeeviiiiiiieiieecee ettt 73
Figure 5.1.6: GUN SCENC......cccuiiiiieiieiieeieete ettt ettt ebeestae b e e ssaeensaesneeenne 74
Figure 5.1.7: BUllet SCENE........cioiiiiiiieeiee ettt e 75

5.2 Intricacies Behind the Development of a First Person Shooter............ccccceceviiviniincnnens 75
5.2.1 Player MOVEMENL.......cccuiieiiiieciieeciee et et e et e et eeeateesaeeessaaeesssaeesnseaesnseeesnseeennnes 76
5.2.2 Camera Management and Perspective..........ccueevieeiieriieniieniieeieenee e 76
5.2.3 Handling Projectiles and Combat.............ccceeevieieiiieeiiieeiieeciee e 77

5.2.5 3D Models and Animation SYSTEMS.eecueerieeiiierieeiiienieeieeseeeieesieeereeseaeeeens 78

6 CONCIUSION....cciueiiiiiiniiieiitennticsuiiseicsseessecssnisstsssesssesssnssssssssessssssssassssssssassssssssssssassssasssssssass 79
6.1 FULUTE WOTK.....coiniiiiiiiicee et e et e e s e e et e e s abaeeesaeeeseneeenns 79
6.2 FINal REMATKS. ...c..oiiiiiiiiiieee ettt 80

APPENAIX A - SCrEENSNOTLS. c.cuuveriiirirsnriicssssrrecssssanrecssssssresssssssssssssssssssssssssessssssssssssssssssssssssssssssanss 81
AT PONG ittt ettt e ettt e et e ettt e et e e st e e e bt e e e e e e bt e e abeeenbeeeenteeennee 81

Figure Al.1: Pong Game InitialiZation..........cccueeeiiiieeiiiieeiieeeiee et 81
Figure A1.2: Pong Gameplay 1.......cccccvieciiiiiiiiiiiiiieciieeecte ettt e 82
Figure A1.3: Pong Gameplay 2.......cccoocuiiiiiiieiiieeeiee ettt etee e vee e e e e e 83
Figure A1.4: Pong Player WInS........c.cooiiiiiiiiiiiiieie ettt et 84
A2 ASTETOIAS. ..veeeeetieeeiie ettt ettt e et eeste e et e e etteeetaeestaeeeseeessseaeassaeeanseeeasseeesnseeeanseeennseeann 85
Figure A2.1: Asteroids Game Initialization..............cccueeviieriieniieniieiieeieeee e 85
Figure A2.2: Asteroids Gameplay 1........cccooooiiieiiiiiiiiieciieee e 86
Figure A2.3: Asteroids Gameplay 2.........ccccoevieeiiieiiieiiieiieeieeee ettt 86
Figure A2.4: Asteroids Game OVET.........cccuveeiiieeiieeeiiieeeiieeeieeesteeesreeeneveeeseseessnneesseeenns 87
Figure A2.5: Asteroids Gameplay 3.........cocieiiiiiiiiiiiiiieiieeeeeeee et 88
AAB TOETIS. ettt ettt ettt ettt e b e a bt bt e e a bt e bt e et e e bt e et e e bt e enbeeneeeanean 89
Figure A3.1: Tetris Game InitialiZation............cccueeviieiiieiiieniieiieeie e 89
Figure A3.2: Tetris Gameplay 1........ccciieiiiiiiiieeiie e enes 90
Figure A3.3: Tetris Gameplay 2.......cccoeciiiiieiiieeieeieeeieeee ettt st 91
Figure A3.4: Tetris Gameplay 3.......ccccuiieiiiieiiie ettt eee e e e sree e e e aeeearee e 92
Figure A3.5: Tetris HOld TetrominoO.........c.cecuieriieriieeieeiiesie et eie ettt et eve e e 92

Figure A3.6: Tetris PauSe SCIEEM.......ccviiiiieriieiiieiiie ettt ettt et see e e b e seeeeseesene e 93
Figure A3.7: Tetris Gameplay 4........cccveeeiiieeiiie ettt e e saee e e esivee e veeeasae e 94
Figure A3.8: Tetris Game OVET.........cccueeruiieriienieeieenieeieeeiteeieeseeesseessseeseessseesseessseensaens 95
Figure A3.9: Tetris NeW GaAmME.......cccccuiiiiiiieeiiieeiieeeieeeeteeesveeeseaeeeseeesaeeeeseeeseseeesaseeennns 96
A PLAtTOTINET ...ttt sttt ettt st b et e at e be et st et enneas 97
Figure A4.1: Platformer Game Initialization............c.cceecviieiieieniieeiieecee e 97
Figure A4.2: JUMPING.....c.ooiiiiiieiieeie ettt ettt ettt e ebe e seesveesteessbeesseeenseesseeenseennns 97
Figure A4.3: Platformer Gameplay 1.........ccoooouiiiiiiioiiiecieeee e e 98
Figure A4.4: FIOAtING.cccuiiiiieiiieiieeie ettt ettt st et sateebeesteeebeessaeenbeenseesnseensnaans 99
Figure A4.5: Platformer Gameplay 2........cc.ceeciieeiiieeiiieeecie ettt 100
Figure A4.6: Parallax L........ccoooiiiiiiiiiieiieie ettt st esane e 100
Figure A4.7: Parallax 2........cccoiiiiiiiiiie ettt e e et e s tae e ae e e ennae e 101
Figure A4.8: Platformer Character...........cccoovviiiiieiiieniieeiieecee e 101
AS First Person ShOOTET.....c...ooiuiiiiiiiiiiiiee ettt e 102
Figure AS5.1: First Person Shooter Game Initialization.............cceceeveriiniininieneencnnene. 102
Figure AS5.2: First Person Shooter ENemies.........c.ccccvieeiiiiiiiieiiiecie e 103
Figure A5.3: First Person Shooter Third Person............ccceevveeiiieniiiiiienieeiieieeieee 104
Figure AS5.4: First Person Shooter Jump Animation...........ccccueeeveeerieeerieesnieeesieeeeieeenns 105
Figure AS.5: First Person Shooter Walk Animation............ceceevvereenenieneenenieneenennns 106
Figure AS5.6: First Person Shooter Player Damage...........ccccceovvviviieiiieeeniie e, 107

APPENIX B - Code...nnnnnnnninnninninniiinninssniisnecisnecsinssssssecsssesssessssesssassssessssssssssssassssesssssssassssasssses 108

B PONG.c.niiiieeee et e et e et e e e b e e eabeeeaaeeenneeea 108
Figure B1.1: ball.gd......coouiiiiiee e 108
Figure B1.2: paddle.gd.......ccooeiieiiiiieieeeeee et 109
Figure B1.3: pong game.gd 1......ccooiiiiiiiiiiieeeee e 110
Figure B1.4: pong game.gd 2........coccvieiiiiiieiieiie ettt s 111
Figure B1.5: pong game.@d 3........coooiiiiiiiiiiie et 112
Figure B1.6: GlobalS.Zd.......ccueovuiiiiiiiiieiieiece ettt e 113

LB A NS () (o) 16 KT USSP 114
Figure B2.1: asteroids game.@d 1........cccccieiiiiiiiniieeieeiece et 114
Figure B2.2: asteroids game.gd 2.......ccccvveeiiieeiiieciie ettt 115
Figure B2.3: asteroids game.@d 3..........cooiiiieiiieiiieeieeeeeee et 117
Figure B2.4: asteroids game.gd 4........cceveeviieiiiieeie et 118
Figure B2.5: asteroids game.@d S..........ocoieiiiiiiiieiiiiiieeieeee e 119
Figure B2.6: Player.@d L....c.ooo oottt 120
Figure B2.7: player.@d 2......cccuieiiiiiieiieeie ettt ettt 122
Figure B2.8: player.@d 3......oei ettt 123
Figure B2.9: asteroid.@d L......cccioiiiiiieiieieeeee et e 124
Figure B2.10: @Steroid.@d 2.......ccoviieiiiieiieeiee et e et e e e saae e 125
Figure B2.11: [aSer.@d.....ccoiieiieiieeiieee ettt ettt et 126
Figure B2.12: Globals.@d.......cccuviiiiiiiiie ettt e 127

B3 TotITS ettt ettt e ettt e e e e e e e e nn e e e e e e e e e nnnnnnnnnnnnnn 128

Figure B3.1: tetris game.gd 1......ccoooiiiiiiiiiiiiieieeiccceeeee e 128
Figure B3.2: tetris @ame.gd 2......c.ooiiiiiiiiieeiiee e e 130
Figure B3.3: tetris game.gd 3.....ccoooiiiiiiiiieiiecieeeee et 131
Figure B3.4: tetris game.gd 4........oooiiiiiiiieeiee e e 133
Figure B3.5: tetris game.gd S.....ccooviiiiiiiiieiieie ettt 134
Figure B3.6: tetris game.@d O........oeeouiiiiiiiieeiiieciieeciee ettt e 135
Figure B3.7: tetris @ame.gd 7.....cccoeeiiiiiiiiiieiieeie ettt s 137
Figure B3.8: tetris game.@d 8........oiouiiieiiiecieece ettt 138
Figure B3.9: tetris game.gd 9......c.cooviiiiiiiieiieieeeeeeeee e 139
Figure B3.10: tetris game.gd 10.......coeieiiiieiiieeieeeeeeee ettt e 140
Figure B3.11: board.@d L.......cccieiiiiiiiiiieeieeieeee ettt 142
Figure B3.12: board.gd 2.......cccuviieiiiieiie ettt e 143
Figure B3.13: D0ard.@d 3.....ccooiiieiieeee et 144
Figure B3.14: tetromino.@d..........coeoiiieiiieeiieeeiee et 145
Figure B3.15: GlobalS.@d.......ooouiiiiiiiieeiieeee ettt 146
B4 PlatformeT......c.eoiiiieee ettt et s 147
Figure B4.1: player.@d L......coui oottt 147
Figure B4.2: Player.@d 2.....ooe oottt e e 149
Figure B4.3: player.@d 3.....cooii ot 150
Figure B4.4: player.@d 4......ooo oottt 152

Figure B4.5: parallax item.gd L......cccoooiriiiiiiiiiiiieneeeteeeeseee e 154

Figure B4.6: parallax item.@d 2........cccovieiiiiiiieiiieiierie ettt sve e 155
Figure B4.7: parallax_item.gd 3.........ccooiiiiiiiiiiii et 156
Figure B4.8: player camera.gd.........ccccieiiiiiieniieiiieiiecee ettt 157
Figure B4.9: GIobals.gd........ccoouiiiiiiiiiiiceeeee ettt e e 158

BS5 First Person ShOOtEr.........coiiriiiiiiiiieiereeeee et 158
Figure B5.1: player.@d L...o.ooe ottt 158
Figure B5.2: player.@d 2......ccuioiiiiiieiiece ettt et 160
Figure B5.3: player.@d 3. ..ottt 162
Figure B5.4: player.@d 4......cooi oottt 163
Figure B5.5: Player.@d S....eeoe ottt 164
Figure B5.6: player model.@d 1........coooviiiiiiiiiiiiicieieeeee et 165
Figure B5.7: player model.gd 2........cooeoiiiieiiieciieee e 166
Figure B5.8: third person_ camera.gd.........c.coocveeoiieriieniienieeiieeie ettt 167
Figure B5.9: player Ul.@d.......ccoiiiiiiiiiii et e 167
Figure BS5.10: @nemY.Zd......cciiiiiiiiiieiieieeieeee ettt ettt ebe e ens 168
Figure B5.11: enemy model.gd..........cooviieiiiioiiieeie et 168
Figure B5.12: GUN.EA....cooiiiiiiiieeiee ettt et 169
Figure B5.13: DUllet.@d....ccvvieeiieeeie et e 171
Figure B5.14: damageManager.gd..........ceevuieiiiiiieniieieeeie ettt 172
APPENAIX € - GlOSSATY . uuiiiiirrrnniiissssnnrecsssnricsssssssessssssssess 173

CL GENETAL .. 173

2 GO ..ttt ettt h ettt e ettt b et e st e se e e bt e st e eh e et e entesae e bt enteeneenaes 173
C2.1 BASE INOUES.ceecurieeiiieeiiee ettt et ett et eesite e e tte e e aaeesssaeesssaeesssaeesssaeessseeenssessnsseenns 173
C2.2 CONIOL NOAES. ...ttt sttt 174
C2.3 2D NOACS....eeuveeueeetieteeiieetiesie ettt e et e st e te et e sse e seeseesseeseensesseenseensesseensesssenseenseeneas 174
2.4 3D NOAES. ...ttt ettt ettt ettt et b ettt et e bt et e s bt etesstenbeenaeeaean 175

References 177

13

0 Introduction

Video games have been an integral part of culture for the past half century, with their
popularity only seeing an increase over time. They serve as a powerful social construct around
which people build relationships with others through the games they share interest in
(Skopljakovic, 2019). Popular video games become bastions of social networks in which people
of like minded interests are able to find one another, grow friendships, and have healthy social
interactions. The core of what draws people to video games is the primary purpose for their
construction: entertainment. People play video games for the entertainment that they provide.
This entertainment can be derived in many ways, provided the vast array of game genres that
exist. A person might derive their pleasure from playing video games that provide increasingly
difficult puzzles to complete (e.g. Portal; Official Portal 2 Website, n.d.). Alternatively, one
might find enjoyment in building something in a 3D game space (e.g. Minecraft; Official
Minecraft Site, n.d.). Some of the earliest games had a simpler goal, which is to attain the highest
score possible, competing against either oneself or others (e.g. Asteroids). Many games, from
their inception to present day, have continued to provide competition against others as a means of
entertainment, pitting people against each other in friendly competition (e.g, Pong, Halo,
Fortnite, etc.). Video games come in many forms, each one providing the player with a world to
explore and a means to navigate that world. Behind each game is a vast array of systems created
for the player to give them the experience of the game, many of which the player is completely
unaware of. The goal of this paper is to take a look at how different games are developed from
the ground up in order to shed light on parts of the game development process the average player

might miss.

14

0.1 Introduction to Game Development

The process of game development draws from a diverse array of disciplines in order to
produce a final product in the form of a video game. The steps needed to develop a full video
game include the following: game design, narrative writing, art design/development, sound
design/development, and programming. The game designing process provides direction to the
game’s construction. This process answers the questions of “what can the player do?”, “what is
the player’s objective?”, “how does the game end?”, and other similar questions. It also provides
clarity to the process of building the game.

Narrative writing has a role of variable size depending on the scale of the game in
question, but shares a similar role to that of the game design process: instead of providing
direction to the construction of the game, though, the narrative writing process adds depth and
purpose to the various facets of the game for the player to observe.

Art and sound are two pillars in the development of the video game, with the two
constituting everything the player sees and hears in the game. Art and sound are the medium
through which the player perceives the game, making their design and development
quintessential to the process.

The final step listed here is programming. This is the very thing that brings all other
aspects of the game together to form one coherent whole. The programming of a game allows the
narrative to be conveyed, sounds to be produced, and art to be presented. The programming of a
video game works as instructions for all parts of the game to do as they are supposed to. The
program allows the player to interact with the game, giving consequences to the player’s actions

in ways such as moving a character or firing a projectile. It is this interactivity that separates a

15

video game from any other piece of media such as a movie or a song. Programming lies at the

heart of the game development process and is the subject of focus for the topics of this paper.

0.2 Introduction to Game Engines and Frameworks

To create a video game, the most basic means of production is done by working directly
with a programming language. You can, in theory, use any programming language to create a
video game, however, some of the most popular choices include Python and C++ (Welcome to
Python.Org., 2025; Cplusplus, n.d.). There are circumstances where the usage of less popular
languages have yielded impressive results. One particular example of this is Rollercoaster
Tycoon (RollerCoaster Tycoon, n.d.), which was created entirely in the assembly programming
language (“RollerCoaster Tycoon (Video Game),” 2024). The language that is used to create a
game is highly dependent on the intention behind the game being made, whether it be size,
scope, efficiency demands, or even personal experience; all are factors involved in choosing a
language to make a game in. Python is a language that is particularly popular to work in due to
its ease of use, however, it fails to meet the same level of efficiency as a language such as C++ in
most use cases. Likewise, C++ is popular for its high level of efficiency, but has a steep learning
curve and slower development process (Is Python Faster and Lighter than C++?,2013). One of
the main reasons that a game like Rollercoaster Tycoon was made in assembly in the first place is
due to a great demand for efficiency with the number of calculations and processes occurring at a
given time, something that would be far more difficult to achieve in a higher level language.

Beyond using a stand-alone language to create a video game, another choice is to go
down the route of using a game framework or engine to take on some of the burden of the

development process. The purpose of a framework is to provide a collection of functions and

16

systems to be accessed across many different use cases. Some of the common functions present
across many frameworks (e.g. PyGame, Ren’Py, Love2D; Pygame Front Page — Pygame v2.6.0
Documentation, n.d.; The Ren’Py Visual Novel Engine, n.d.; LOVE - Free 2D Game Engine,
n.d.) include a process function to run code for every frame the program is run, an input function
for reading keyboard and mouse input, and a draw function to display drawable objects. Each
framework has its own specialization, Love2D in particular being one that specializes in creating
2D video games. Love2D, alongside many other frameworks, benefit from being able to combine
the usage of different languages for backend processes and program scripting. What Love2D
does in particular is use Lua (The Programming Language Lua, n.d.), a simple to read and easy
to understand scripting language, for game developers to write their code while running the
processes of the game through their framework, which is entirely made in C++. This allows the
framework to exhibit the benefit of a comprehensible scripting language and a highly efficient
processing language.

Game engines differ from frameworks due to their provision of an interface and tools that
are integrated into the interface. With an engine it is possible for the program to visualize a
particular object or game scene without running the project. Depending on the engine, you can
also modify values belonging to a particular object and even manipulate its behavior without any
written code. A consistency between some of the most popular game engines (e.g. Unity, Unreal,
and Godot; Unity Real-Time Development Platform, n.d.; Unreal Engine, n.d.; Godot Engine -
Free and Open Source 2D and 3D Game Engine, n.d.) is the usage of an object-oriented
programming style. The different features of a game are encapsulated in “objects” that can be

freely manipulated in the interface individually. Features of each object can be toggled and

17

modified in the editor and correspond to their behavior when the game is run. This ability to

affect game objects without running the game is a benefit that game frameworks do not have.

0.3 Introduction to Godot

Throughout this paper I will be re-creating various video games as well as original
prototype games that reflect specific genres as a whole. To make these prototypes, I will be
making use of the game engine Godot (Godot Engine - Free and Open Source 2D and 3D Game
Engine, n.d.), an object oriented engine. For this project, the 4.2.2 stable version of Godot is used
as it is one of the most recent stable versions of the engine to be released at the time of writing.
The Godot engine is designed for a broad range of games, having an editor for both 2D and 3D
game creation. The core building blocks of game creation in Godot are called “nodes”. These
nodes exist in a parent-child hierarchy, with parent nodes dictating attributes and behavior of
child nodes. These nodes come in four different types: base, control, 2D, and 3D (see figures
0.3.1 & 0.3.2).

All nodes inherit properties of the base node, allowing all nodes to interact with one
another. It is from this base node that all Godot objects are made. Child nodes with branching
functionality from the base node are the control, 2D, and 3D nodes. Among these node types,
control and 2D nodes share a common parent that is called “Canvasltem”, due to the fact that
they share many of the same qualities of a canvas. A canvas is a space in which items are drawn
onto and in a game, a Canvasltem is an object that is “drawn” onto the screen. Such drawn
objects have many properties such as opacity, color, and z-index. The opacity determines the

degree of transparency of the object, the color determines the object’s capacity to contain the

18

colors red, green, and blue in its pixels, and the z-index determines the order in which the object
is drawn, with the last item being drawn appearing in front of all other items.

Figure 0.3.1: Base & Control Nodes

For both control and 2D nodes (see figures 0.3.1 & 0.3.2), features belonging to canvas

items are available to manipulate. However, despite these shared features, the two nodes and
their children are distinct by a significant margin. Control nodes are designed for the purpose of
creating a graphical user interface (GUI), which is presented to the player in the form of an icon,
a button, text, and more. These nodes are used in menus, dialogues, and to represent player
information such as inventory, health, currency, or points. This differs greatly from the expressed

purpose of 2D nodes, which are used to compose the objects/elements of a 2D game scene. This

19

includes the player, the background, the enemies, and the other various features of a 2D
environment. Control nodes have properties and methods centered around alignment and
anchoring, which are valuable in areas such as web page design in which such attributes are
actively manipulated and refined to achieve quality user experience (UX). Likewise, 2D nodes
are best used as game elements due to the great deal of properties and methods that allow for
flexible placement and movement of objects along two axes. The last major type of node to
consider is the 3D node. The 3D node breaks away from the control and 2D nodes due to its
three dimensional nature. This brings a great deal more to consider, as a z-axis is added to what
was formerly just an x-axis and a y-axis. With this said, however, if one were to compare the
types of 3D nodes to the types of 2D nodes (see figure 0.3.2), it becomes apparent that the vast
majority of 3D nodes have a 2D counterpart. This is because the purpose of 3D nodes is the same
as 2D nodes—to compose the objects/elements of a 3D scene. The majority overlap is due to the
common features that 2D and 3D games have, therefore necessitating many of the same types of

nodes to create their respective scenes.

20

Figure 0.3.2: 2D & 3D Nodes

) Nl

DEscription

Modeal

Beyond the types of nodes that Godot provides, Godot also has two primary files that
compose the game. One has already been mentioned on several accounts, which is the game
“scene”. Game scenes are files which store one or more nodes in a parent-child hierarchy, with
exactly one node at the top of the hierarchy. These scenes are stored in files with the “.tscn”
extension; within their content the hierarchy of nodes and their respective attributes are stored.
Among these attributes is the second primary type of file used to make a game, which is the
script file. The scripting language of the Godot engine is called GDScript (GDScript Reference,
n.d.), denoted with the “.gd” extension. This language is used to interface with the methods and

properties of each node through the engine which is constructed in C++. Beyond using the

21

built-in methods of the engine, the scripting language can be used to create custom properties,
methods, and algorithms freely. Each node can have only one script attached to it, with each
script capable of dictating the behavior of its node, child nodes, parent nodes, and sibling nodes
(nodes with the same parent). In theory, each and every node has a means of accessing every
other node in an active scene. With this said, nodes with the closest relationships (e.g.
parent-child, sibling-sibling) have the easiest access to one another. This is because the fewest
number of calls need to be made, with every parent-child pair being able to directly access one
another with sibling-sibling pairs only needing to go through their shared parent. This gives
merit to keep nodes that have information or functions valuable to another node close in the
parent-child hierarchy.

In creating a script file, there is a great variety of means to customize code to achieve the
desired results, however, there are a few tools built into the Godot engine that provide a
foundation for programming a game. One of these tools that is commonly used is a combination
of three functions, the ready() function, the process(delta) function and the
_physics_process(delta) function (Node, n.d.). These functions are the cornerstones of GDScript
and their purposes are in-line with their namesake. The ready() function performs all
instructions within at the very moment the scene is instantiated. In this function values can be
initialized, timers can be started, and important starting operations can be performed. The
_process(delta) and physics process(delta) functions are where the bulk of manipulatable
behavior occurs during the runtime of the game. The difference, however, is that _process(delta)
function handles all operations except those involving the built in physics engine, while the
_physics_process(delta) includes operations involving the physics engine. Functionally, these

two processes are one in the same in the manner in which they run code and are both addressed

22

as the process step. Both of these functions are being called every frame and are often filled with
miscellaneous check conditions for directing behavior. Each check condition, when fulfilled,
runs a different portion of code created. If a particular operation needs to standardize behavior to
be consistent over time, then the argument provided to the functions “delta” is used. This delta
value captures the time passed between frames so that it can be used to standardize game
operations, regardless of the frame rate the game is running at.

Another technique that can be implemented is the provision of various methods to a given
scene. Methods are mainly responsible for checking, getting, and setting data of a particular
object. If a scene is the child of another scripted scene, it would be more efficient to provide
methods to the child scene for the parent scene to use in order to improve the efficiency of the
game and modularize the code better.

One more technique that is often key to Godot game development is the usage of
“signals”. The signal is one of the preferred methods of sending information upwards in the node
hierarchy. Signals can either be custom made by setting the signal on ready and emitting the
signal provided the right condition or by deriving it directly from certain nodes which have
pre-made signals. The “timer” node is one good example of pre-built signals, as it comes with
the “ on_timer timeout” signal by default. As its name suggests, this signal is sent out when the
corresponding timer reaches a time of zero. This signal can then be connected to a node higher
up in the hierarchy which can use the signal to make certain decisions and perform appropriate
operations.

There are nearly limitless possibilities on how a person may construct a game using the

Godot engine, or any game engine for that matter, but these are some of the methods that see

common use and will be used in the projects conducted in this paper (_ready, process(delta),

_physics_process(delta)).

23

24

1 Pong

Pong (“Pong,” 2025) is among the earliest video games to be produced and was a novel
creation for its time. The premise of the game is very simple: the game is played with two
players, one who controls a paddle on the left side of the screen and the other who controls a
paddle on the right side of the screen. Each paddle moves at a set speed, up or down according to
player input. The goal of the game for each player is to stop the ball that bounces around the
screen from getting past the paddle that they control. Likewise, the player also tries to make it
harder for the opponent to block the ball with their paddle. The way that the player is able to do
this is by strategically blocking the ball with different parts of the paddle. The ball moves at the
greatest amount of vertical speed when it bounces off of the part paddle furthest from its center.
Upon colliding with the upper portion of the paddle, the ball is reflected upward and upon
colliding with the lower portion of the paddle, the ball is reflected downward. Earlier in the
game, it is possible to get from the top to the bottom of the screen with the paddle in the time it
takes the ball to traverse the screen. Provided with the mechanics established, this would make
for games that could technically go on forever. This is due to the lack of a changing variable that
increases the difficulty of the game beyond the threshold of the players’ capability. As a result,
there is one more mechanic that comes into play, which is the acceleration of the ball. Upon
colliding with the paddle, in addition to reflecting at different angles based upon the point of
collision, the ball accelerates by a small margin. This margin is hardly noticeable upon the first
few collisions, but the accumulation of collisions causes the difficulty to exponentially rise for
both players until the round is won.

Upon starting the game, each player has a score of zero. Each round begins with a button

being pressed to initiate the movement of the ball, or “serving”. After serving, both players do

25

their best to meet the ball with the paddle on their side of the board. Upon the ball crossing the
opposite player’s side of the screen, a point is awarded to the player. This repeats until one of the
players reaches a score of 11, in which that player is announced the winner via printout to the
screen.

When playing Pong, gameplay comes in the form of a player versus player centered
design. You are given the expressed purpose of defeating your opponent and are given the means
to do so through the usage of paddles in a table tennis-like environment. It is the skill of the
player, the skill of their opponent, and the player’s knowledge of the opponent that contribute

heavily to gameplay.

1.1 Developing Pong

Pong has three main components: The board, the paddle, and the ball. First we have the
board, which is the space in which gameplay is occurring. The board is a very simple object, but
it contains pieces of data and visual representations valuable to gameplay. In the iteration of
Pong created for this project, the board is constructed with a combination of several control and
2D nodes. The control nodes include two labels for the score of each player as well as two more
labels to print out the winner at the end of a game (WinnerLabel) and a label to ask whether they
would like to play again (PlayAgainLabel). This makes 4 labels total, with the visibility of the
WinnerLabel and the PlayAgainLabel changing according to the state of the game. The 2D nodes
that are part of the board scene are two rectangle shapes that are children to a “StaticBody2D”
node (see figure 1.1.1). These two shapes can be seen below as the light blue bar at the top and
bottom of the board. These shapes that constitute the static body would act as bumpers for the

ball to bounce off of, and as a limiter for the paddle to be stopped by.

26

Figure 1.1.1: Board Scene

4 P2Score
. CenterLing

& WinnerLabel
& Pla

. J StaticBoay2D
D fl'l|'.l'-a'-.-"l||
[Bottomwal

The ball and paddle scenes have smaller node structures than the board scene, however,
their attached scripts provide each scene with more complex behavior. The ball scene is
composed of 4 nodes, a white polygon in the shape of a square, a collider with the same shape
and size, and two timers. The paddle scene is composed of 2 nodes, a white polygon in the shape
of a tall rectangle and a collider with the same shape and size (see figure 1.1.2). What makes
both of these scenes unique is the characteristics of their root node. At their root, both scenes
have a “CharacterBody2D” node, a node which contains all of the characteristics a character
might have in a game. Both the paddle scene and the ball scene are character body nodes,
meanwhile only the paddle is a player controlled character. The reason for this choice is because
the character body is in actuality a kinematic body, an object with manipulatable speed and
direction that is affected by code and not the physics engine. The qualities of the character body
made this node type suitable for both the ball and the paddle. There are two other types of

physics bodies in Godot, the rigid body and the static body, but neither of them would be suitable

27

for the purposes of these scenes. The rigid body relies on the physics engine to calculate its
direction and movement, something that is wholly unnecessary for this version of Pong, given
that the ball’s movement is controlled via code (see figure B1.1). Likewise, the static body is also
unsuitable since it is an immovable object through neither the physics engine nor code. This
makes the static body perfect for the board scene, but not the ball or paddle scenes.

Figure 1.1.2: Ball & Paddle Scenes

28

The ball and paddle scenes both have scripts attached to them which determine their
behavior (see figures B1.1 & B1.2). Both scripts are centered around the primary goal of
directing movement. For the ball script (see figure B1.1), the velocity of the ball is changed upon
colliding with either the top or bottom of the screen and upon colliding with a paddle. If the ball
collides with the top or bottom of the screen, the ball’s vertical velocity is flipped, mimicking a
perfect reflection/bounce. If the ball collides with a paddle, its vertical velocity will be changed
in accordance with the distance between the ball and the center of the paddle and the horizontal
velocity will be flipped and multiplied by a factor of 1.05 (increase by 5%). The paddle script is
less complicated in terms of manipulating velocity compared to the ball script, rather it deals
with control flow. The paddle script (see figure B1.2) has an unchanging set speed and is applied
to the paddle’s vertical velocity according to input. The paddle is provided with an ID number
called “player num” which is given to it based on which side of the board it is on. The paddle on
the left is numbered 1 and the one on the right is numbered 2. The paddle assigned the numbered
1 moves up and down when the “W” or “S” keys are pressed, while the paddle assigned the
number 2 moves up and down when the “UP” and “DOWN” keys are pressed. These are
respectively read by Godot as the “up1”/ “downl1” and “up2”/”’down2” due to the configured
input settings. Provided the appropriate input, the movement of the paddle is simple. The vertical

velocity is set to -speed, +speed, or 0 according to the inputs provided.

29

The final detail to note in the construction of Pong is the main script (see figures B1.3 to
1.5B). In the construction of most games, a main script is utilized to keep track of important
values and regulate behavior of objects in ways that those objects could not on their own. In this
rendition of Pong, the main script is used to manipulate the speed and direction of the ball based
on game state and player input. It is also used to store score values and update labels to their
appropriate text and visibility. An important detail to note regarding the main script is that its
behavior is based around a simple state machine revolving around the variable “state”. This
variable starts with the value “start” and changes to “play”, “game over”, or back to “start”
depending on the conditions met. If the game is in the “start” state, the ball sits in the center of
the screen until a player presses “enter” or “space”, which is set as “accept” through input
settings. Once this is done, the game state is switched to “play” and the ball’s movement is
initiated. Upon initiating its movement, the ball is sent either left or right with an angle ranging
from -45 degrees to 45 degrees with respect to the direction it is moving. The game switches
back to the “start” state when two conditions are met: the ball crosses the edge of the screen on
either the left or right hand side of the screen and neither player has a score that is greater than or
equal to 11 (the game is not over). The game’s state will flip between “start” and “play” until a
point is gained by a player that brings them to 11 points. Once this occurs, the game will enter
the “game over” state, which displays the winner. From this state, a player can press “accept” to

reset the game fully and clear the scores, returning to the “start” state (see figures B1.3 to B1.5

for code).

30

1.2 Intricacies Behind the Development of Pong

While the gameplay mechanics of Pong are simple in design, the steps involved in its
development contribute to building a base of reference for games going forward. The game laid
the groundwork for future game development with a simple translation of the game of ping pong
(also known as table tennis) into a digital environment. It was from this translation of the game
to a digital frontier that inspired other developers to branch out and create games of their own.
Pong was among the first games to contribute to the growth of game development as a whole.
The features of Pong that are significantly worth noting are how it implemented simulation of
movement, collision detection, reflection logic, and its impact on the video game industry as a

whole.

1.2.1 Simulation of Movement

One of the challenges in early game development was simulating the movement of an
object and representing that movement graphically. In Pong, simulating the ball's movement
requires calculation of the ball's position, speed, and direction. This calculation operates on the
ball by judging where it was and where it is moving toward. Upon completion, the calculation is
then reflected on the ball by graphically moving it to the new location. This process occurs for
the movement of both the left and right paddles, with a more restricted ruleset which locks them
to y-axis movement at a static speed. Pong lacks advanced graphical capabilities due to hardware
limitations at the time of its creation, but still is able to represent movement by lighting select

pixels that represent the ball and paddle objects.

1.2.2 Collision Detection and Reflection Logic

31

The way that the ball’s movement is programmed and its interaction with the paddles is
the key driving factor to the gameplay of Pong. To simulate the physics of bouncing off surfaces,
the game requires a minimal detection system for the presence of other objects. When the ball
collides with the top or bottom edges of the screen, the vertical velocity of the ball is inverted to
simulate a bounce with no loss of momentum. This is implemented in a different manner
compared to collisions with the paddles, the reason being that when the ball collides with a
paddle, its horizontal velocity is inverted and incremented upward while the vertical velocity is
set according to the distance from the center of the paddle that the ball collides with. This
reflection is variable, unlike the consistent reflection with the top and bottom of the screen.

The early form of collision detection systems that Pong and similar games implemented
goes by the name of “axis aligned bounding box” (AABB) collision. This form of collision
detection reduces each object to a square with four vertices. If any one of these vertices overlaps,
a collision is detected. This form of collision detection is not what was used for the version of
Pong created in this paper, but can be manually implemented by hand or with the AABB class.

The reflection logic is inherently tied to the game's pacing. As the ball accelerates with
each paddle collision, it becomes increasingly difficult for both players to react in time. This is
especially so when the ball collides with the edges of the paddle, causing it to reflect at a steep

angle. This logic is quintessential for the development of engaging gameplay for Pong.

1.2.3 The Impact on the Video Game Industry
Pong is an exceptionally simple game, consisting only of two player controlled paddle
objects and a ball with simple movement logic. It can be argued that Pong is one of the trend

setters for the many games that followed with the way it implemented the game loop, a cycle of

32

states (such as "start", "play", "game over") for players to navigate. This structure has become
fundamental in game design, allowing for comprehensible game progression. Games following
the example of Pong have clear states for the player to interact with in a way that ensures a sense
of progression. The use of states and score tracking also laid the groundwork for other game
mechanics, such as achievements, leveling systems, and player progression found in modern

gaming. It is the systems that were implemented into Pong that helped contribute the growth of

the early game industry and the developers who supported it.

33

2 Asteroids

While Pong is among some of the first games to be widely released for two players,
Asteroids (“Asteroids (Video Game),” 2025) is one of the earliest produced games for a single
player. In Asteroids, the player controls a triangle which represents a spaceship. Around the
spaceship an assortment of polygonal shapes of various sizes move around at variable speeds.
While playing the game, the player is capable of two things, moving and shooting. In terms of
movement, the player is capable of only accelerating in the direction the spaceship is facing,
while also being able to change this direction by rotating left and right. As far as shooting goes,
this action allows a player to “fire” a laser-like projectile in the direction the spaceship is facing.
The player’s goal is to gain points by shooting as many of the asteroids as they can without
getting hit by them, as getting hit would result in the player losing lives. Upon losing all of their
lives, the player loses the game and is presented with their score.

For Asteroids, the fun of the game comes from playing to achieve the highest score. This
attribute of achieving the highest score, as it is documented on a leaderboard, creates gameplay
that has social implications, with people playing the game to beat either their own personal best
score or the highest score on the leaderboard. The game has functionally unlimited playability

with the Player being limited by their level of skill at using the free moving ship they control.

2.1 Developing Asteroids

The game of Asteroids, despite its construction being based around single player
functionality, is composed of somewhat more complex elements than that of the two player game
of Pong. The version of Asteroids created for this paper is composed of several objects, including

the user interface (UI), the player, the lasers that the player fires, and the asteroids. With these

34

elements combined, the game of Asteroids is born. First we have the board: this is an object that
exists in most games constructed around a single frame of view and is often paired quite closely
with the main script (see Appendix A2 for Asteroids gameplay images). The “board” for the
Asteroids game developed is captured by the “AsteroidsGame” scene. Inside this scene lies the
background, the player, the UI, as well as containers to hold instantiated objects including the
asteroids and the lasers (see figure 2.1.1).

Figure 2.1.1: Asteroid Game Scene

GAME OVER

&
somre: 0 High Score: O

The main script (see figures B2.1 to B2.5) for the game is responsible for several core
functionalities, all of which are centered around the operation of a state machine. The state
machine for this game is very similar in terms of functionality and labeling to the Pong state
machine. The states used for Asteroids include “start”, “running”, and “game over”. The game

begins in the “start” state, in which the player is paused and invisible. No input will cause any

response from the game except for pressing the “ENTER” key. Upon pressing “ENTER”, the

35

game shifts to the “running” state in which the player is now visible and interactable. The Ul is
also toggled to be invisible and the “AsteroidTimer” starts and begins to instantiate new
asteroids. In this state, the game checks for the player’s position every frame in order to
determine whether their position falls outside of the board. If this occurs, the player’s position is
then set to the opposite side and maintains its velocity upon falling outside the board. The game
enters the “game over” state under one condition: the player’s life falling below zero. When the
player collides with an asteroid on the screen, they lose a life, which is kept track of in the main
script. This is also represented graphically with duplicates of the player in the bottom left-hand
corner of the screen (see figures A2.2 & A2.5). Once there is no player icon in the bottom left
corner and the player is hit, the game enters the “game over” state. In this state, the game
operates in a very similar fashion to that of the “start” state, the major difference being what
occurs when the player presses the “ENTER” key. When the player presses “ENTER?”, instead of
initiating gameplay, the main scene is instead reset. By doing this, with the way the game is
constructed, only the high score of the player persists to the next iteration of gameplay.

The main script is responsible for manipulating the behavior of all objects in the game
with its focus primarily on the Player, Asteroid, and Ul objects. The Player and Asteroid object
(see figures 2.1.2 & 2.1.4) have their own script based behaviors and are both responsible for
instantiating new objects of their own. To start, the behavior of the player scene and its
composition can be described. The Player object has several core components, which include a
polygonal shape, an area with a nested collision shape, a collision shape, and an invulnerability
timer. Beyond these components, at the root of the scene is a kinematic body with the player
script attached. Among the shapes that are children to the player, each serves a different purpose.

The polygonal shape is the part of the player character that the person playing the game sees. It is

36

a white triangle on top of the position of the player character. The area with a nested collider
serves the purpose of detecting other objects that make contact with the Player. This area reads
for collisions with asteroids in particular. The collision shape that is a direct child to the Player
would have been used for this purpose, however, due to the lack of this built in functionality in
this version of Godot, it is not. This collision shape solely exists for the purpose of satisfying the
requirements of the “CharacterBody2D” node. This type of node necessitates a collision shape as
a child node in order to perform the appropriate operations of managing object position and
collision. In this version of asteroids, the Player is designed to not “collide” with any objects.
Instead, it detects whether it is in contact with another object, takes damage, and has
invulnerability for a short period of time as well as reduced acceleration. The collider that would
otherwise bump into other objects, halting momentum, is set to not mask/read other objects.

Figure 2.1.2: Player Scene

% Player

The script of the Player scene (see figures B2.6 to B2.8) serves many purposes, however,
there are two core functionalities most relevant to playing the game. One such functionality is

being able to manage the movement of the Player in accordance with user input. As established

37

earlier, the Player has two means of movement: accelerating forward and rotating left and right.
The Player can move forward with a fixed rate of acceleration and a fixed upper limit for their
speed. By pressing the “W” or “UP” key the Player accelerates in the direction it is facing. The
Player can rotate left and right at a fixed rate dictated by the Player script. By pressing the “A” or
“LEFT” key, the Player can rotate counterclockwise and by pressing the “D” or “RIGHT” key,
the Player can rotate clockwise. The second functionality of the Player script is the ability to
shoot lasers. By pressing the “SPACE” key or “LEFT MOUSE BUTTON?”, a laser scene is
instantiated directly in front of the Player, moving in the direction that the Player is facing.

The laser scene is structured similarly to that of the Player scene with two major
differences (see figure 2.1.3). First, rather than having a timer for dictating an invulnerability
period, the laser has a timer node called “ClearTimer” which starts upon instantiation. When this
timer ends, the scene is “freed” resulting in the laser being removed from the game. This is done
to ensure that there are not too many lasers on the screen at the same time. Second, the root node
of the laser scene is not a kinematic body, but rather is a rigid body instead. The reason for this is
simple, as the laser scene does not require any complex manipulation to its movement behavior.
The only thing the laser has to do in terms of movement is to move in a straight line. As a result,
a rigid body is used in place of a character/kinematic body. The script attached to the laser scene
root (see figure B2.11) is responsible for the initiation and maintenance of the laser’s movement

as well as reading for collisions with asteroids in order to break them.

38

Figure 2.1.3: Laser Scene

The last object of note responsible for constructing the game of Asteroids is, of course,
the asteroid. The Asteroid object scene is one that actually is far simpler in it’s node structure
than that of the player and laser objects. It is made with two polygons that are responsible for
forming the black asteroid with a white border and one collision polygon in order for the Player
and Laser objects to detect it. The Asteroid scene does not require an area node for detecting any
collisions because the asteroid simply needs to exist for the player and laser objects to collide
with it. Similar to that of the laser scene, the root node of the Asteroid object is a rigid body. The
asteroid does not require any changes to its trajectory once it is instantiated, making this choice
suitable. As for the script attached to the root of the Asteroid scene (see figures B2.9 & B2.10),
the asteroid has two main functions: the initMovement() function, which is responsible for
initiating movement and size and the breakAsteroid() function, which is responsible for

destroying the asteroid.

39

In this version of asteroids, there are 5 asteroid sizes with every asteroid starting at the
largest size, size 5. The size of the asteroid dictates the speed at which the asteroid moves and the
scale by which the asteroid is multiplied by. The smaller the asteroid, the faster its speed and the
lower its scale. When an asteroid is struck by either the player or a laser, the asteroid is destroyed
by the breakAsteroid() function. While for most objects, a simple free() or queueFree() method is
called to destroy the object, the asteroid object bears one unique quirk that is the ability to split.
When an asteroid is instantiated by the main script (see figure B2.5), it is given an integer value
between 1 and 5 that determines the number of times it will split. When an asteroid is hit, if it has
splits remaining, it instantiates two new asteroids that are one size smaller and have one less split
remaining. Upon instantiation, each instantiated asteroid is provided an initial speed at random
according to their size and has their movement initialized by the initMovement() function. Over
the duration of the game, the asteroids spawn with more splits, which consequently increases the
difficulty of gameplay. Upon reaching zero splits and breaking, the asteroid is eliminated without
creating any additional asteroids.

Figure 2.1.4: Asteroid Scene

40

2.2 Intricacies Behind the Development of Asteroids

The game Asteroids in its development required thoughtful consideration of the single
player gameplay experience. As opposed to games such as Pong (see Chapter 1), in which two
players play against one another with the goal of winning against the other, Asteroids derives a
different goal—to score the highest number of points. It is a game that challenges the player to
beat their own personal best and all others who have played the game, and is among some of the
first games to establish the leaderboard, right after Space Invaders in 1978. Where Pong set the
foundation for games with a player vs player focus, Asteroids further established and popularized
the use of a leaderboard in which every player’s score is recorded and the top scores are
displayed for anyone to see.

Aside from the social and competitive introduction of the leaderboard and single player
gameplay, the game of Asteroids contains game elements with greater complexity than its
predecessors. Asteroids implements gameplay elements such as a free moving character,
projectiles, and recursively instantiated objects. The game builds upon the core fundamentals of

the gameplay loop and state management by adding greater game interactivity.

2.2.1 Game Objects
The core of Asteroids revolves around the interaction between the player, lasers created
by the player, and asteroids. Each of these objects are designed with distinct characteristics based

upon their node structures and their respective scripts.

41

2.2.1.1 Spaceship

The ship's movement mechanics in 4steroids are more nuanced compared to its
predecessors like Pong. The player is able to rotate the ship and accelerate in the direction it is
facing without any constraints to a particular axis. Furthermore, the ship is able to wrap around
to the other side of the board upon crossing the threshold of the screen space, further increasing
the liberty of player mobility.

It could be said that the ship in Asteroids is a far more involved player controlled object
than that of the paddle in Pong. The ship in 4steroids is used in the same manner as the paddle is
used in Pong, as a medium through which the player interacts with the game. With this said, the
ship is directly linked to a greater scope of impact on the game. The ship is responsible for
gaining points for the player, clearing asteroids in close proximity to the player, and is a risk for
losing the game for the player. The ship is directly tied to the progression and ending of the
game, meanwhile the paddle of Pong is adjacent, due to the paddle’s only job being to block and
reflect the ball.

The laser object is created by the ship during gameplay due to the player’s actions and is
a key feature of the game. The laser scene allows the player to break asteroids in pursuit of
gaining points and preserving the life of the player. This scene adds complexity to the ship that
the player controls, as it enables the player to exert their will outside of solely the ship they

control.

42

2.2.1.2 Asteroid

In the game of Pong, difficulty is scaled over the course of each exchange between the
players by means of the horizontal speed of the ball increasing until it crosses the threshold on
either side of the screen. In the game of Asteroids, the difficulty is instead scaled with an increase
in the number of times asteroids are able to split. At the beginning of the game asteroids are only
able to split once and that is their limit. However, as the game progresses, the number of splits
each asteroid is able to perform increases up to five times.

The asteroid also does something unique from a programming standpoint, as it
implements the functionality of a recursive function, a function that calls itself, in the way it is
designed. Each asteroid's splits variable is decremented and provided to new instantiated
asteroids when it is broken. This creates a recursive creation of asteroids based around the initial

amount of splits provided to the originally instantiated asteroid.

2.2.2 Object Instantiation

The game of Asteroids is among the first to introduce elements of object instantiation to
games. In Asteroids, the game revolves around the instantiation of objects. This is to say that
objects being created and objects being destroyed is core to the gameplay of Asteroids and the
functioning of game objects. The ship controlled by the player necessitates the instantiation of
laser scenes to interact with asteroids to gain points and the asteroids require the ability to create
new asteroids upon splitting.

This concept of instantiating objects during gameplay was an important feature at the

time of this game’s inception. This concept is also something that is implemented into the games

43

created after Asteroids due to its addition of game complexity and flexibility. Instantiation is used

in a variety of cases, from projectile creation to recursive objects.

44

3 Tetris

Tetris (“Tetris,” 2025) is a game that can be described as a “speed-based puzzle”. The
game occurs on a grid pattern typically consisting of 10 squares horizontally and 20 squares
vertically. The premise of the game is that you control an object made of four squares called a
“tetromino”. This tetromino’s squares are positioned directly in-line with the grid space of the
tetris board, the 10 by 20 grid behind the tetromino, and it progressively moves down the board
at a set rate. The player has several means of moving the tetromino, being able to move it left,
right, and even down to quicken its descent. The player also has the ability to rotate the
tetromino clockwise and “drop” the tetromino in an instant bringing it to the lowest possible
position in its current position and rotation. Upon reaching the bottom, the tetromino will “snap”
to the grid. This snap is the act of the tetromino being removed as a player controlled object and
being turned into data which is added to the board. In the place where the tetromino once was
remains its squares, while a new tetromino is spawned at the top of the board. If another
tetromino is to shift downward where the squares of a previous tetromino were deposited, it will
display the same behavior as it would if it were to hit the bottom of the board. The player’s goal
in this game is to create full horizontal lines which provide the player with differing amounts of
points. The player receives the fewest number of points when they complete a singular line while
they receive the greatest amount of points when they complete four lines at the same time. When
these lines are completed, all squares in the lines are removed and all squares above are lowered
down by the number of lines cleared. As the player completes lines and scores points the level of
the game increases. Based on the level of the game, the speed at which the tetromino controlled

descends increases. As the game progresses, eventually the board is filled up due to the

45

increasing difficulty of the game and mistakes made. If a new tetromino is made that cannot go
anywhere, then the game ends and the player is presented with their score.

In Tetris, the goal of gameplay is similar to that of Asteroids. You score points in order to
get the highest score possible. Tetris diverges from Asteroids, however, in its implementation of
graphics and mechanics. Graphically, 7etris is a large leap from Asteroids, providing a variety of
colors as opposed to solely black and white. 7etris also offers far more in terms of strategy-based
compared to Asteroids, which emphasizes more on being able to shoot at asteroids effectively to
gain points and dodge them to avoid losing lives. While Tetris also requires experience and skill
to effectively control the active tetromino, the game has greater emphasis on planning out the

next steps and adjusting a plan accordingly to changing conditions.

3.1 Developing Tetris

Compared to the previous two games developed, the game of 7etris separates itself in its
complexity and implementation of different means of gameplay. In Pong the player controls a
paddle and in Asteroids, the player controls a spaceship. These objects are represented with
simple geometric shapes (a rectangle and a triangle, respectively) and share the quality of being
manipulated through intervention with their velocity, setting it to a static value for the paddle and
modifying it by a set acceleration and friction for the spaceship. In these cases, the physics
engine built into Godot does a good deal of the heavy lifting by performing calculations on a
basis of the amount of time passed from the last calculation performed. In the case of Tetris, due
to the mathematical precision of the grid-based game, such calculations were not needed nor

utilized. Instead, the game’s “character,” so to speak, is the tetromino which the player controls.

46

This tetromino (see figure A3.2) can be moved left, right, and down as well as rotated clockwise
and “snapped” to the lowest possible position of the board. It does this not by its velocity, but
rather by direct modifications to its position with restrictions to ensure it does not leave the
confines of the board nor overlap with parts of the board that are filled. This is all done through
communication between the main script attached to the “TetrisGame” scene and a child script
attached to the “Board” scene.

The TetrisGame scene (see figure 3.1.1) holds all of the components of 7etris except for
the tetromino object which is instantiated during gameplay. Going in order of the many
components that make up the main scene, the first thing of note is the “Board” node. This object
is unique to all other objects so far, as it only serves the purpose of running a script. Godot limits
each node to only having up to one script attached, however, there are no limitations on the
number of scripted objects that can be children to any given node. For the Board node in
particular, its purpose is to hold the board script which contains a singular array of size 240 for
storing every space on the grid as well as many methods for reading from and manipulating this
array. The tetromino that moves about in the TetrisGame scene is able to interact with this array
due to one very important utility function in the main script called “convertTetrominoToArray()”.
This function is responsible for finding the active tetromino by name and converting its
positional data by pixel coordinates directly into indices of a one dimensional array of size 240.
These coordinates are then compared to those of the board array to check if a desired operation
can be fulfilled. If the operation (e.g. slide to the side, rotate, shift down, etc.) can be fulfilled,
then the tetromino performs the operation accordingly. Otherwise, the operation will not be

performed.

47

After the board node, there are three timers that are primarily used to influence gameplay:
the “MovementTimer”, the “CleanupTimer”, and the “SlideTimer” (see figure B3.10). First, the
MovementTimer is the timer responsible for shifting the tetromino down over the course of the
game. The more points the player accrues, the faster this timer fires, resulting in the tetromino
moving faster. Second, the CleanupTimer is responsible for dictating when child objects of the
cleanup node are removed from the scene. When an object is no longer needed and has to be
removed, it is parented by the node titled “Cleanup” to be removed when the cleanup timer fires.
The primary purpose of this timer is to increase the efficiency of the cleanup process and to
ensure no extra objects linger around. Lastly, the SlideTimer is primarily used as a convenience
feature which cycles when the “LEFT/A” or “RIGHT/D” keys are pressed to move the tetromino
left or right. This allows for smooth incremental movement when the keys are held instead of
simply being pressed.

The following nodes are all present for the UI and background of the game. The
background, frame, and grid persist for all states of the game, while the “Start”, “Paused”,
“GameOver”, and “Running” scenes have their visibility altered on the basis of the state of the
game. Following these are two scripted nodes which are responsible for two of the core
mechanics of the game: the “hold” and “display”” mechanics. The “HoldTetromino” object is in
the top right corner of the scene and acts as a place for the player to hold precisely one tetromino
at a time. If a player does not want to use the tetromino they have been given or want to use it
later, they may press the “E” or “H” key to move it to the top right corner on top of the hold
tetromino space. If there is no tetromino in that space, then a new tetromino is instantiated; if
there is a tetromino in that space, then the two are swapped. The “DisplayTetromino” object can

be found directly above the grid and is responsible for showing the next tetromino to be created.

48

When the active tetromino is moved to an empty hold space or locked to the grid, the tetromino
seen in the display space becomes the new active tetromino.

The components that have been discussed so far make up the node architecture for the
game of Tetris. However, there is a great deal that goes into the main script attached to the root of
the TetrisGame scene (see Appendix B3). This version of 7etris has three distinct states
programmed and four “visible” states. More specifically, one of the three states implemented into
the game has two different modes. The three states used in this game are “Start”, “GameOver”,
and “Running” (see figures A3.1, A3.5, A3.6, & A3.8). The Start and GameOver states exist
only to preserve a clean transition from one state of the game to another. In the Start state, the
player is presented with the start screen and only allowed to initiate gameplay by entering the
Running state. In the GameOver state, the player is instead presented with the game over screen
and is only allowed to return to the Start state. The Running state is where the game really
begins, as the first tetromino is instantiated and begins to fall. In this state, the player is able to
move the tetromino around and, provided the correct moves, the player can clear rows of squares
to gain points. Within the Running state, the player is able to press the “P” key to pause the
game. When the game is paused, a simple Ul element is made visible and all action of the scene
ceases. In this state, the tetromino cannot move by any action of the player or by any action of
the movement timer. To unpause the game, the player can simply press the “P” key again and

return to playing.

49

Figure 3.1.1: TetrisGame Scene

Start Game?

Press “LNTLR to Degin

The tetris game scene can be seen above on the right and the node hierarchy of the tetris game
scene can be seen on the left.

While playing the game, multiple operations occur in each frame, many of which are
centered around the Tetromino object. These operations all occur within the main script (see
figure B3.4 to B3.10), dictating the movement of the tetromino, the creation of a new tetromino,
the conversion of the tetromino into an array, and the addition of a tetromino to the display and
hold spaces. The Tetromino object itself (see figure 3.1.2) does not have much content in terms

of its construction and programming. The node architecture is simply composed of a singular 2D

50

sprite titled “TetrominoSquare” and a 2D root node with the tetromino script attached. This is the
first usage of a sprite thus far, that being a 2D image used to represent an object or environment.
The reason for the way the tetromino is structured lies in how the tetromino is coded (see figures
B3.14 & B3.15). Every tetromino, by their nature, must be constructed with four squares. The
square that each tetromino begins with is the square at the origin point of the object and is
mathematically represented as “Vector2(0,0)” or “Vector2.ZERO”. The tetromino script is
responsible for instantiating three additional squares to complete the tetromino. It does this by
using a dictionary called “cells” in the “Globals” script.

Globals is a script that serves the sole purpose of storing important values and has no
code to directly run. Among these values is the list “cells” which contains each value of the
tetromino enumeration as a key. This key is attached to a list of four vectors that designate the
positions of each square in the tetromino. This relative positioning is in units of a full square
width, consequently each square’s position is multiplied in order to be placed at the appropriate
location in units of pixels. After all of the four squares have been created, their color is set by
changing the frame of the spritesheet they inherit their texture from.

Figure 3.1.2: Tetromino Scene

51

3.2 Intricacies Behind the Development of Tetris

The development of 7etris introduces a unique set of challenges that are distinct from
previous games such as Pong and Asteroids. Unlike the focus of prior games being focused
around vector-centered game objects, as seen with the ball of Pong and the laster/asteroids of
Asteroids, Tetris is a puzzle game that deals with the management of player controlled pieces in a
grid-based environment. While Pong and Asteroids work with setting the speed of objects and
the direction they are moving, 7etris works with the timing and validation of movements of a
tetromino while considering squares fixed to a limited board space. The game is centered around
an active tetromino being controlled by the player as their means of interacting with the game

and progresses with their completion of full rows.

3.2.1 Grid-Based Movement and Tetromino Manipulation

At the heart of Tetris is its grid system, a fixed board where tetrominoes fall and interact
with previously placed tetrominoes. The grid occupies 10 spaces of width and 20 spaces of
height, where the grid is initiated empty and is filled as tetrominoes are placed. Each tetromino is
made of four squares, and each square has a position within the grid. The tetromino is
represented as a set of these squares, which are initialized in one of seven predetermined shapes
(I,J,L, O, S, T, and Z). Unlike vector-based movement where speed and direction are the values
of interest, 7etris operates in the movement of a tetromino to the sides, downwards, and rotated

clockwise.

52

Provided that there is grid space available for all of the squares of a tetromino to occupy,
the tetromino can move all of its squares horizontally by one space with player input. If there is
no grid space available, the tetromino remains stationary. Upon being shifted down, the same
condition is checked as is done for horizontal movement. If the tetromino passes the check, the
tetromino is shifted down. If the tetromino encounters conflicts with the grid, it is then attached
to the grid and the next tetromino is instantiated. The remaining movement the tetromino can
perform is a clockwise rotation, which has slightly more nuance than previous movement
validations. If the rotation would move the tetromino outside of the grid space, the tetromino is
moved horizontally to keep it within the border of the grid. Additionally, if a rotation would
move a square of the tetromino into an occupied part of the grid, the tetromino is then unable to
perform any rotation.

These movements are implemented through direct changes to the tetromino’s position on
the grid. This system requires precise manipulation of the falling tetrominoes and careful
planning of where to place tetrominos to maximize the number of points gained through

gameplay.

3.2.2 Board Management

In Tetris, it is vital to keep track of the state of each square in the grid. To do this, a
one-dimensional array of size 240 is used, where each index corresponds to a specific grid
square. This array is manipulated to track which spaces are filled and which type of square fills
each grid space. When any movement operation is attempted to be performed on the active

tetromino, its pixel-based coordinates are converted into array indices of the grid array

53

corresponding to the current position of the four squares of the tetromino. If there is an overlap
with existing squares on the board or a boundary breach, the movement operation is prevented.
When the active tetromino fully descends down the board to a valid location for it to
become part of the grid, several important steps take place. The indices which the tetromino
occupies in the grid array are filled with a character to represent the type of tetromino being
attached to the board (‘i’, j°, ‘I, ‘0’, ‘s’, ‘t’, or ‘z’). These values added to the array are used to
determine whether those spaces are filled and with what color of square they should be filled
with. Based on which spaces of the board are containing squares or missing squares dissonant
with the array due to the addition of a tetromino or the clearing of a row, squares are added to the

board, removed from the board, or have their positions changed.

3.2.3 Timers and Speed Management

While there is no “speed” that the tetromino is moving at, there is a rate at which the
tetromino descends by one space at a time. The primary factor influencing the increase in
difficulty of gameplay for the player is the time it takes for the tetromino to descend. The
tetromino descends by one space at a set interval of time designated by the MovementTimer. As
the player accumulates points and the game increases in level, the time designated by the
MovementTimer decreases, therefore increasing the speed of the tetromino’s descent. The faster
the tetromino becomes, the harder it can be to control where it falls and plan where it could best
be placed.

In Asteroids, timers were utilized to clear the lasers created by the player as well as
manage the invulnerability period of the player. With this said, the usage of timers for the game

of Tetris is integral to the core mechanics of the game. Additionally, another timer used for the

54

purpose of more engaging gameplay is the SlideTimer. This timer has the expressed purpose of
providing the player with the ability to smoothly move the tetromino to the sides and downwards
by holding down the corresponding keys rather than tapping the keys for each increment of

movement.

3.2.4 Informational Mechanics

There are two mechanics introduced in 7etris that contribute greatly to strategy building
during gameplay: the hold and display mechanics. Above the Tetris board are two spaces
designated to hold and display tetromino. The held tetromino is a tetromino that is being held by
the player to be used at a later time while the displayed tetromino is the next tetromino to
descend. These provide vital information to the player and the opportunity to control more of the
game then if tetrominoes were to descend at complete random with no information regarding
which tetromino is going to descend.

Information is valuable when playing any strategy-based game and contributes to more
entertaining gameplay by giving the player the ability to think their way through the game
provided their limited resources. The player has to make thoughtful decisions about their moves
as they influence future gameplay, with a mistake being able to come back at a later time to end a

run of the game early.

55

4 Platformer

A platformer (“Platformer,” 2025) is a game designed around the set purpose of getting
from one place to another. In a typical 2D platformer, the player typically comes in the form of a
2D animated sprite which the viewport of the game follows as they move about the screen. The
most conventional controls for this type of game include the player’s ability to move the player
character left and right, as well as the ability to make the character jump. This allows the player
character to move from platform to platform to get to their desired goal, hence the name
“platformer”. Some games provide additional capabilities such as limited flight or even restrict
some movement such as limiting the player to one direction of movement or to only being able
to jump (e.g. Jump King; Jump King, n.d.). This formula also extends into 3D games, with some
modifications due to the addition of navigating a 3 dimensional space. By convention, in a 3D
platformer the player has the ability to move forwards, backwards, and side-to-side. The camera
also follows a few standard orientations, viewing the character from the back or side with a fixed
or free camera, or viewing the world from a first-person perspective in the player character's
viewpoint.

The direction of platformer games can vary greatly, with some games emphasizing the
completion of puzzles (e.g. Portal 2; Official Portal 2 Website, n.d.) and others emphasizing
platforming challenges of increasing difficulty (e.g. Celeste; Celeste, n.d.). What platformers
provide in spades compared to the games created prior (Pong, Asteroids, and Tetris), is the
freedom to traverse the game environment. In a game like Pong and Tetris, the game is centered
around a fixed viewpoint of the pong board and tetris grid respectively. Meanwhile, in a
platformer, the game’s viewpoint is fixed upon the player character and follows them wherever

they go. This freedom allows for a vast array of options through which gameplay can be

56

constructed, leading the genre to branch into many different routes. The intent and purpose

behind these games at their core is traversal, moving to a designated location with purpose.

4.1 Developing a Platformer

In developing a platformer, two primary requirements must be met. A player character
that can move about its environment and an environment for the player character to move around
in. In this particular platformer prototype, three primary objects are created which include a
tilemap to create platforms and walls for the player character to make contact with, a parallax
background, and the player character itself (see figures 4.1.1 to 4.1.3). Unlike the previous games
developed so far, platformers often necessitate the development of multiple scenes to switch to
on the basis of progression. Consequently, there is far more emphasis on modular objects than
before, so much so that the “PlatformerLevell” scene doesn’t need to have a script attached to it
(see figure 4.1.1). This scene contains multiple elements which function independent of their
parent scene, making them capable of being used to construct multiple levels of different designs
and difficulties.

Figure 4.1.1: Platformer Level Scene

x
x
I
r
¥
r
¥
T
Fa
Fe
re
I
¥

57

The first object in the platformer scene is the “DungeonTilemap” node, which is the
tileset themed with blue tiles (see figure 4.1.2). This tilemap combines three primary features:
the ability to place a tileset onto a 2D environment, add collision to a tileset, and automatically
configure tiles drawn onto a 2D environment. The first feature allows the developer to draw a
tileset into a 2D environment. A tileset is a collection of drawings with even spacing that allows
them to be drawn recursively into an environment. The tilemap sections off each individual
drawing of a tileset for this expressed purpose. The second feature allows the tileset to interact
with other physics bodies, allowing the player to stand on platforms and collide with walls. The
third feature allows the developer to “autotile”, an incredibly resourceful tool when creating
levels. To begin autotiling, each tile is split into a 3 by 3 grid which can be filled according to
where each tile connects to adjacent tiles (see figure 4.1.2). If this is done for a complete tileset
that can represent all configurations within a 2D space, the tiles can simply be drawn into the
environment in which they are desired while Godot is able to handle which tiles are most
appropriate to use and fills in the spaces drawn in using the tileset. In the creation of a 2D

platformer, tilemaps are typically some of the most versatile tools for level building.

58

Figure 4.1.2: Tilemap Scene

After the tilemap node, there are three more objects of note that compose the platformer:
the Player object, the Camera object, and the Parallax Background object. The Player object (see
figure 4.1.3) 1s composed of a set of three timers, a collider, and a sprite sheet. The timers
“CoyoteTime”, “WallJumpTime”, and “SpriteAnimationTimer” all have expressed purposes
based on how the player’s behavior is programmed (see figures B4.3 & B4.4). CoyoteTime is
responsible for giving the player a brief period of time in which they can jump after leaving a
ledge. This is implemented for the sake of providing forgiveness for small and common mistakes
by the player when jumping off of a ledge. This same principle carries over into WallJumpTime
which creates a refractory period for when the player leaves a wall. The last timer,
SpriteAnimationTime, is a utility timer with the expressed purpose of creating fluid animation.
The player has multiple states that dictate which frame of the sprite sheet (see figure A4.4) is

used at a given moment. Two of these states, “walk” and “idle”, use multiple frames. While in

59

these states, SpriteAnimationTime is responsible for cycling between the appropriate sprite
frames for these animations.

Figure 4.1.3: Player Scene

The player scene can be seen above on the right and the node hierarchy of the player scene can
be seen on the left.

As would be expected, the root node of the player scene is a character body similar to that
of the paddle of Pong, the spaceship of Asteroids, or the tetromino of Zetris. Compared to those
characters, though, the player character of this platformer has the most complex movement and
animation behavior seen thus far in the analysis (see figures B4.1 to B4.4). Nearly all processes
of the player script occur each frame, as they are run in _physics_process(delta). Each frame, the
player’s movement, friction, jump, timers, and animation are handled in a sequential fashion (see
figure B4.1). In terms of movement, the player character has access to several means of
platforming. The player has the base capabilities of being able to move left and right using the
“A/LEFT” and “D/RIGHT” keys respectively and the ability to jump using the “SPACE” key.
These allow for the simple traversal of platforms. Alongside these capabilities, the player may
additionally jump a second time by pressing the “SPACE” key while mid-air and wall jump by

pressing the “SPACE” key while in contact with a wall. Beyond these actions the player may

60

also slow their descent and place themself into the “float” state by holding the “W/UP” key while
falling.

Throughout the management processes of the players’ movement, the player’s state is
changed according to user input and the player character’s position relative to the world
surrounding it. The player’s state is then accounted for during the animation step, which
manipulates the graphics of the player to match their current action (e.g. walking, jumping,

standing, etc.).

4.2 Intricacies Behind the Development of a 2D Platformer

Developing a 2D platformer is a process that involves the management of physics
processes, animation handling, and level designing. In a platformer game, the purpose of all
objects is to exist for the player to interact with and observe as a means of gameplay. The level is
designed for the player to traverse, meanwhile collectibles are designed for the player to acquire,
enemies are designed to challenge the player, and goals are designed to give direction to the
player’s traversal of the game. In creating a 2D platformer, the player character lies at the core of

development, as it is through the character that the player is able to experience the game.

4.2.1 Player Movement

Out of the games seen thus far in this piece of work (Pong, Asteroids, Tetris), the 2D
platformer provides the most fast array of options for the player to interact with the game. The
player can walk, jump, double jump, and wall jump to traverse all parts of the game, and
provided the camera that follows the player around the scene, levels can be constructed to

provide any amount of the world for the player to traverse. All interactions with the game occur

61

through the player’s movement. As the player character navigates the scene, the player is able to

observe more of the game world and make decisions on where to go accordingly.

4.2.1.1 Jump Mechanics

Platformers necessitate one particular quality to be a platforming gaming, which is the
ability to jump. While this may seem like a trivial mechanic in which the player must be
launched upwards before being brought back to the ground, there is a great deal of thought that
goes into this process. The jump designed for a platformer character can vary, some games
implement a custom jump that manipulates the velocity progressively over the course of the
jump. In this prototype, all jumps (jump, wall jump, and double jump) are implemented through
simply setting the vertical velocity of the player to the set value. Upon double jumping, this
value is slightly minimized and upon wall jumping, some horizontal velocity is applied to the
player to move them away from the wall. These create a varied array of options for the player to
traverse the world. The player is then brought back to the ground by applying gravity to the

player while they are in the air.

4.2.1.2 Flexible Movement Mechanics

Something that maximizes the quality of controlling the player character’s movement is
the usage of two timer’s to support movement: the CoyoteTime timer and the WallJumpTime
timer. The CoyoteTime timer is implemented to create forgiveness for the player making small
mistakes and accounting for cases in which the player performs a jump at the very edge of a
ledge, but the game fails to identify that the player is still in contact with the floor. People are not

perfect, consequently mistakes in which the player just barely misses a ledge is inevitable. Such

62

moments are unsatisfying during gameplay, resulting in the implementation of the leeway that
CoyoteTime provides.

This same thing is implemented using WallJumpTime for the player’s wall jump. This
implementation also varies from the CoyoteTime slightly in its purpose. While both timers work
to reduce the dissonance between the actions of the player and the responsiveness of the player
character, the WallJumpTime timer is integral to maximizing the functionality of the wall jump
as a whole. When jumping from a wall, based on the construction of the environment around the
player, the player might encounter a platform or another wall that they need to access. This
would naturally necessitate the player to move towards their goal directly after jumping from the
wall. If the player attempts to move away from the wall just before the player performs a wall
jump, the WallJumpTime will be able to catch the player’s attempt at a wall jump and allow the
action despite the player not being in contact with the wall.

These timers are so brief, that they often never even go noticed, yet they provide an
overall improvement to the feel of gameplay for the player. Work like this often goes unnoticed

in many games, but it does not take away from the value they provide.

4.2.2 Animation Systems and State Management

While handling every input event from the player, the state of the player is changed. This
same process occurs even when there is no player input on the basis of the objects the player is in
contact with and the speed at which the player is moving. The state of the player reflects all of
the various conditions that surround the player. For example, the player is walking if the player is
moving to the side and they are in contact with the floor. Alternatively, if the player is moving

upwards and in the air, they are jumping. Provided that the player is in the air, moving

63

downwards, and the “W/UP” key is pressed, they are floating. These states of the player are kept
track in order to appropriately animate the player in accordance with their actions.

During the animation step, the player is provided one of five animations congruent with
their state. Three of these animations are static while two cycle between multiple frames. To
account for this limited animation cycle, while the player character has a single frame animation
active, their sprite is simply set to that state. During the jump state, the jump frame is set and
during the float state, the float frame is set. Alternatively, during the multi-frame animations, the
SpriteAnimationTimer is started and the player character’s animation is initialized at its first
frame. Every time the timer completes a cycle, the frame increments by one. Provided overflow
past the frames available for the animation, the frame is set back to the initial frame of the

animation.

4.2.3 Level Creation

Levels in a 2D platformer constitute the world through which the player travels. Through
each level the player might have an objective to fulfill, quota to meet, or a destination to arrive
at. There are two particular features of a level to give depth to the scene and provide
traversability to the scene: the background and the foreground.

The background that was used in this platformer prototype is a parallaxing background. It
adjusts the position of individual background elements relative to the player’s movement in order
to give depth to the scene despite its 2D nature. These background elements exist solely to add
aesthetic value and depth to the scene. What is needed to create parts of the level which the
player can interact with directly is a foreground. In this game prototype, a tilemap is used to

place squares of varying text into the foreground. These tiles are provided the capacity to interact

64

with the player through the addition of colliders to each tile, giving the player the ability to walk
along them and use them to traverse the scene.

Functionally anything can be used to represent the level, even simple shapes and colors.
With this said, implementing mechanics such as parallaxing and tile mapping can create games

with far greater depth and with larger level scope.

65

5 First Person Shooter

A first person shooter (FPS) is a type of game developed in a 3D or 3D-like environment,
centered around the mechanics of a free moving character body and shooting projectiles in some
manner. Such games have a vast variety of objectives and goals, some having the set purpose of
fighting computer controlled enemies, while others have player characters which you fight
against (“First-Person Shooter,” 2025). As elaborated briefly in regards to a platformer game in a
3D environment, an FPS typically gives the player the liberty of moving forward, backward, left,
and right. Often, an FPS also will integrate the ability to jump, crouch, and sprint. Some even go
a step further by giving the player unique mobility options such as diving and crawling. Beyond
such options of mobility, the core mechanics of shooting often comes from items which the
player equips, often being in the form of guns. All FPS games, by their nature, give the user a
view of gameplay from the first person, but not all of such shooters are limited to one such
perspective. Some FPS games allow for the player to view gameplay from different perspectives
such as the third person view (e.g. Fortnite, Valorant; Fortnite, n.d.; VALORANT, 2025).

For an FPS, the range of games that exist has the very same variety as that of platformers.
In the very same way as a platformer, an FPS follows the player, giving liberty to the player to
navigate their environment as they please. Some of the first games of this genre provide the
player with a maze to navigate through with enemies to defeat along the way (e.g. Doom; “Doom
(1993 Video Game),” 2025). Some of the newer games take a different approach, producing
gameplay in which the players are pitted against each other in battle (e.g. Fortnite, Valorant;
Fortnite, n.d.; VALORANT, 2025). These games are constructed around the premise of defeating
all opponents, whether that is by yourself or on a team, facing computer controlled characters or

other players.

66

5.1 Developing a First Person Shooter

The FPS game is the only project in this paper that utilizes 3D nodes. These 3D nodes
occupy the same use cases as 2D nodes, but instead bear characteristics of a 3D object and exist
in a 3D space. The vast majority of 2D nodes have direct counterparts in 3D to account for a
third dimension to methods and data values. For example, the player character for this project
(see figure 5.1.3) has a root node “CharacterBody3D” which is the 3D counterpart to
“CharacterBody2D”. Instead of position, velocity, and acceleration data being stored in a
Vector2, a vector with x and y values, such data is stored in a Vector3, a vector with x, y, and z
values. In this particular version of an FPS, the elements in the scene are kept relatively minimal,
similar to the development of the platformer prototype.

Figure 5.1.1: Main Scene

The main scene can be seen above on the right and the node hierarchy of the main scene can be

seen on the left.
In the test level scene (see figure 5.1.1) there are different objects that are responsible for

the composition of the environment. The island acts as a base or floor, on top of which a

67

selection of rocks and trees populate. This island as well as the rocks and trees are all constituted
by a mixture of two primary nodes: A “MeshInstance3D” and a “StaticBody3D” (see figure
5.1.2). The mesh instance for these objects is a 2D sprite or color array resource, this resource
being an array of color values and points of positional data to represent the object in a 3D space.
The “mesh” terminology used here refers to any object presented in a 3D environment. The static
body allows these objects to interact with objects also containing physics bodies such as the
player. For these objects, the static body shares the same positional data points as each object’s
mesh instance. One object that has not been seen until now is the node titled “Sun” which is a
“DirectionalLight3D” node. The purpose of this node is to illuminate the scene from a single
point, making it crucial for a 3D environment in which shadows are vital for representing depth
graphically. This node has a 2D counterpart that has not been used so far due to its purpose being
more out of aesthetics rather than need. None of these objects are scripted, as the sole purpose

they need to fulfill is to take part in helping to compose the world environment.

68

Figure 5.1.2: Tree Scene

. .| StaticBody3D
@ CollisionShape3D
J trunk_b_green

. J StaticBody3D

©
©
©
©
©
©
©

@ CollisionShape3D

What remains in this game’s level design is a player and two enemies (see figure 5.1.3).
The Player and Enemy objects are formed of nearly an identical node structure with two notable
exceptions. The first being the presence of a UI for the player, given that they need for a
graphical representation of their data and the enemy does not. The second exception of note is
that the Player object has two different cameras, one for their first person perspective and another
for their third person perspective (see figure 5.1.4). The first person camera is simply attached to
the head of the character (see figure 5.1.5), while the third person camera is more complex in its
construction. It is built around a set of two nodes called “Path3D” and “PathFollow3D” which
allow the camera to move fluidly between two points on a set path. The purpose of this is to

allow the third person camera to adjust its position based on the presence of objects that enter the

69

range of the camera. The camera detects such objects through the usage of two raycasts, which
work to detect objects in a straight line in front of and behind the camera’s view. This ensures
that this camera does not get stuck in objects and provides that player with a consistent third
person view of the game.

What does remain consistent between the player scene and the enemy scene are the
hitboxes used and the model used. Both scenes (see figure 5.1.4) utilize what is called a capsule
shape for their collision detection. While in previous 2D projects a simple square or circles
sufficed for all intents and purposes, 3D shapes need to account for there being three
dimensionality to their influence on the environment. The capsule shape in particular is a
common option for characters in 3D, as it has a rounded top and bottom which makes it harder to
get stuck on objects, while also having a cylindrical body that maintains other objects at an exact
distance from the character in all directions. Aside from the capsule collider, another thing the
player and the enemy both share is a character model, which bears significantly more complexity
in its design..

Figure 5.1.3: Player Scene

70

Figure 5.1.4: Third Person Camera Scene

This character model (see figure 5.1.5) is a demonstration of the interaction between 3D

modeling software and its compatibility with the Godot engine. The model itself is imported
from Blender (Blender.org - Home of the Blender Project, n.d.), a community-developed and free
to use software used for the development of 3D models. The model here is composed of
precisely 14 different meshes. Among these meshes are two feet, two hands, one head, two lower
arms, two lower legs, one torso, two upper arms, and two upper legs. All of these body parts, as
themselves, would not be able to properly constitute a player model, as there is nothing that
allows for the model to move or be animated in any fashion. In theory, each body part can be
moved and rotated on an individual basis in order to create the appropriate animations for the
character such as walking and jumping. However, such methods are highly inefficient due to the
amount of time it would take to produce animations. The solution to this problem is to create a
skeleton for the model. A skeleton is an invisible collection of objects called “bones” which are
responsible for manipulating 3D models based upon their position, rotation, and size. The

skeleton of a 3D model is similar in purpose to that of the skeleton of a person: it is a non-visible

71

part of the body that constrains movement by the nature of its construction. For a 3D model, a
skeleton is responsible for connecting the various individual parts together in order to create one
cohesive object.

The primary means by which the skeleton works to tie the different parts of the model
together is through hierarchies, using the very same parent-child relationships as the Godot
engine. Conventionally, the parent’s behavior directly influences the child’s behavior. This is the
default behavior of the hierarchy in Blender, with positional and rotational changes made to a
bone influencing its children. Such behavior is referred to as “forward kinematics”, as all
changes are applied forward in the hierarchy. However, such methods are not ideal when
animating certain movements, such as movements of the hand which often necessitate the hand
moving to set positions. Such movements would be achieved easiest through the usage of
another form of kinematics, “inverse kinematics”. This technique is applied to the hands and
arms of the model and results in changes to the child bone, in this case the hand, affecting its
parent nodes, the lower arm and upper arm. While this method reverses the way in which the
bones interact with one another, it still abides by and utilizes the convention of the parent-child
relationships present.

Outside of the usages of the hierarchical nature of the skeleton, one more method was
used to improve the animation process, which is the usage of “targets”. A target is a bone that is
removed from the hierarchy and serves mainly the purpose of acting as a pointer for other bones
to aim towards. The target bone is a child of only the main bone of the model, meaning it does
not follow the convention of being a child of another bone of the character’s body parts. For this
model, there are four pointers, two for the arms and two for the legs, which serve the purpose of

keeping the elbows of the arms back and the knees of the legs forward.

72

In the character model (see figure 5.1.5), each of the 14 meshes has a corresponding
“BoneAttatchment3D” node. This particular type of node allows for additional items to be added
to the skeleton. Every bone, at minimum, has a static body attached to it with the same positional
data as the mesh corresponding to that particular bone. The only exception to this is the torso
which is split between three bones: the hip, the chest, and the spine, which are all responsible for
manipulating the torso mesh and are all given their own cuboid shape that follows the
dimensions of the torso. Despite not being exactly one-to-one with the model, the effect is
negligible during gameplay. Beyond the static bodies which are added to the player model, there
are a few more notable attachments: attached to the head is a first person camera, to the main

bone a third person camera, and to the right hand a gun.

73

Figure 5.1.5: Player Model Scene

o F

(o]
(o]
(0]
=]
@
[o)
(0]
@
(o]
(o]

For the purposes of this prototype, a simple gun (see figure 5.1.6) and bullet (see figure
5.7) are used. The gun scene is of a relatively simple construction designed around the set
purpose of instantiating bullet scenes (see figure B5.12). The first node in this scene is a raycast,

a 3D vector with a set length, titled “BulletPath”, which is responsible for giving bullets a point

74

to start from and a set direction to move towards. After the raycast is a set of three meshes that
constitute the gun object. The scene also contains a node to contain instantiated bullet scenes and
a timer that is implemented for the purpose of demonstrating simple enemy behavior, as bullets
are produced by timeouts of the timer rather than player input. As far as player input is relevant
to the gun scene, upon pressing “LEFT MOUSE BUTTON” a new bullet is created and is
informed by the raycast of where to be positioned and at what angle. After that, all behavior of
the bullet is carried out by the bullet’s script.

Figure 5.1.6: Gun Scene

The bullet scene (see figure 5.1.7) is also light in construction, possessing a single mesh

for its body, one timer to free the bullet after a set amount of time, and a simple hitbox for
detecting objects. What makes the gun scene different from projectile objects seen thus far, such
as the ball in Pong or the laser in Asteroids, is that it is not a physical object nor does it use the
physics engine. This is made apparent first by the fact that the root node of the bullet scene is a
simple 3D node, but also in the script of the bullet scene (see figure B5.13). The bullet script has
a few primary purposes: move the bullet, emit damage signals, and destroy the bullet. The bullet

object is moved by multiplying the speed of the bullet by the amount of time passed and adding

75

that value to the position of the bullet in the direction it is moving. This is the reason while this
bullet is so different from previous projectiles, as instead of manipulating the velocity of the
projectile, the speed of the bullet is directly applied to the position of the bullet over time
(therefore achieving the same effect without work of the game engine). The bullet runs a
function upon colliding with an object, which checks for the layer the colliding object is on and
emits a signal of varying damage on the basis of which layer the object is on. This is done so that
different parts of a character, player or enemy, take damage according to the severity of a hit. By
the logic of the bullet script and the player scene, the player’s head receives the largest amount of
damage and the arms and legs receive the least amount of damage, with the torso receiving the
average of the two. Upon colliding with the object, the bullet also is destroyed, irrelevant of what
object it collides with. If the bullet does not collide with anything within 10 seconds it will also
be destroyed from a timeout call from the “ClearTimer” node.

Figure 5.1.7: Bullet Scene

O Bullet
El Cube
2 ClearT

5.2 Intricacies Behind the Development of a First Person Shooter
Developing an FPS involves a similar level of focus to the player character as is required

for developing a platformer game. At the center of gameplay is the player and their capacity to

76

interact with and influence the environment. In this FPS prototype, a 3D environment and 3D
player character are created, with the player character having the capacity to walk and jump
around their environment much like that of a platformer character. The FPS character, however,
separates itself from a standard platformer character greatly in the focus of its construction. The
place where gameplay has its greatest focus is the implementation of mechanics to shoot
projectiles. Additionally, actions are implemented for the purpose of preserving the player’s
capacity to not be hit or increase their capacity to hit targets of their own. The ability to sprint,
crouch, and view the player character from the third person perspective revolve around this

virtue.

5.2.1 Player Movement

Movement for the 3D FPS game differs greatly from any of the movement in game seen
thus far. Due to the implementation of a third dimension, the player has access to an x-axis,
y-axis, and z-axis. The player has the ability to traverse the x and z-axis by walking forwards
backwards, left, and right. They are also able to access the y-axis by jumping, falling, or walking
up and down inclined surfaces. The degree of freedom that 3D movement provides is
incomparable to that of 2D games, as it provides many means through which the player can
manipulate their position. This is the evolution of player freedom seen throughout the projects
presented thus far. Pong gives one axis of movement. Asteroids, Tetris, and the 2D platformer

give the player two axes of movement. The FPS gives the player a full three axes of movement.

5.2.2 Camera Management and Perspective

77

In creating an FPS, there is a great deal of attention on how the camera is managed. In the
prototype FPS there are two cameras that are created for the player to observe the game world.
The primary camera is the first person camera, being located where the head of the character is.
This camera moves wherever the player’s head is and shows the world as the player character
would “see” the world. The secondary camera, which the player can switch to from the primary
camera, is the third person character. This camera is located behind the player and follows them
wherever they go. This camera shows the player character as they exist in the world around
them. This camera is also constructed with additional features to improve gameplay. This third
person camera has the problem of potentially being inside of or obscured by objects behind the
player that are too close. This problem is mitigated by the third person camera by dynamically
changing its position if it is too close to an object. This results in an overall improvement to

gameplay for the player and accounts for known pitfalls of the third person camera.

5.2.3 Handling Projectiles and Combat

Something else the FPS introduces unique to other projects is the implementation of
multiple objects with the capacity to affect one another through a damage manager. Since this is
a FPS game, the aim is to shoot opponents to damage them until their health reaches zero. In this
prototype, the player character and enemy characters are able to inflict damage by firing bullets
at opponents are receive damage upon being hit. Through the usage of a damage manager, the
game registers where a character has been hit, by which character they were hit by, and is able to
calculate the appropriate amount of damage in accordance with this information.

Each individual projectile is instantiated by a gun scene held by its respective character.

This gun is given an id according to the character that is holding it and each instantiated bullet is

78

given this same id. This information is valuable for when the damage manager need to find
which character shot the bullet. These features constitute the core of gameplay, setting a

groundwork for customization of player and enemy characters.

5.2.5 3D Models and Animation Systems

Among the most complicated parts of designing an FPS is a creation of a fully animated
3D character. As far as differences go between the FPS prototype and prior games, this process
has by far the greatest leap in complexity. The player character is constituted of a rigged and
animated 3D model created in Blender. This means that not only is it a culmination of different
3D body parts, but each of these parts are assembled together through the use of a skeleton and
are provided animation with adjustments to the values of that skeleton. Compared to the frame
by frame animation used in the 2D platformer, this is both a different means of animation and a
different medium of art as a whole. 2D games have also been seen using skeleton-based
animation systems (e.g. Rain World), but such a system was unnecessary for the purposes of the
2D plaformer created. For 3D games such as this FPS, this animation style is the default due to

the nature of the 3D environment.

79

6 Conclusion

Game development is a process that delves into the most minute details of constructing
game objects and scripts that work together to create one coherent whole. It is during the process
of creating a game that a developer must consider how each component contributes to the final
product. While the developer is able to see the entire picture at all times, what they have built
and how it works, the player is exposed to a limited scope of that work at a given time in the
form of gameplay. From the moment a person picks up a game, they enter an intricate logical
web created by the game developer that dictates the actions the player can take. A game
developer's goal is to create a game that guides the player through the game in a way that is
intuitive to the player and flows naturally, allowing them to appreciate gameplay to its fullest.
The player comes first in the creation of a videogame, as it is their enjoyment that the game is
created for.

With all that is done for the player, there is one question that comes to mind from the
developer’s perspective: what does the player know about the construction of a game? This
thesis serves to provide insight into this question by showing what goes on behind the scenes of
developing a video game. Each object of a game is intricately crafted in a manner that fits into

the game it is part of and contributes to the gameplay experience of the player.

6.1 Future Work

There is a vast list of details involved in the game development process that were not
touched in this work. A thorough breakdown of a more complicated game project than the games
displayed in this paper would be able to cover a variety of concepts unexplored. Other directions

for work outside of programming, such as art and sound design, would also be incredibly

80

valuable for the purpose of showing more about game development from the ground up. A
particular area of focus touched upon briefly in this paper is the 2D and 3D art animation
process. There are many methods of creating an animated game character and implementing that
character into a game that are worth investigating further.

Study into game development practices that make games more or less successful is
another area that could also be valuable in future research. This could help contribute to the
growing body of research into refining best practices in the game development process. Research
can take a psychological approach that delves into the elements of game development and how
each element of the game is observed by the player. Alternatively, a sociological approach can be
taken to investigate players’ reviews of games across the internet with consideration to each of

those games and how they were constructed.

6.2 Final Remarks

I am fortunate to have had the opportunity to write this thesis in a subject matter that I
love. Through this thesis, I was given the freedom to delve into new and creative projects in
game development, a passion of mine. I hope that anyone who reads this paper can share some of
the love I have for game development and that anyone reading can learn something new

irregardless of technical background.

81

Appendix A - Screenshots
Al Pong

Figure Al.1: Pong Game Initialization

82

Figure A1.2: Pong Gameplay 1

83

Figure A1.3: Pong Gameplay 2

84

Figure A1.4: Pong Player Wins

PLAYER|1 WINS!

11+ 4

PLAY AGAIN?

85

A2 Asteroids

Figure A2.1: Asteroids Game Initialization

OO

PLAY AGAIN‘.C>

Score: 0 High Score: 0

O

86

Figure A2.2: Asteroids Gameplay 1

High Score: 45
Score: 45

Figure A2.3: Asteroids Gameplay 2

High Score: 190
Score: 190

87

Figure A2.4: Asteroids Game Over

GA@OVER

Score: 190 High Score: 190

88

Figure A2.5: Asteroids Gameplay 3

High Score: 208
Score: 208

89

A3 Tetris

Figure A3.1: Tetris Game Initialization

Start Game?

Press "ENTER" to Begin

90

Figure A3.2: Tetris Gameplay 1

High Score: 0
Score: 0

Level: 1

91

Figure A3.3: Tetris Gameplay 2

High Score: 100
Score: 100
Level: 1

92

Figure A3.4: Tetris Gameplay 3

High Score: 200
Score: 200
Level: 1

Figure A3.5: Tetris Hold Tetromino

High Score: 200
Score: 200
Level: 1

93

Figure A3.6: Tetris Pause Screen

High Score: 900
Score: 900
Level: 1

Paused

94

Figure A3.7: Tetris Gameplay 4

High Score: 1400
Score: 1400
Level: 2

95

Figure A3.8: Tetris Game Over

96

Figure A3.9: Tetris New Game

High Score: 9800
Score: 0

Level: 1

97

A4 Platformer

Figure A4.1: Platformer Game Initialization

Figure A4.2: Jumping

Figure A4.3: Platformer Gameplay 1

98

99

Figure A4.4: Floating

Shown here is the player in the “float” state, in which they descend through the air at a fixed rate.
The player character enters this state when the player is holding the “W/UP” key in addition to
the player character moving downward through the air at or above the speed of descent for the

“float” state.

100

Figure A4.5: Platformer Gameplay 2

Figure A4.6: Parallax 1

101

Figure A4.7: Parallax 2

Figure A4.8: Platformer Character

YYIYICY

102

each. The first and second frames are responsible for creating the idle animation in which the
player bobs up and down. This animation plays when the player is stationary and making contact
with the ground. The third frame and fourth frame make up the walking animation. This
animation plays when the player is moving while touching the ground. The fifth frame makes up
the jump/falling animation which plays while the player is in the air. The sixth frame makes up
the float animation which plays while the player is in the air falling down and holding the
“W/UP” key causing their descent to be slowed. The seventh frame makes up the slide animation
which plays while the player is moving while pressed against a wall.

A5 First Person Shooter

Figure A5.1: First Person Shooter Game Initialization

This is the “first person view” of the first person shooter in which the player is viewing the

environment through the player character’s eyes. In this view, the arms of the player and their

gun are visible, alongside features of the environment and the player’s UI, which is composed of

103

a simple health bar in the bottom left corner. From this perspective, features of the environment
include scattered trees and the ground.

Figure A5.2: First Person Shooter Enemies

From this perspective, two simple enemies can be seen shooting in front of themselves. These
are exceptionally simple enemies who shoot in a straight line in front of them on a timer. We can

see some additional features of the environment including stones and a horizon from here.

104

Figure A5.3: First Person Shooter Third Person

Despite having the title of “first person shooter” such games are not always resolved to solely a
first person view. Seen here is the player in their “third person view” in which the player is

viewed from behind.

105

Figure A5.4: First Person Shooter Jump Animation

The player is capable of the “jump” action which provides them vertical force concurrent with

the jump animation seen here.

106

Figure AS.5: First Person Shooter Walk Animation

Like the previous figure 5.4A demonstrates, the player can perform the “walk”™ action which

plays the walking animation simultaneously.

107

Figure AS5.6: First Person Shooter Player Damage

Upon being struck with a damaging projectile, in this case a bullet, the player is damaged. At the

instance of impact, the player receives damage which updates their health total which begins at

100. This health reduces by the amount of damage caused.

108

Appendix B - Code
BI Pong

Figure B1.1: ball.gd

rBody2D

£ ball.gd
paddle.
£ p

5_process
(position.y - Globals.pad
runm

(position.y - Globals.paddlel_pos

109

Figure B1.2: paddle.gd

-

f player_num ==
Globals.paddlel_position = position

direction = Input 5 ("upl", "downl")

up_is_pressed = Input.i C ("up1"™)
Input.is_actien downl")

sition = position
is("up2", "down2")
1 ("up
down_is Input.is_ac

110

Figure B1.3: pong game.gd 1

£ paddle
pong game.gd

$Ball
= "start"

delta):

("accept"):

("accept"):

111

Figure B1.4: pong _game.gd 2

£ pong_game.gd

game_over":
= "start"

.initsp

ball.s randi_rang .ini ed,ball.ini
turn += 1

Figure B1.5: pong _game.gd 3

#£* Globals.gd
& paddle.gd
£ pong game.gd

pong_game.gd I
Filter Meth Q
S_process

checkPosition

112

"PLAYER 1 WINS!"

winner_label.text = "PLAYER 2 WINS!"
winner_label.visible = true

state = "game_over"

pl_score
p2_score
turn = 0
winner_label.visible = fal

play_again_label.visible = false

pl_score_label.text = str(pl_score)

p2_score_label.text
state = "start"
resetPlayh ()

113

Figure B1.6: Globals.gd

extends Node

£ ball.gd
#* Globals.gd

var paddlel_position

var paddleZ_position

114

B2 Asteroids

Figure B2.1: asteroids_game.gd 1

window_widt i g "display/window/size/viewport_width")

window_height = ProjectSettings E (splay/window/size/viewport_heigh

checkPositi

115

Figure B2.2: asteroids_game.gd 2

teroid, 50)

th + buffer:

| ght

f obj.position.y > wi _height + buffer:

obj.position.y

str(Global
re:
Globals.high

high_ 1. text = "

elabel
checkLifeTalley

upc

playerlsDan

game

Graphics/Life.png")

vindow_height - 30)

116

figure B2.3), followed by updateScoreLabel() and checkLifeTalley(), followed by the
checkPosition() function, which takes every asteroid and laser as an argument. The
checkPosition() function takes in an object and a buffer as arguments, the buffer being different
for asteroids and lasers. This function then determines whether the object exceeds the boundaries
of the board with the provided buffer. If the object exceeds that range, its position is flipped to
the opposite side of the board where it has surpassed that limit. The updateScoreLabel() function
changes the text of the score labels to match the scores they are meant to reflect. It sets the high
score to be equal to the score if the new score exceeds the former high score. The
checkLifeTalley() function is responsible for reading whether the “life talley” global exceeds a
certain threshold and responding to such an occurrence by resetting the talley, adding one life,
and calling updateLives(). The updateLives() function is responsible for updating the visual
representation of the player’s remaining lives. It does this through the usage of a loop, with the
range of the number of lives, to generate a sprite of the player evenly spaced apart in the bottom

left corner of the screen.

117

Figure B2.3: asteroids_game.gd 3

score)

(Globals.high_score)

("accept"):
te = "running”

Globals
Globals.l =0

ifeTalley

updateLives

118

Figure B2.4: asteroids game.gd 4

Filter Scripts Q

¥ asteroids_game...
(window_width,window_height)/2

player.visible
player.position (window_width,window_height)

player.rotation =

player.velocity or2.ZERO

player.initInv

119

Figure B2.5: asteroids _game.gd 5

¥ asteroids_game...

window_height))

p,1)1)

120

Figure B2.6: player.gd 1
CharacterBody2

* speed
var init_speed =
var acceleration = 408
var init_acceleration = acceleration
var friction = 100
var init_friction = friction

20

y_timer = $Timer

al receiveDamage

_pr
handle

if Input. rion_j ("fire"):

_Process

handlem nent unc handleM ent(delta):

applyAcceleration var turn = Input. ax "Left", "right")

applyFriction if Input.is fio ("propulsion"):
fireLaser

handlelnvulnerabil...

initinvulnerability

121

Beginning of the player.gd script. Here the variables used in the player scene alongside the
processes run each frame and the handleMovement() function can be seen. As far as variables
go, the player script has some variables of note that are valuable during calculations for
movement of the player. These variables include the speed, acceleration, and friction values, as
well as the initial versions of these values. Notably, there is also a receiveDamage signal which is
used later on for the purpose of sending a message up to the main script about the player
colliding with an asteroid. Each frame physics process(delta) is called, the handleMovement(),
handleInvulnerability() (see figure B2.8), and move and slide() functions are called.
Additionally, provided that the player presses the “SPACE/LEFT MOUSE BUTTON” key, the
fireLaser() function is called (see figure B2.7). These function calls are what gives the player
mobility, the ability to shoot, and a brief period of invulnerability upon colliding with an
asteroid. The handleMovement() function takes delta as a parameter in order to ensure consistent
gameplay on the basis of time rather than framerate. For the purpose of determining whether the
player should rotate, an axis is generated based on player input of the “A” and “D” keys. The
acceleration of the player is handled by checking for whether the player is holding the“W” key;
provided that input, the function applyAcceleration() is run. Irrelevant of player input, the
function applyFriction() is also run to slowly bring the player to a stop (see figure B2.7). Lastly,
provided the axis that is already made from the player’s input, the player character is rotated by

that axis at a rate of half a rotation per second.

122

Figure B2.7: player.gd 2

ation(delta):

if wvelocity.x + sin(rotation)

eleration*delta
) eleratlion*delta :
velocity.
glif velocit rotation)*acceleration*delta <

veloclity.
velocity. rotation >celeration*delta
iction(delta):

y.y,8,frictio

= |

es://Player/laser.tscn"’

SICS_process 50 var NS parent().get_n Lase
handle
o e = rotatio
applyA angl rotation

) r.rotation = rotation

applyFriction _ i
: .position.x = position.x + s
ili= o s
e sition.\ position.y +
handlelnvulnerabil...

123

Figure B2.8: player.gd 3
func handleInvuln
if inwvulner

ble

if int(fl

visible

eleration *= 0.5

if body.h

applyFriction

. init_speed
fire) e

>eleration = init_a
handleInvulnerabil...

friction = init_frict

124

Figure B2.9: asteroid.gd 1

¥ asteroid.gd
% la
G

'Asteroid/aste
eroid_1)

://Asteroid/asteroid.tscn").1

125

Figure B2.10: asteroid.gd 2

126

Figure B2.11: laser.gd

Globals.gd

if body.r
Globals

(Asteroid")

_physics_process
set_speed
on_area_2d _|

_on_clear_timer _ti...

127

Figure B2.12: Globals.gd

05 Node

@onready var high_score

@onready var score = 0

@onready var life_talley

128

B3 Tetris

Figure B3.1: tetris_game.gd 1

nup_time
_tim
slide_buffer_timer

res://Tetromino/tetromino.tscn")

nitCleanup)

core)

129

division of 32. The can_hold tetromino variable which is a boolean value set to true each time a
tetromino has been placed and false each time a tetromino is held. The score variable which is
initialized at zero and added upon during gameplay. Lastly, there is the state variable which is
initialized to “Start”. In the ready() function, three signals are connected between the board and
the main script. These three signals are rowCleared, gameOver, and increaseScore (see figure
B3.11) and are respectively connected to functions in the main script initCleanup, gameOver, and

increaseScore (see figures B3.2, B3.3, & B3.9).

130

Figure B3.2: tetris_game.gd 2

ccept"):

accept

'hold") can_hold_tetromino:

high

running_ui.v

131

Figure B3.3: tetris_game.gd 3

tromin
Tetromin

tetromino.c ("DisplayTetromino

HoldTetromino"):
("HoldTetromino").

game_

t_vi.vis

igh Score: " +

Globals.level:

= 1 - Globals. el * 0.05
8.
1 - Globals.level * 0.05 - T (Globals.leve “ * 0.085

Globals.

132

which is the amount the score is increasing by. The base functionality of this is to increment the
score by the amount provided to the function, but following this act a few additional operations
are made. The score label is updated with the new score after the increase and the same occurs
for the high score label if the score exceeds the former high score. Upon the increase in score,
should a set threshold be reached, the levelUp() function is called. This levelUp() function is
responsible for increasing the difficulty of the game as the player progresses. Upon being called,
this function first increments the level by one. According to the level of the game, the wait time
of the movement timer is reduced by an increment of five percent of its initial magnitude. This
occurs every level for the first ten levels gained before this reduction occurs every other level.
This will occur until the wait time reaches the minimum threshold of 0.05 seconds and the
difficulty ceases scaling. With each call of the function, the level label is updated to match the

level of the game.

133

Figure B3.4: tetris_game.gd 4

tion are.position.

rotation)
ition.x -

osition.x

("Tetromino™).r

tromino”).p

"Tetromino").rotation) =
romino").p tion

rotation)
ition.x + .position.

.position.x

134

Figure B3.5: tetris_game.gd 5

Tetromino' t_childrer
'"Tetromino”).rotation) ==
("Tetromino") .position.x u position
"left’

"Tetromino") .position.x quare.position

omino").rotati

Tetromino") .position.x squ _width:

'"Tetromin
'right’

"Tetromino").rotation) ==
("Tetromino").position.x + sgu
fleft"

("Tetromino osition.x +
‘right’

("Tetromine") .position.x p > b _width:

'Tetromino") .position.x +

ition.x -= 3

ion.x += 32

Figure B3.6: tetris_game.gd 6

check

checkForwallKi

”Up”.

).rotation) ==
otation = O
Tetromi

if lboard.c

("Tetromino"

if lboard.c

drop"):

135

ight"):

136

active tetromino accordingly. Provided that the player presses the “W” key, the function performs
a rotation operation. This rotates the tetromino around its origin by 90 degrees and the squares of
the tetromino by 90 degrees in the opposite direction, causing them to stay upright. The
tetromino’s new position after rotation is then checked using a combination of the
checkForOverlap() function of the board script (see figure B3.12) and the
convertTetrominoToArray() function from the main script (see figure B3.9). If there is overlap
detected in this operation, the rotation is undone. After this check, the kickOffWall() function is
called with checkForWallKick() as an argument (see figure B3.5). Input from the player pressing
the “A” or “D” key is checked in order to move the player left or right, respectively. Alongside
this check, the checkPositionOnMove() function (see figure B3.4) is called in order to determine
whether the shift would move the tetromino outside of the board space. With this movement, the
same check that was used for rotation overlap is used again. If the player presses the “S” key, the
tetromino is shifted down using the shiftTetrominoDown() function (see figure B3.7). If this shift
succeeds, the player is awarded an additional point for accelerating gameplay. The movement
and slide buffer timers are also reset upon shifting the tetromino down. Lastly, if the player is to

press the “SPACE” key, the dropTetromino() function is called (see figure B3.7).

137

Figure B3.7: tetris_game.gd 7

"Running":

1ift_dow

hifted +=

138

Figure B3.8: tetris game.gd 8

= "0ldTetromino"

roming

obals.Tetromin

pro

tGame

_tetrom
tetrom

139

Figure B3.9: tetris game.gd 9

ino : 0 HoldTetromino'
romino
ino = tet

non...

ckForwallK

140

Figure B3.10: tetris_game.gd 10

if !slide_buffer_timer.time_left anc

if Input.i

141

Final section of the tetris_game.gd script Here the function calls of each timer’s timeout can be
seen. These functions are as follows: on _movement timer timeout(),
_on_cleanup timer timeout(), and on_slide timer timeout(). The
_on_movement_timer_timeout() is called to move the tetromino downwards. It does this by
calling the shiftTetrominoDown() function (see figure B3.7), so long as the game is not paused.
The on cleanup timer timeout() is called to begin the cleanup process. This is done by calling
the initCleanup() function (see figure B3.9), again under the condition that the game is not
paused. Lastly, the on slide timer timeout() function is responsible for rapidly shifting the
tetromino right, left, or down based on the direction they hold. This operates only while the game
is unpaused and is limited by another slide buffer timer. This is so that when the player taps left,
right, or down the tetromino does not rapidly shift twice at once provided player input close to a
cycle of the shift timer. The logic resembles that of the manageTetrominoMovement() function

(see figure B3.6).

142

Figure B3.11: board.gd 1

5 Node

tromino_type):

* 1 in tetromin

143

Figure B3.12: board.gd 2

Juare_index) :

are.name.q i Square',1))11)

square.tscn").i

s.Tetromino[b

144

Figure B3.13: board.gd 3

£ board.gd

£ tetromin

£ Global

end(row)
4

)00 * Globals.

+ Globals

¢« Globals.

« Globals.

Cle
ar row in r
while row >
for i in r
ch
@ + i] = board_a
check

145

Figure B3.14: tetromino.gd

5 = Globals.cells

= Globals.Tetromino

£+ tetromino.gd

£ Glo

* child in
child

146

Figure B3.15: Globals.gd

= Node

enum Tetromino {

£ Globals.gd

147

B4 Platformer

Figure B4.1: player.gd 1

CharacterBody2D

gravity
vity = Proj tting ting("physics/2d/defauvlt_gravity")
» friction

s.player_init_position = position

on_wall_o
handle_movement n_floor

handle_friction

handle_jump

hand
hanc
man:
handleAnimation

))) on_floor)
1_sprite_animati... SIS

148

the player has many values relevant to the player object’s behavior such as speed for regulating
the player’s top horizontal speed, jump velocity for the amount of velocity applied to the player
on jump, terminal velocity for limiting the player’s highest speed of descent, alongside a list of
boolean values for dictating actions the player can take and is able to take including can_jump,
can_double jump, double jump unlocked, and wall jump unlocked. Beyond these, the player
has a set gravity, friction, and air resistance to add some limitations to their movement. The
player also has a state variable which is used to keep track of the state of the player and regulate
their behavior according to their state. In the ready() function, the player’s initial position is the
only thing recorded. As for the physics process() function, all of the operations performed on
the player to handle their movement, friction, jump, timers, and animations are completed in
order (see figures B4.2 to B4.4). The global for player position is also set to equal the player

position in this script to be utilized by other scripts more freely.

Figure B4.2: player.gd 2

149

terminal

terminal

eft", "right")

tion z ion * del

locity.x, direction + air_acc ion * de

'

friction

]

150

Figure B4.3: player.gd 3

% playergd

te_time.time_left > 0 and can_jum

func hant

if Input.

jump

wall_jump : action_j nre ump")

ump") C () double_j

151

Continuation of the player.gd script. The handle jump(), handle wall jump(), and

handle double jump() functions can be seen here. The handle jump() function begins by
checking for whether the player is in contact with the ground and resets the can_jump and
can_double jump booleans to true. After this, the function checks for whether the player has
pressed “SPACE” and is able to jump. Provided that the player fulfills these conditions, its
vertical velocity is set to the jump velocity of the player and the can_jump variable is set to false,
not allowing the player to jump again until they make contact with the ground again. Provided
that the player was not on the ground, the coyote timer had no time remaining upon pressing
“SPACE”, and double jump is unlocked, the handle double jump() function is run instead.
Nested at the end of the handle jump() function, given that the player has unlocked wall jump,
the handle wall jump() function is run as well. The handle wall jump() function checks for
whether the player is in contact with or was just in contact with a wall. Provided that this is true
and the player presses “SPACE”, the player’s vertical velocity is set to their jump velocity and
their horizontal velocity is set to their speed in the opposite direction of the wall. After a wall
jump has been performed, the player’s double jump is recovered. Last, the

handle double jump() function sets the player’s vertical velocity to the jump velocity provided
that the player presses “SPACE” and the player is not in contact with the ground and they have

not performed a double jump already while airborne.

152

Figure B4.4: player.gd 4

left", "right’

= "float":

t.frame

t.frame

.frame

. frame

t.frame

.frame

153

a wall, the wall jump time timer is started. Provided that the player was in contact with the floor
and is no longer in contact with the floor, the coyote time timer is started. The
handleAnimation() function takes one last look at the player’s positioning and user input to make
final adjustments to the player’s state before changing the player’s animation accordingly. The
player’s state works as a conditional code that determines the frame of the player’s spritesheet is
set. For the states “jump”, “float”, and “wall”, the frame is directly set, regardless of any other
factors. As for the “walk™ and ““idle” states which correspond to multi-frame animations, the
frame is set to the first frame in the animation so long as the frame is outside of the bounds of the
animation cycle. The on sprite animation timer timeout() is responsible for the multi-frame
animations of the player. When called, this function shifts the “walk™ and “idle” animations

forward by one, provided that the player is in the corresponding state.

154

Figure B4.5: parallax_item.gd 1

¥ parallax_item.gd

am

st2":.2,"Fastl":.3, "Medium3":.4, "Medium2":.5, "Mediuml" : Llow3":.7,"Slow2":.8,"Slowl
i1,

t.position

t.name = name + "R"
prite_left)

.texture = texture
.position.x = xtur

.name = name + "L"

155

Figure B4.6: parallax_item.gd 2

X position.
- position.»

f parallax_po

if Globals.player. X - position.x i 1.p tion.x >
shiftParall

elif Globals.player_position.x - position.x hild_1.position.>

"Left

f parallax

if Globals.player. X - position.x il p tion.x >
shiftParall

elif Globals.player_position.x - position. ild position.>
"Left

(Globals yer_init_pesition.x - Globals.player_position.x) % SPEEDS[item_ty

156

Figure B4.7: parallax_item.gd 3

L

[dir
& parallax_item.g...

ion == "Left":

£ pl camera....

child_1.position.x

paral ition =

ion ==
tion.x
ition =

hild_1.po

hild position.x
position.x
position

paral

app

iftParallax Globals.player_position.x - texture. th()/2 + init_p
LFaraliax 1

157

Figure B4.8: player camera.gd

position.y < ition.y - background_image. g j g("display/window/size/viewport._|

position. groun g ground_image. texture. g (g g dow/size/viewport_height")/

position.

158

Figure B4.9: Globals.gd

Node

2.ZERO
.ZERD
£ p
£ Globals.gd

B5 First Person Shooter

Figure BS.1: player.gd 1

charal

imationRefractoryTi

fault_gravity")

("e74f56") ,"Yellow": Color("e7e219"),"Blue": or("6572e7"),"Green": Co ("49e76b") ,"0Orang

nput.MOUSE_MODE
Bar (health)

159

variables in charge of the player’s current speed and max speeds, the player’s jump velocity, and
the player’s health. Due to the muli-faceted nature of the player’s animations, there are several
booleans in charge of capturing the state of the player, as opposed to a string value to keep track
of the player’s state. A string-based state variable, however, is used to keep track of the
camera_mode which is initialized in the “first” person mode. The ready() function works to
capture the mouse of the player, keeping it in the center of the screen, but allowing mouse
movement to be read by the program. The updateHealthBar() method of the player UI (see figure
B5.9) is also called with the player’s health passed as an argument to maintain an accurate

representation of the player’s health.

160

Figure BS.2: player.gd 2

£+ main.gd o i
playergd velocity. vity * delta

nhandled_input(event):

event is InputEventMouseMotion:
change_v = -event.relat

nange_h =

handleCrouch
handleSprint 1th -= damage
player_ui.updateHealthBar(health)
handlejump
if healt
handlel

161

handleCrouch(), handleSprint(), handleJump(), handleMovement(), handle Animations(),
handleCamera(), and move and_slide() (see figures B5.3 & B5.4). These functions are
responsible for managing the movement, animations, and camera of the player. The

_unhandled input() function takes in an input event as a parameter and rotates the player
horizontally corresponding to horizontal mouse movement. Provided vertical mouse movement,
the updateChestRot() and updateSpineRot() functions are called on the player model (see figure
B5.7) with the change in mouse position passed as an argument. Changes here are scaled with
the mouse_sens variable. The takeDamage() function takes in one argument “damage” and works
to decrement the player’s health. The function reduces the player’s health by the provided value,
calls the updateHealthBar() function on the player Ul scene (see figure B5.9), and checks for
whether the player’s health has fallen to or beneath zero. Should this happen, the die() function is

called (see figure B5.5).

162

Figure BS.3: player.gd 3

h

if Input.is on_pre and 0 and !crouch

velo

Input.

orm.ba
velocity

velocity.z

velocity
velocity.z

(lng =

163

Figure B5.4: player.gd 4

("JumpGun")

andGun", "CrouchGun" n umpGun 2

_process

_unhandled_input if ti j d("toggle_camera

ra_mode == "third":
first_pe
= "first"
"first":
third_pe _ca v r = true
"third"

har

etEntity

164

Figure B5.5: player.gd 5

lor):
yer_model.skeleton_3d.get_childp

if mesh is 2shInstance3D:

mesh.mesh. st get_material(@).albedo_color = COLORS[color]

165

Figure B5.6: player _model.gd 1

£ player_model.gd

on_ca...

nimation_t
ine

main
head
chest
spine

hip

ameters/playba
main
head
chest =
spine

hip

king:

machine.t

machine.t _("standingGun")

king) :

_machine L ouchWalkGun")

_machine ! ouchedGun")

Figure BS5.7: player _model.gd 2

£ player model.gd
£ third_p

ndGun")

L("CrouchGun")

jet_bone_pc

tatic

1(main)

166

167

Figure BS.8: third_person_camera.gd

£ third_person_ca...

pla)

Figure B5.9: player_ui.gd

Contr

1th):
third_p ; - = health

player_ui.gd

Figure B5.10: enemy.gd

enemy.gd
enemy
gun.gd

bullet.gd

Figure B5.11: enemy _model.gd

extends Node3D

@onready var skeleton_3d = $Arma

168

CharacterBody3D

var entity_num = -1

nready var enemy_model = $Ene

health = 1868.8

o_rad(5)*1

entity_num

268)) , getches

169

Figure B5.12: gun.gd

" mous

£ gun.gd
£ bull

if Input
bullet_instance
form.basis
amage.con
1let_instance)
gun.gd .
gun-g c entity tity, damage) :

emitEntityDamage.emi tity,dama

if entity_num >
startNPCTimer o e
npc_timer

_on_npc_timer_tim...

func _on_npc_timer_ti
if entity_num > 4:
bullet_instance = bullet.1i
bullet_instance.position =
bullet_inst
bullet_instance.entityTakeDamage.con
bullet il 1llet_instance)

170

startNPCTimer(), and _on_npc_timer_timout(). The process() function reads for player input of
the “LEFT MOUSE BUTTON” and performs the act of firing the gun accordingly. It does this
by creating an instance of the bullet scene and giving it a position and transformation basis of the
end of the gun. The entityTakeDamage signal of the bullet scene is also connected to the
entityTakeDamage() function. The entityTakeDamage() function takes an entity and a damage
value as parameters and works to emit the emitEntityDamage signal with the same two values as
arguments. This works to chain the signal sent by the bullet scene up to the gun scene and
beyond. The startNPCTimer() is designed to start a timer of the gun scene solely for NPC
characters, enemy characters. It checks that the entity has an entity number of greater than four, a
value that is only provided for NPCs and starts the timer provided that is fulfilled. The
_on_npc_timer timeout() function also operates solely for NPC characters and instantiates a
bullet in the very same manner as it would be for the player character pressing “LEFT MOUSE

BUTTON™.

171

Figure B5.13: bullet.gd

* delta

entity_num,d
16:

collis

172

Figure BS5.14: damageManager.gd

um =

y_num = 5

mitEntity
ntity_num

ature/Skeleton3D/Han ttatchment/Gun")

rmature/s andRAttatchment/Gun") .emitEntityDamage. ect(manageDamage)

rmature/: andRAttatchment/6 . ity_num = enemy.entity_num
"EnemyModel/Armature/Skeleton3D/HandRAttatchment/Gun") . IPCTime

) ("Enemy"

enti

173

Appendix C - Glossary

C1 General

Elastic: Ability of matter to maintain its energy upon collision with another object.

Frame: Single instance of calculation visible to the player.

Parent-Child Hierarchy: Object organization structure in which objects can be the parent of many
and the child of one. Children share attributes with their parent and are able to directly
communicate with them. Two children beneath the same parent are called siblings.

Print: To draw text to the screen or console of a program.

Scale: The multiplicative factor over the dimensions of an object.

Score: Numeric value denoting performance and/or achievement.

Screenshot: Image of a single instance of the screen of an electronic device.

Size: The volume of an object; typically measured in pixels.

User Interface (UI): Also known as Graphical User Interface (GUI); overlay of visualized data
for the purposes of a user.

Video Game: A program on a computer or console centered around entertainment and/or
competition often with a set of rules and goals.

Viewport: Space in which a player is able to observe the game space.

C2 Godot

C2.1 Base Nodes

Node: A base class from which all nodes inherit; contains all of the base properties, methods,
signals, enumerations, and constants of an object in Godot.

Canvasltem: Base class for all 2D nodes; is inherited by Node2D and Control.

174

Timer: A timer that counts down by a set amount.

AnimationMixer: Base class for animation nodes; is inherited by AnimationPlayer and
AnimationTree.

AnimationPlayer: A node responsible for cycling through animations with set parameters; all
manipulatable properties can be animated including sprite frame, position, and rotation.
AnimationTree: A node responsible for creating complex animation transitions; allows for

movement between one animation and another when set conditions are met.

C2.2 Control Nodes

Control: A base class for all UI nodes; contains features tailored to the development of a GUI
TextureRect: A node responsible for displaying a texture.

Panel: A node responsible for displaying a StyleBox (stylized 2D resource).

Container: A base class for UI containers.

BoxContainer: A node responsible for organizing items along one axis of alignment; is inherited
by VBoxContainer and HBoxContainer.

VBoxContainer: A node responsible for organizing items with vertical alignment.
HBoxContatiner: A node responsible for organizing items with horizontal alignment.

Label: A node responsible for displaying text.

C2.3 2D Nodes
Node2D: A base class for all 2D game objects; contains features tailored to the development of

game objects in a 2D scene.

175

CharacterBody2D: A 2D node responsible for the development of a kinematic object; tailored to
the development of a player character.

StaticBody2D: A 2D node responsible for creating stationary objects uninfluenced by the physics
engine.

Area2D: A 2D node responsible for detecting other objects and areas.

CollisionShape2D: A 2D node responsible for providing a shape for physics objects with preset
shapes; shapes include circle, rectangle, and capsule.

CollisionPolygon2D: A 2D node responsible for providing a shape for physics objects using
connecting points which come together to form a polygon.

Polygon 2D: A 2D node responsible for creating a visible polygonal shape.

Sprite2D: A 2D node responsible for visually representing a sprite.

Camera2D: A 2D node responsible for presenting the viewport to the player; can be constrained

and dynamically modified during gameplay.

C2.4 3D Nodes

Node 3D: A base class for all 3D game objects; contains features tailored to the development of
game objects in a 3D scene.

CharacterBody3D: A 3D node responsible for the development of a kinematic object; tailored to
the development of a player character.

StaticBody3D: A 3D node responsible for creating stationary objects uninfluenced by the physics
engine.

Area3D: A 3D node responsible for detecting other objects and areas.

176

CollisionShape3D: A 3D node responsible for providing a shape for physics objects with preset
shapes; shapes include circle, rectangle, and capsule.

CollisionPolygon3D: A 3D node responsible for providing a shape for physics objects using
connecting points which come together to form a polygon.

MeshInstance3D: A 3D node responsible for creating visuals for all 3D objects; 3D models are
automatically converted into this node when brought into Godot.

RayCast3D: A 3D node composed of a single line in 3D space; used to detect any collision
objects intersecting with a given space.

Path3D: A 3D node responsible for creating a path in 3D space for other nodes to follow.
PathFollow3D: A 3D node responsible for mediating behavior of nodes on a given path; works
closely with a parent Path3D node.

Skeleton3D: A 3D node responsible for holding a hierarchy of the bones of a 3D model; used for
the animation of 3D models.

BoneAttachment3D: A 3D node that attaches itself dynamically to the transformation basis of
the bone of a Skeleton3D.

Camera3D: A 3D node responsible for presenting the viewport to the player; can be constrained

and dynamically modified during gameplay.

177

References

AABB. (n.d.). Godot Engine Documentation. Retrieved March 26, 2025, from
https://docs.godotengine.org/en/stable/classes/classes/class _aabb.html

Asteroids (video game). (2025). In Wikipedia.
https://en.wikipedia.org/w/index.php?title=Asteroids (video game)&oldid=1289654658

blender.org - Home of the Blender project - Free and Open 3D Creation Software. (n.d.).
Blender.Org. Retrieved May 14, 2025, from https://www.blender.org/

Celeste. (n.d.). Celeste. Retrieved May 14, 2025, from http://celestegame.com/

cplusplus. (n.d.). Retrieved May 14, 2025, from https://cplusplus.com/

Doom (1993 video game). (2025). In Wikipedia.
https://en.wikipedia.org/w/index.php?title=Doom_ (1993 video game)&oldid=1290423544

First-person shooter. (2025). In Wikipedia.
https://en.wikipedia.org/w/index.php?title=First-person_shooter&oldid=1288872248

Fortnite. (n.d.). Fortnite | Free-to-Play Cross-Platform Game - Fortnite.
https://www.fortnite.com/

GDScript reference. (n.d.). Godot Engine Documentation. Retrieved February 27, 2025, from
https://docs.godotengine.org/en/stable/tutorials/scripting/gdscript/tutorials/scripting/gdscript/g
dscript_basics.html

Godot Docs. (n.d.). Godot Engine Documentation. Retrieved February 27, 2025, from
https://docs.godotengine.org/en/stable/index.html

Griffin, J. (n.d.). Leaderboards - the original and best social feature ... Retrieved April 7, 2025,
from

https://www.gamedeveloper.com/design/leaderboards---the-original-and-best-social-feature-

178

Is Python faster and lighter than C++? (2013, February 16). [Forum post]. Cross Validated.
https://stackoverflow.com/questions/801657/is-python-faster-and-lighter-than-c

Jose, S. (2024, October 30). Why C++ Is Climbing the Ranks: An In-Depth Look at its TIOBE
Popularity Surge. Medium.
https://medium.com/@najascj/why-c-is-climbing-the-ranks-an-in-depth-look-at-its-tiobe-popul
arity-surge-2a5f7b69e713

Godot Engine - Free and open source 2D and 3D game engine. (n.d.). Godot Engine. Retrieved
February 27, 2025, from https://godotengine.org/

Jump King. (n.d.). Retrieved May 14, 2025, from https://www.jump-king.com/

LOVE. (n.d.). Retrieved February 27, 2025, from https://love2d.org/wiki/Main_Page

LOVE - Free 2D Game Engine. (n.d.). Retrieved February 27, 2025, from https://love2d.org/

Mendes, L. O., Cunha, L. R., & Mendes, R. S. (2022). Popularity of Video Games and Collective
Memory. Entropy, 24(7), 860. https://doi.org/10.3390/e24070860

Minecraft Website. (n.d.). Retrieved May 14, 2025, from https://www.minecraft.net/en-us

Node. (n.d.). Godot Engine Documentation. Retrieved May 14, 2025, from
https://docs.godotengine.org/en/stable/classes/classes/class node.html

Nolan Bushnell | Lemelson. (n.d.). Retrieved March 18, 2025, from
https://lemelson.mit.edu/resources/nolan-bushnell

Official Portal 2 Website. (n.d.). Retrieved May 14, 2025, from
https://www.thinkwithportals.com/

Oliver, M. B., Bowman, N. D., Woolley, J. K., Rogers, R., Sherrick, B. 1., & Chung, M.-Y.
(2016). Video games as meaningful entertainment experiences. Psychology of Popular Media

Culture, 5(4), 390—405. https://doi.org/10.1037/ppm0000066

179

Platformer. (2025). In Wikipedia.
https://en.wikipedia.org/w/index.php?title=Platformer&oldid=1290148893

Pong. (2025). In Wikipedia.
https://en.wikipedia.org/w/index.php?title=Pong&oldid=1290096191

Pygame Front Page — pygame v2.6.0 documentation. (n.d.). Retrieved February 27, 2025, from
https://www.pygame.org/docs/

RollerCoaster Tycoon. (n.d.). Atari®. Retrieved February 27, 2025, from
https://atari.com/pages/rollercoaster-tycoon

RollerCoaster Tycoon (video game). (2024). In Wikipedia.
https://en.wikipedia.org/w/index.php?title=RollerCoaster Tycoon (video game)&oldid=1266
324800

Shivang. (2024, August 2). Game Development Team - Structure, Roles & Cost. Richestsoft.
https://richestsoft.com/blog/game-development-team-structure-roles/

Skopljakovic, E. (2019). Gaming as a Social Construct: Towards a Framework for Player
Socialization in Massive Multiplayer Online Videogames - ProQuest. Retrieved March 21,
2025, from https://www.proquest.com/docview/3059336401

Tetris. (2025). In Wikipedia.
https://en.wikipedia.org/w/index.php?title=Tetris&oldid=1290198146

The Programming Language Lua. (n.d.). Retrieved May 14, 2025, from https://www.lua.org/

The Ren’Py Visual Novel Engine. (n.d.). Retrieved February 27, 2025, from
https://www.renpy.org/

TIOBE Index. (n.d.). TIOBE. Retrieved February 27, 2025, from

https://www.tiobe.com/tiobe-index/

180

Unity Real-Time Development Platform | 3D, 2D, VR & AR Engine. (n.d.). Unity. Retrieved
February 27, 2025, from https://unity.com

Unreal Engine. (n.d.). Unreal Engine. Retrieved February 27, 2025, from
https://www.unrealengine.com/

VALORANT. (2025, May 13). https://playvalorant.com/en-us/

Welcome to Python.org. (2025, May 7). Python.Org. https://www.python.org/

Yoon, S. (n.d.). Gaming Culture: A New Language for the Digital Age. Forbes. Retrieved March
20, 2025, from
https://www.forbes.com/sites/forbesbooksauthors/2024/05/14/gaming-culture-a-new-language-

for-the-digital-age/

	
	A Deep Dive into Game Development:
	Exploring the Intricacies of the Game Development Process
	Abstract
	Acknowledgements
	Table of Contents
	0 Introduction
	0.1 Introduction to Game Development
	0.2 Introduction to Game Engines and Frameworks
	0.3 Introduction to Godot
	Figure 0.3.1: Base & Control Nodes
	Figure 0.3.2: 2D & 3D Nodes

	1 Pong
	1.1 Developing Pong
	Figure 1.1.1: Board Scene
	Figure 1.1.2: Ball & Paddle Scenes

	1.2 Intricacies Behind the Development of Pong
	1.2.1 Simulation of Movement
	1.2.2 Collision Detection and Reflection Logic
	1.2.3 The Impact on the Video Game Industry

	2 Asteroids
	2.1 Developing Asteroids
	Figure 2.1.1: Asteroid Game Scene
	Figure 2.1.2: Player Scene
	Figure 2.1.3: Laser Scene
	Figure 2.1.4: Asteroid Scene

	2.2 Intricacies Behind the Development of Asteroids
	2.2.1 Game Objects
	2.2.1.1 Spaceship
	2.2.1.2 Asteroid

	2.2.2 Object Instantiation

	3 Tetris
	3.1 Developing Tetris
	Figure 3.1.1: TetrisGame Scene
	Figure 3.1.2: Tetromino Scene

	3.2 Intricacies Behind the Development of Tetris
	3.2.1 Grid-Based Movement and Tetromino Manipulation
	3.2.2 Board Management
	3.2.3 Timers and Speed Management
	3.2.4 Informational Mechanics

	4 Platformer
	4.1 Developing a Platformer
	Figure 4.1.1: Platformer Level Scene
	Figure 4.1.2: Tilemap Scene
	Figure 4.1.3: Player Scene

	4.2 Intricacies Behind the Development of a 2D Platformer
	4.2.1 Player Movement
	4.2.1.1 Jump Mechanics
	4.2.1.2 Flexible Movement Mechanics

	4.2.2 Animation Systems and State Management
	4.2.3 Level Creation

	5 First Person Shooter
	
	5.1 Developing a First Person Shooter
	Figure 5.1.1: Main Scene
	Figure 5.1.2: Tree Scene
	Figure 5.1.3: Player Scene
	Figure 5.1.4: Third Person Camera Scene
	Figure 5.1.5: Player Model Scene
	Figure 5.1.6: Gun Scene
	Figure 5.1.7: Bullet Scene

	5.2 Intricacies Behind the Development of a First Person Shooter
	5.2.1 Player Movement
	5.2.2 Camera Management and Perspective
	5.2.3 Handling Projectiles and Combat
	5.2.5 3D Models and Animation Systems

	6 Conclusion
	6.1 Future Work
	6.2 Final Remarks

	Appendix A - Screenshots
	A1 Pong
	Figure A1.1: Pong Game Initialization
	Figure A1.2: Pong Gameplay 1
	Figure A1.3: Pong Gameplay 2
	Figure A1.4: Pong Player Wins

	A2 Asteroids
	Figure A2.1: Asteroids Game Initialization
	Figure A2.2: Asteroids Gameplay 1
	Figure A2.3: Asteroids Gameplay 2
	Figure A2.4: Asteroids Game Over
	Figure A2.5: Asteroids Gameplay 3

	A3 Tetris
	Figure A3.1: Tetris Game Initialization
	Figure A3.2: Tetris Gameplay 1
	Figure A3.3: Tetris Gameplay 2
	Figure A3.4: Tetris Gameplay 3
	Figure A3.5: Tetris Hold Tetromino
	Figure A3.6: Tetris Pause Screen
	Figure A3.7: Tetris Gameplay 4
	Figure A3.8: Tetris Game Over
	Figure A3.9: Tetris New Game

	A4 Platformer
	Figure A4.1: Platformer Game Initialization
	Figure A4.2: Jumping
	Figure A4.3: Platformer Gameplay 1
	Figure A4.4: Floating
	Figure A4.5: Platformer Gameplay 2
	Figure A4.6: Parallax 1
	Figure A4.7: Parallax 2
	Figure A4.8: Platformer Character

	A5 First Person Shooter
	Figure A5.1: First Person Shooter Game Initialization
	Figure A5.2: First Person Shooter Enemies
	Figure A5.3: First Person Shooter Third Person
	Figure A5.4: First Person Shooter Jump Animation
	Figure A5.5: First Person Shooter Walk Animation
	Figure A5.6: First Person Shooter Player Damage

	Appendix B - Code
	B1 Pong
	Figure B1.1: ball.gd
	Figure B1.2: paddle.gd
	Figure B1.3: pong_game.gd 1
	Figure B1.4: pong_game.gd 2
	Figure B1.5: pong_game.gd 3
	Figure B1.6: Globals.gd

	B2 Asteroids
	Figure B2.1: asteroids_game.gd 1
	Figure B2.2: asteroids_game.gd 2
	Figure B2.3: asteroids_game.gd 3
	Figure B2.4: asteroids_game.gd 4
	Figure B2.5: asteroids_game.gd 5
	Figure B2.6: player.gd 1
	Figure B2.7: player.gd 2
	Figure B2.8: player.gd 3
	Figure B2.9: asteroid.gd 1
	Figure B2.10: asteroid.gd 2
	Figure B2.11: laser.gd
	Figure B2.12: Globals.gd

	B3 Tetris
	Figure B3.1: tetris_game.gd 1
	Figure B3.2: tetris_game.gd 2
	Figure B3.3: tetris_game.gd 3
	Figure B3.4: tetris_game.gd 4
	Figure B3.5: tetris_game.gd 5
	Figure B3.6: tetris_game.gd 6
	Figure B3.7: tetris_game.gd 7
	Figure B3.8: tetris_game.gd 8
	Figure B3.9: tetris_game.gd 9
	Figure B3.10: tetris_game.gd 10
	Figure B3.11: board.gd 1
	Figure B3.12: board.gd 2
	Figure B3.13: board.gd 3
	Figure B3.14: tetromino.gd
	Figure B3.15: Globals.gd

	B4 Platformer
	Figure B4.1: player.gd 1
	Figure B4.2: player.gd 2
	Figure B4.3: player.gd 3
	Figure B4.4: player.gd 4
	Figure B4.5: parallax_item.gd 1
	Figure B4.6: parallax_item.gd 2
	Figure B4.7: parallax_item.gd 3
	Figure B4.8: player_camera.gd
	Figure B4.9: Globals.gd

	B5 First Person Shooter
	Figure B5.1: player.gd 1
	Figure B5.2: player.gd 2
	Figure B5.3: player.gd 3
	Figure B5.4: player.gd 4
	Figure B5.5: player.gd 5
	Figure B5.6: player_model.gd 1
	Figure B5.7: player_model.gd 2
	Figure B5.8: third_person_camera.gd
	Figure B5.9: player_ui.gd
	Figure B5.10: enemy.gd
	 Figure B5.11: enemy_model.gd
	Figure B5.12: gun.gd
	Figure B5.13: bullet.gd
	Figure B5.14: damageManager.gd

	Appendix C - Glossary
	C1 General
	C2 Godot
	C2.1 Base Nodes
	C2.2 Control Nodes
	C2.3 2D Nodes
	C2.4 3D Nodes

	References
	AABB. (n.d.). Godot Engine Documentation. Retrieved March 26, 2025, from https://docs.godotengine.org/en/stable/classes/classes/class_aabb.html
	Asteroids (video game). (2025). In Wikipedia. https://en.wikipedia.org/w/index.php?title=Asteroids_(video_game)&oldid=1289654658
	blender.org - Home of the Blender project - Free and Open 3D Creation Software. (n.d.). Blender.Org. Retrieved May 14, 2025, from https://www.blender.org/
	Celeste. (n.d.). Celeste. Retrieved May 14, 2025, from http://celestegame.com/
	cplusplus. (n.d.). Retrieved May 14, 2025, from https://cplusplus.com/
	Doom (1993 video game). (2025). In Wikipedia. https://en.wikipedia.org/w/index.php?title=Doom_(1993_video_game)&oldid=1290423544
	First-person shooter. (2025). In Wikipedia. https://en.wikipedia.org/w/index.php?title=First-person_shooter&oldid=1288872248
	Fortnite. (n.d.). Fortnite | Free-to-Play Cross-Platform Game - Fortnite. https://www.fortnite.com/
	GDScript reference. (n.d.). Godot Engine Documentation. Retrieved February 27, 2025, from https://docs.godotengine.org/en/stable/tutorials/scripting/gdscript/tutorials/scripting/gdscript/gdscript_basics.html
	Godot Docs. (n.d.). Godot Engine Documentation. Retrieved February 27, 2025, from https://docs.godotengine.org/en/stable/index.html
	Griffin, J. (n.d.). Leaderboards - the original and best social feature ... Retrieved April 7, 2025, from https://www.gamedeveloper.com/design/leaderboards---the-original-and-best-social-feature-
	Is Python faster and lighter than C++? (2013, February 16). [Forum post]. Cross Validated. https://stackoverflow.com/questions/801657/is-python-faster-and-lighter-than-c
	Jose, S. (2024, October 30). Why C++ Is Climbing the Ranks: An In-Depth Look at its TIOBE Popularity Surge. Medium. https://medium.com/@najascj/why-c-is-climbing-the-ranks-an-in-depth-look-at-its-tiobe-popularity-surge-2a5f7b69e7f3
	Godot Engine - Free and open source 2D and 3D game engine. (n.d.). Godot Engine. Retrieved February 27, 2025, from https://godotengine.org/
	Jump King. (n.d.). Retrieved May 14, 2025, from https://www.jump-king.com/
	LOVE. (n.d.). Retrieved February 27, 2025, from https://love2d.org/wiki/Main_Page
	LÖVE - Free 2D Game Engine. (n.d.). Retrieved February 27, 2025, from https://love2d.org/
	Mendes, L. O., Cunha, L. R., & Mendes, R. S. (2022). Popularity of Video Games and Collective Memory. Entropy, 24(7), 860. https://doi.org/10.3390/e24070860
	Minecraft Website. (n.d.). Retrieved May 14, 2025, from https://www.minecraft.net/en-us
	Node. (n.d.). Godot Engine Documentation. Retrieved May 14, 2025, from https://docs.godotengine.org/en/stable/classes/classes/class_node.html
	Nolan Bushnell | Lemelson. (n.d.). Retrieved March 18, 2025, from https://lemelson.mit.edu/resources/nolan-bushnell
	Official Portal 2 Website. (n.d.). Retrieved May 14, 2025, from https://www.thinkwithportals.com/
	Oliver, M. B., Bowman, N. D., Woolley, J. K., Rogers, R., Sherrick, B. I., & Chung, M.-Y. (2016). Video games as meaningful entertainment experiences. Psychology of Popular Media Culture, 5(4), 390–405. https://doi.org/10.1037/ppm0000066
	Platformer. (2025). In Wikipedia. https://en.wikipedia.org/w/index.php?title=Platformer&oldid=1290148893
	Pong. (2025). In Wikipedia. https://en.wikipedia.org/w/index.php?title=Pong&oldid=1290096191
	Pygame Front Page — pygame v2.6.0 documentation. (n.d.). Retrieved February 27, 2025, from https://www.pygame.org/docs/
	RollerCoaster Tycoon. (n.d.). Atari®. Retrieved February 27, 2025, from https://atari.com/pages/rollercoaster-tycoon
	RollerCoaster Tycoon (video game). (2024). In Wikipedia. https://en.wikipedia.org/w/index.php?title=RollerCoaster_Tycoon_(video_game)&oldid=1266324800
	Shivang. (2024, August 2). Game Development Team - Structure, Roles & Cost. Richestsoft. https://richestsoft.com/blog/game-development-team-structure-roles/
	Skopljakovic, E. (2019). Gaming as a Social Construct: Towards a Framework for Player Socialization in Massive Multiplayer Online Videogames - ProQuest. Retrieved March 21, 2025, from https://www.proquest.com/docview/3059336401
	Tetris. (2025). In Wikipedia. https://en.wikipedia.org/w/index.php?title=Tetris&oldid=1290198146
	The Programming Language Lua. (n.d.). Retrieved May 14, 2025, from https://www.lua.org/
	The Ren’Py Visual Novel Engine. (n.d.). Retrieved February 27, 2025, from https://www.renpy.org/
	TIOBE Index. (n.d.). TIOBE. Retrieved February 27, 2025, from https://www.tiobe.com/tiobe-index/
	Unity Real-Time Development Platform | 3D, 2D, VR & AR Engine. (n.d.). Unity. Retrieved February 27, 2025, from https://unity.com
	Unreal Engine. (n.d.). Unreal Engine. Retrieved February 27, 2025, from https://www.unrealengine.com/
	VALORANT. (2025, May 13). https://playvalorant.com/en-us/
	Welcome to Python.org. (2025, May 7). Python.Org. https://www.python.org/
	Yoon, S. (n.d.). Gaming Culture: A New Language for the Digital Age. Forbes. Retrieved March 20, 2025, from https://www.forbes.com/sites/forbesbooksauthors/2024/05/14/gaming-culture-a-new-language-for-the-digital-age/
	

