

A Deep Dive into Game Development:

Exploring the Intricacies of the Game Development Process

Jared Simonetti

Baldwin Honors Scholar at Drew University

Department of Computer Science, Drew University

Thesis Advisor: Alexander Rudniy

2

Abstract

 In this paper, every step of the game development process is investigated. Five different

game projects and prototypes are created to achieve this: including Pong, Asteroids, Tetris, a 2D

platformer, and a 3D First Person Shooter (FPS). Each of these games are created using the

Godot game engine and are programmed using its built-in scripting language: GDscript. This

scripting language is used in conjunction with the innate classes of Godot to manufacture each

game. Throughout this paper, the process behind the development and systems integrated into

each game is described. Each game created provides its own unique insights into the evolution of

games over time and their increase in complexity. With each game, new tools and methodologies

are investigated and used in order to create the various components of each game, contributing to

a rounded perspective of the process. Each game created shares common principles, but varies in

the way features of gameplay are constructed. This paper is created with an audience of video

game players, video game developers, and programmers in mind, making this background

beneficial to the comprehension and enjoyment of this paper. The purpose of this paper is to

provide understanding of every intricate detail that goes into the process of creating a video

game.

3

Acknowledgements

 I would like to thank all the people who helped me along the way, both in writing this

thesis and for encouraging me to follow my passions. First and foremost, I would like to thank

Professor Barry Burd. It was in his Introduction to Logic course, which I had taken in the first

semester of my junior year, that I found a passion for programming and computer science. This

passion led me to take on the challenge of learning how to code and develop games, later

branching to passions in creating digital art through pixel art and 3D modeling. It was that one

class that changed the trajectory of my academic career as well as aspects of my personal life.

Thank you to Aaran Robinson, a writing specialist at the University Writing Center at

Drew University. In the final revisions of this paper, he had gone through the effort of thoroughly

reviewing my paper, which was integral to my writing and revision process.

To my thesis committee, I thank you for your contributions. Professor Alexander Rudniy,

who helped to guide my progress over the entire course of this thesis. With his interest in my

work I was able to create a thesis on the topics that I love. Professor Barry Burd, for his insights

on my paper from the lens of a computer scientist. Professor Adijat Mustapha, for her insights

from the discipline of psychology.

 To my family, I thank you for believing in me and providing your support for me in my

academic pursuits. I could not have done it without you. You are the reason I have gotten to

where I am today.

4

Table of Contents

Abstract...2

Acknowledgements.. 3

Table of Contents... 4

0 Introduction...13

0.1 Introduction to Game Development...14

0.2 Introduction to Game Engines and Frameworks... 15

0.3 Introduction to Godot...17

Figure 0.3.1: Base & Control Nodes..18

Figure 0.3.2: 2D & 3D Nodes..20

1 Pong..24

1.1 Developing Pong..25

Figure 1.1.1: Board Scene..26

Figure 1.1.2: Ball & Paddle Scenes... 27

1.2 Intricacies Behind the Development of Pong.. 30

1.2.1 Simulation of Movement.. 30

1.2.2 Collision Detection and Reflection Logic...30

1.2.3 The Impact on the Video Game Industry..31

2 Asteroids.. 33

2.1 Developing Asteroids...33

Figure 2.1.1: Asteroid Game Scene... 34

5

Figure 2.1.2: Player Scene... 36

Figure 2.1.3: Laser Scene...38

Figure 2.1.4: Asteroid Scene..39

2.2 Intricacies Behind the Development of Asteroids... 40

2.2.1 Game Objects..40

2.2.1.1 Spaceship... 41

2.2.1.2 Asteroid..42

2.2.2 Object Instantiation...42

3 Tetris...44

3.1 Developing Tetris...45

Figure 3.1.1: TetrisGame Scene...49

Figure 3.1.2: Tetromino Scene...50

3.2 Intricacies Behind the Development of Tetris... 51

3.2.1 Grid-Based Movement and Tetromino Manipulation...51

3.2.2 Board Management...52

3.2.3 Timers and Speed Management..53

3.2.4 Informational Mechanics.. 54

4 Platformer..55

4.1 Developing a Platformer.. 56

Figure 4.1.1: Platformer Level Scene.. 56

Figure 4.1.2: Tilemap Scene.. 58

6

Figure 4.1.3: Player Scene... 59

4.2 Intricacies Behind the Development of a 2D Platformer...60

4.2.1 Player Movement.. 60

4.2.1.1 Jump Mechanics...61

4.2.1.2 Flexible Movement Mechanics..61

4.2.2 Animation Systems and State Management... 62

4.2.3 Level Creation...63

5 First Person Shooter... 65

5.1 Developing a First Person Shooter.. 66

Figure 5.1.1: Main Scene... 66

Figure 5.1.2: Tree Scene.. 68

Figure 5.1.3: Player Scene... 69

Figure 5.1.4: Third Person Camera Scene... 70

Figure 5.1.5: Player Model Scene..73

Figure 5.1.6: Gun Scene...74

Figure 5.1.7: Bullet Scene..75

5.2 Intricacies Behind the Development of a First Person Shooter... 75

5.2.1 Player Movement.. 76

5.2.2 Camera Management and Perspective.. 76

5.2.3 Handling Projectiles and Combat... 77

5.2.5 3D Models and Animation Systems... 78

7

6 Conclusion... 79

6.1 Future Work... 79

6.2 Final Remarks.. 80

Appendix A - Screenshots... 81

A1 Pong... 81

Figure A1.1: Pong Game Initialization..81

Figure A1.2: Pong Gameplay 1... 82

Figure A1.3: Pong Gameplay 2... 83

Figure A1.4: Pong Player Wins... 84

A2 Asteroids.. 85

Figure A2.1: Asteroids Game Initialization...85

Figure A2.2: Asteroids Gameplay 1.. 86

Figure A2.3: Asteroids Gameplay 2.. 86

Figure A2.4: Asteroids Game Over... 87

Figure A2.5: Asteroids Gameplay 3.. 88

A3 Tetris...89

Figure A3.1: Tetris Game Initialization... 89

Figure A3.2: Tetris Gameplay 1...90

Figure A3.3: Tetris Gameplay 2...91

Figure A3.4: Tetris Gameplay 3...92

Figure A3.5: Tetris Hold Tetromino.. 92

8

Figure A3.6: Tetris Pause Screen...93

Figure A3.7: Tetris Gameplay 4...94

Figure A3.8: Tetris Game Over... 95

Figure A3.9: Tetris New Game..96

A4 Platformer...97

Figure A4.1: Platformer Game Initialization... 97

Figure A4.2: Jumping.. 97

Figure A4.3: Platformer Gameplay 1...98

Figure A4.4: Floating...99

Figure A4.5: Platformer Gameplay 2...100

Figure A4.6: Parallax 1.. 100

Figure A4.7: Parallax 2.. 101

Figure A4.8: Platformer Character.. 101

A5 First Person Shooter...102

Figure A5.1: First Person Shooter Game Initialization... 102

Figure A5.2: First Person Shooter Enemies...103

Figure A5.3: First Person Shooter Third Person..104

Figure A5.4: First Person Shooter Jump Animation..105

Figure A5.5: First Person Shooter Walk Animation..106

Figure A5.6: First Person Shooter Player Damage..107

Appendix B - Code...108

9

B1 Pong..108

Figure B1.1: ball.gd... 108

Figure B1.2: paddle.gd...109

Figure B1.3: pong_game.gd 1..110

Figure B1.4: pong_game.gd 2..111

Figure B1.5: pong_game.gd 3..112

Figure B1.6: Globals.gd... 113

B2 Asteroids...114

Figure B2.1: asteroids_game.gd 1..114

Figure B2.2: asteroids_game.gd 2..115

Figure B2.3: asteroids_game.gd 3..117

Figure B2.4: asteroids_game.gd 4..118

Figure B2.5: asteroids_game.gd 5..119

Figure B2.6: player.gd 1...120

Figure B2.7: player.gd 2...122

Figure B2.8: player.gd 3...123

Figure B2.9: asteroid.gd 1..124

Figure B2.10: asteroid.gd 2..125

Figure B2.11: laser.gd.. 126

Figure B2.12: Globals.gd...127

B3 Tetris...128

10

Figure B3.1: tetris_game.gd 1..128

Figure B3.2: tetris_game.gd 2..130

Figure B3.3: tetris_game.gd 3..131

Figure B3.4: tetris_game.gd 4..133

Figure B3.5: tetris_game.gd 5..134

Figure B3.6: tetris_game.gd 6..135

Figure B3.7: tetris_game.gd 7..137

Figure B3.8: tetris_game.gd 8..138

Figure B3.9: tetris_game.gd 9..139

Figure B3.10: tetris_game.gd 10..140

Figure B3.11: board.gd 1... 142

Figure B3.12: board.gd 2... 143

Figure B3.13: board.gd 3... 144

Figure B3.14: tetromino.gd..145

Figure B3.15: Globals.gd...146

B4 Platformer...147

Figure B4.1: player.gd 1...147

Figure B4.2: player.gd 2...149

Figure B4.3: player.gd 3...150

Figure B4.4: player.gd 4...152

Figure B4.5: parallax_item.gd 1.. 154

11

Figure B4.6: parallax_item.gd 2.. 155

Figure B4.7: parallax_item.gd 3.. 156

Figure B4.8: player_camera.gd..157

Figure B4.9: Globals.gd...158

B5 First Person Shooter... 158

Figure B5.1: player.gd 1...158

Figure B5.2: player.gd 2...160

Figure B5.3: player.gd 3...162

Figure B5.4: player.gd 4...163

Figure B5.5: player.gd 5...164

Figure B5.6: player_model.gd 1.. 165

Figure B5.7: player_model.gd 2.. 166

Figure B5.8: third_person_camera.gd..167

Figure B5.9: player_ui.gd.. 167

Figure B5.10: enemy.gd...168

Figure B5.11: enemy_model.gd...168

Figure B5.12: gun.gd... 169

Figure B5.13: bullet.gd.. 171

Figure B5.14: damageManager.gd...172

Appendix C - Glossary.. 173

C1 General... 173

12

C2 Godot..173

C2.1 Base Nodes..173

C2.2 Control Nodes... 174

C2.3 2D Nodes...174

C2.4 3D Nodes...175

References...177

13

0 Introduction

Video games have been an integral part of culture for the past half century, with their

popularity only seeing an increase over time. They serve as a powerful social construct around

which people build relationships with others through the games they share interest in

(Skopljakovic, 2019). Popular video games become bastions of social networks in which people

of like minded interests are able to find one another, grow friendships, and have healthy social

interactions. The core of what draws people to video games is the primary purpose for their

construction: entertainment. People play video games for the entertainment that they provide.

This entertainment can be derived in many ways, provided the vast array of game genres that

exist. A person might derive their pleasure from playing video games that provide increasingly

difficult puzzles to complete (e.g. Portal; Official Portal 2 Website, n.d.). Alternatively, one

might find enjoyment in building something in a 3D game space (e.g. Minecraft; Official

Minecraft Site, n.d.). Some of the earliest games had a simpler goal, which is to attain the highest

score possible, competing against either oneself or others (e.g. Asteroids). Many games, from

their inception to present day, have continued to provide competition against others as a means of

entertainment, pitting people against each other in friendly competition (e.g, Pong, Halo,

Fortnite, etc.). Video games come in many forms, each one providing the player with a world to

explore and a means to navigate that world. Behind each game is a vast array of systems created

for the player to give them the experience of the game, many of which the player is completely

unaware of. The goal of this paper is to take a look at how different games are developed from

the ground up in order to shed light on parts of the game development process the average player

might miss.

14

0.1 Introduction to Game Development

The process of game development draws from a diverse array of disciplines in order to

produce a final product in the form of a video game. The steps needed to develop a full video

game include the following: game design, narrative writing, art design/development, sound

design/development, and programming. The game designing process provides direction to the

game’s construction. This process answers the questions of “what can the player do?”, “what is

the player’s objective?”, “how does the game end?”, and other similar questions. It also provides

clarity to the process of building the game.

Narrative writing has a role of variable size depending on the scale of the game in

question, but shares a similar role to that of the game design process: instead of providing

direction to the construction of the game, though, the narrative writing process adds depth and

purpose to the various facets of the game for the player to observe.

Art and sound are two pillars in the development of the video game, with the two

constituting everything the player sees and hears in the game. Art and sound are the medium

through which the player perceives the game, making their design and development

quintessential to the process.

The final step listed here is programming. This is the very thing that brings all other

aspects of the game together to form one coherent whole. The programming of a game allows the

narrative to be conveyed, sounds to be produced, and art to be presented. The programming of a

video game works as instructions for all parts of the game to do as they are supposed to. The

program allows the player to interact with the game, giving consequences to the player’s actions

in ways such as moving a character or firing a projectile. It is this interactivity that separates a

15

video game from any other piece of media such as a movie or a song. Programming lies at the

heart of the game development process and is the subject of focus for the topics of this paper.

0.2 Introduction to Game Engines and Frameworks

To create a video game, the most basic means of production is done by working directly

with a programming language. You can, in theory, use any programming language to create a

video game, however, some of the most popular choices include Python and C++ (Welcome to

Python.Org., 2025; Cplusplus, n.d.). There are circumstances where the usage of less popular

languages have yielded impressive results. One particular example of this is Rollercoaster

Tycoon (RollerCoaster Tycoon, n.d.), which was created entirely in the assembly programming

language (“RollerCoaster Tycoon (Video Game),” 2024). The language that is used to create a

game is highly dependent on the intention behind the game being made, whether it be size,

scope, efficiency demands, or even personal experience; all are factors involved in choosing a

language to make a game in. Python is a language that is particularly popular to work in due to

its ease of use, however, it fails to meet the same level of efficiency as a language such as C++ in

most use cases. Likewise, C++ is popular for its high level of efficiency, but has a steep learning

curve and slower development process (Is Python Faster and Lighter than C++?, 2013). One of

the main reasons that a game like Rollercoaster Tycoon was made in assembly in the first place is

due to a great demand for efficiency with the number of calculations and processes occurring at a

given time, something that would be far more difficult to achieve in a higher level language.

 Beyond using a stand-alone language to create a video game, another choice is to go

down the route of using a game framework or engine to take on some of the burden of the

development process. The purpose of a framework is to provide a collection of functions and

16

systems to be accessed across many different use cases. Some of the common functions present

across many frameworks (e.g. PyGame, Ren’Py, Love2D; Pygame Front Page — Pygame v2.6.0

Documentation, n.d.; The Ren’Py Visual Novel Engine, n.d.; LÖVE - Free 2D Game Engine,

n.d.) include a process function to run code for every frame the program is run, an input function

for reading keyboard and mouse input, and a draw function to display drawable objects. Each

framework has its own specialization, Love2D in particular being one that specializes in creating

2D video games. Love2D, alongside many other frameworks, benefit from being able to combine

the usage of different languages for backend processes and program scripting. What Love2D

does in particular is use Lua (The Programming Language Lua, n.d.), a simple to read and easy

to understand scripting language, for game developers to write their code while running the

processes of the game through their framework, which is entirely made in C++. This allows the

framework to exhibit the benefit of a comprehensible scripting language and a highly efficient

processing language.

 Game engines differ from frameworks due to their provision of an interface and tools that

are integrated into the interface. With an engine it is possible for the program to visualize a

particular object or game scene without running the project. Depending on the engine, you can

also modify values belonging to a particular object and even manipulate its behavior without any

written code. A consistency between some of the most popular game engines (e.g. Unity, Unreal,

and Godot; Unity Real-Time Development Platform, n.d.; Unreal Engine, n.d.; Godot Engine -

Free and Open Source 2D and 3D Game Engine, n.d.) is the usage of an object-oriented

programming style. The different features of a game are encapsulated in “objects” that can be

freely manipulated in the interface individually. Features of each object can be toggled and

17

modified in the editor and correspond to their behavior when the game is run. This ability to

affect game objects without running the game is a benefit that game frameworks do not have.

0.3 Introduction to Godot

 Throughout this paper I will be re-creating various video games as well as original

prototype games that reflect specific genres as a whole. To make these prototypes, I will be

making use of the game engine Godot (Godot Engine - Free and Open Source 2D and 3D Game

Engine, n.d.), an object oriented engine. For this project, the 4.2.2 stable version of Godot is used

as it is one of the most recent stable versions of the engine to be released at the time of writing.

The Godot engine is designed for a broad range of games, having an editor for both 2D and 3D

game creation. The core building blocks of game creation in Godot are called “nodes”. These

nodes exist in a parent-child hierarchy, with parent nodes dictating attributes and behavior of

child nodes. These nodes come in four different types: base, control, 2D, and 3D (see figures

0.3.1 & 0.3.2).

All nodes inherit properties of the base node, allowing all nodes to interact with one

another. It is from this base node that all Godot objects are made. Child nodes with branching

functionality from the base node are the control, 2D, and 3D nodes. Among these node types,

control and 2D nodes share a common parent that is called “CanvasItem”, due to the fact that

they share many of the same qualities of a canvas. A canvas is a space in which items are drawn

onto and in a game, a CanvasItem is an object that is “drawn” onto the screen. Such drawn

objects have many properties such as opacity, color, and z-index. The opacity determines the

degree of transparency of the object, the color determines the object’s capacity to contain the

18

colors red, green, and blue in its pixels, and the z-index determines the order in which the object

is drawn, with the last item being drawn appearing in front of all other items.

Figure 0.3.1: Base & Control Nodes

The base nodes of Godot can be seen on the left while the control nodes can be seen on the right.

For both control and 2D nodes (see figures 0.3.1 & 0.3.2), features belonging to canvas

items are available to manipulate. However, despite these shared features, the two nodes and

their children are distinct by a significant margin. Control nodes are designed for the purpose of

creating a graphical user interface (GUI), which is presented to the player in the form of an icon,

a button, text, and more. These nodes are used in menus, dialogues, and to represent player

information such as inventory, health, currency, or points. This differs greatly from the expressed

purpose of 2D nodes, which are used to compose the objects/elements of a 2D game scene. This

19

includes the player, the background, the enemies, and the other various features of a 2D

environment. Control nodes have properties and methods centered around alignment and

anchoring, which are valuable in areas such as web page design in which such attributes are

actively manipulated and refined to achieve quality user experience (UX). Likewise, 2D nodes

are best used as game elements due to the great deal of properties and methods that allow for

flexible placement and movement of objects along two axes. The last major type of node to

consider is the 3D node. The 3D node breaks away from the control and 2D nodes due to its

three dimensional nature. This brings a great deal more to consider, as a z-axis is added to what

was formerly just an x-axis and a y-axis. With this said, however, if one were to compare the

types of 3D nodes to the types of 2D nodes (see figure 0.3.2), it becomes apparent that the vast

majority of 3D nodes have a 2D counterpart. This is because the purpose of 3D nodes is the same

as 2D nodes—to compose the objects/elements of a 3D scene. The majority overlap is due to the

common features that 2D and 3D games have, therefore necessitating many of the same types of

nodes to create their respective scenes.

20

Figure 0.3.2: 2D & 3D Nodes

The 2D nodes of Godot can be seen on the left while the 3D nodes can be seen on the right.

 Beyond the types of nodes that Godot provides, Godot also has two primary files that

compose the game. One has already been mentioned on several accounts, which is the game

“scene”. Game scenes are files which store one or more nodes in a parent-child hierarchy, with

exactly one node at the top of the hierarchy. These scenes are stored in files with the “.tscn”

extension; within their content the hierarchy of nodes and their respective attributes are stored.

Among these attributes is the second primary type of file used to make a game, which is the

script file. The scripting language of the Godot engine is called GDScript (GDScript Reference,

n.d.), denoted with the “.gd” extension. This language is used to interface with the methods and

properties of each node through the engine which is constructed in C++. Beyond using the

21

built-in methods of the engine, the scripting language can be used to create custom properties,

methods, and algorithms freely. Each node can have only one script attached to it, with each

script capable of dictating the behavior of its node, child nodes, parent nodes, and sibling nodes

(nodes with the same parent). In theory, each and every node has a means of accessing every

other node in an active scene. With this said, nodes with the closest relationships (e.g.

parent-child, sibling-sibling) have the easiest access to one another. This is because the fewest

number of calls need to be made, with every parent-child pair being able to directly access one

another with sibling-sibling pairs only needing to go through their shared parent. This gives

merit to keep nodes that have information or functions valuable to another node close in the

parent-child hierarchy.

 In creating a script file, there is a great variety of means to customize code to achieve the

desired results, however, there are a few tools built into the Godot engine that provide a

foundation for programming a game. One of these tools that is commonly used is a combination

of three functions, the _ready() function, the _process(delta) function and the

_physics_process(delta) function (Node, n.d.). These functions are the cornerstones of GDScript

and their purposes are in-line with their namesake. The _ready() function performs all

instructions within at the very moment the scene is instantiated. In this function values can be

initialized, timers can be started, and important starting operations can be performed. The

_process(delta) and _physics_process(delta) functions are where the bulk of manipulatable

behavior occurs during the runtime of the game. The difference, however, is that _process(delta)

function handles all operations except those involving the built in physics engine, while the

_physics_process(delta) includes operations involving the physics engine. Functionally, these

two processes are one in the same in the manner in which they run code and are both addressed

22

as the process step. Both of these functions are being called every frame and are often filled with

miscellaneous check conditions for directing behavior. Each check condition, when fulfilled,

runs a different portion of code created. If a particular operation needs to standardize behavior to

be consistent over time, then the argument provided to the functions “delta” is used. This delta

value captures the time passed between frames so that it can be used to standardize game

operations, regardless of the frame rate the game is running at.

 Another technique that can be implemented is the provision of various methods to a given

scene. Methods are mainly responsible for checking, getting, and setting data of a particular

object. If a scene is the child of another scripted scene, it would be more efficient to provide

methods to the child scene for the parent scene to use in order to improve the efficiency of the

game and modularize the code better.

One more technique that is often key to Godot game development is the usage of

“signals”. The signal is one of the preferred methods of sending information upwards in the node

hierarchy. Signals can either be custom made by setting the signal on ready and emitting the

signal provided the right condition or by deriving it directly from certain nodes which have

pre-made signals. The “timer” node is one good example of pre-built signals, as it comes with

the “_on_timer_timeout” signal by default. As its name suggests, this signal is sent out when the

corresponding timer reaches a time of zero. This signal can then be connected to a node higher

up in the hierarchy which can use the signal to make certain decisions and perform appropriate

operations.

There are nearly limitless possibilities on how a person may construct a game using the

Godot engine, or any game engine for that matter, but these are some of the methods that see

23

common use and will be used in the projects conducted in this paper (_ready, _process(delta),

_physics_process(delta)).

24

1 Pong

Pong (“Pong,” 2025) is among the earliest video games to be produced and was a novel

creation for its time. The premise of the game is very simple: the game is played with two

players, one who controls a paddle on the left side of the screen and the other who controls a

paddle on the right side of the screen. Each paddle moves at a set speed, up or down according to

player input. The goal of the game for each player is to stop the ball that bounces around the

screen from getting past the paddle that they control. Likewise, the player also tries to make it

harder for the opponent to block the ball with their paddle. The way that the player is able to do

this is by strategically blocking the ball with different parts of the paddle. The ball moves at the

greatest amount of vertical speed when it bounces off of the part paddle furthest from its center.

Upon colliding with the upper portion of the paddle, the ball is reflected upward and upon

colliding with the lower portion of the paddle, the ball is reflected downward. Earlier in the

game, it is possible to get from the top to the bottom of the screen with the paddle in the time it

takes the ball to traverse the screen. Provided with the mechanics established, this would make

for games that could technically go on forever. This is due to the lack of a changing variable that

increases the difficulty of the game beyond the threshold of the players’ capability. As a result,

there is one more mechanic that comes into play, which is the acceleration of the ball. Upon

colliding with the paddle, in addition to reflecting at different angles based upon the point of

collision, the ball accelerates by a small margin. This margin is hardly noticeable upon the first

few collisions, but the accumulation of collisions causes the difficulty to exponentially rise for

both players until the round is won.

Upon starting the game, each player has a score of zero. Each round begins with a button

being pressed to initiate the movement of the ball, or “serving”. After serving, both players do

25

their best to meet the ball with the paddle on their side of the board. Upon the ball crossing the

opposite player’s side of the screen, a point is awarded to the player. This repeats until one of the

players reaches a score of 11, in which that player is announced the winner via printout to the

screen.

When playing Pong, gameplay comes in the form of a player versus player centered

design. You are given the expressed purpose of defeating your opponent and are given the means

to do so through the usage of paddles in a table tennis-like environment. It is the skill of the

player, the skill of their opponent, and the player’s knowledge of the opponent that contribute

heavily to gameplay.

1.1 Developing Pong

 Pong has three main components: The board, the paddle, and the ball. First we have the

board, which is the space in which gameplay is occurring. The board is a very simple object, but

it contains pieces of data and visual representations valuable to gameplay. In the iteration of

Pong created for this project, the board is constructed with a combination of several control and

2D nodes. The control nodes include two labels for the score of each player as well as two more

labels to print out the winner at the end of a game (WinnerLabel) and a label to ask whether they

would like to play again (PlayAgainLabel). This makes 4 labels total, with the visibility of the

WinnerLabel and the PlayAgainLabel changing according to the state of the game. The 2D nodes

that are part of the board scene are two rectangle shapes that are children to a “StaticBody2D”

node (see figure 1.1.1). These two shapes can be seen below as the light blue bar at the top and

bottom of the board. These shapes that constitute the static body would act as bumpers for the

ball to bounce off of, and as a limiter for the paddle to be stopped by.

26

Figure 1.1.1: Board Scene

The board scene can be seen above on the right and the node hierarchy of the board scene can be

seen on the left.

 The ball and paddle scenes have smaller node structures than the board scene, however,

their attached scripts provide each scene with more complex behavior. The ball scene is

composed of 4 nodes, a white polygon in the shape of a square, a collider with the same shape

and size, and two timers. The paddle scene is composed of 2 nodes, a white polygon in the shape

of a tall rectangle and a collider with the same shape and size (see figure 1.1.2). What makes

both of these scenes unique is the characteristics of their root node. At their root, both scenes

have a “CharacterBody2D” node, a node which contains all of the characteristics a character

might have in a game. Both the paddle scene and the ball scene are character body nodes,

meanwhile only the paddle is a player controlled character. The reason for this choice is because

the character body is in actuality a kinematic body, an object with manipulatable speed and

direction that is affected by code and not the physics engine. The qualities of the character body

made this node type suitable for both the ball and the paddle. There are two other types of

physics bodies in Godot, the rigid body and the static body, but neither of them would be suitable

27

for the purposes of these scenes. The rigid body relies on the physics engine to calculate its

direction and movement, something that is wholly unnecessary for this version of Pong, given

that the ball’s movement is controlled via code (see figure B1.1). Likewise, the static body is also

unsuitable since it is an immovable object through neither the physics engine nor code. This

makes the static body perfect for the board scene, but not the ball or paddle scenes.

Figure 1.1.2: Ball & Paddle Scenes

28

Both the ball and paddle scenes can be seen here: The ball scene can be seen above on the top

right and the node hierarchy of the ball scene can be seen on the top left. The paddle scene can

be seen above on the bottom right and the node hierarchy of the paddle scene can be seen on the

bottom left.

 The ball and paddle scenes both have scripts attached to them which determine their

behavior (see figures B1.1 & B1.2). Both scripts are centered around the primary goal of

directing movement. For the ball script (see figure B1.1), the velocity of the ball is changed upon

colliding with either the top or bottom of the screen and upon colliding with a paddle. If the ball

collides with the top or bottom of the screen, the ball’s vertical velocity is flipped, mimicking a

perfect reflection/bounce. If the ball collides with a paddle, its vertical velocity will be changed

in accordance with the distance between the ball and the center of the paddle and the horizontal

velocity will be flipped and multiplied by a factor of 1.05 (increase by 5%). The paddle script is

less complicated in terms of manipulating velocity compared to the ball script, rather it deals

with control flow. The paddle script (see figure B1.2) has an unchanging set speed and is applied

to the paddle’s vertical velocity according to input. The paddle is provided with an ID number

called “player_num” which is given to it based on which side of the board it is on. The paddle on

the left is numbered 1 and the one on the right is numbered 2. The paddle assigned the numbered

1 moves up and down when the “W” or “S” keys are pressed, while the paddle assigned the

number 2 moves up and down when the “UP” and “DOWN” keys are pressed. These are

respectively read by Godot as the “up1”/ “down1” and “up2”/”down2” due to the configured

input settings. Provided the appropriate input, the movement of the paddle is simple. The vertical

velocity is set to -speed, +speed, or 0 according to the inputs provided.

29

 The final detail to note in the construction of Pong is the main script (see figures B1.3 to

1.5B). In the construction of most games, a main script is utilized to keep track of important

values and regulate behavior of objects in ways that those objects could not on their own. In this

rendition of Pong, the main script is used to manipulate the speed and direction of the ball based

on game state and player input. It is also used to store score values and update labels to their

appropriate text and visibility. An important detail to note regarding the main script is that its

behavior is based around a simple state machine revolving around the variable “state”. This

variable starts with the value “start” and changes to “play”, “game_over”, or back to “start”

depending on the conditions met. If the game is in the “start” state, the ball sits in the center of

the screen until a player presses “enter” or “space”, which is set as “accept” through input

settings. Once this is done, the game state is switched to “play” and the ball’s movement is

initiated. Upon initiating its movement, the ball is sent either left or right with an angle ranging

from -45 degrees to 45 degrees with respect to the direction it is moving. The game switches

back to the “start” state when two conditions are met: the ball crosses the edge of the screen on

either the left or right hand side of the screen and neither player has a score that is greater than or

equal to 11 (the game is not over). The game’s state will flip between “start” and “play” until a

point is gained by a player that brings them to 11 points. Once this occurs, the game will enter

the “game_over” state, which displays the winner. From this state, a player can press “accept” to

reset the game fully and clear the scores, returning to the “start” state (see figures B1.3 to B1.5

for code).

30

1.2 Intricacies Behind the Development of Pong

While the gameplay mechanics of Pong are simple in design, the steps involved in its

development contribute to building a base of reference for games going forward. The game laid

the groundwork for future game development with a simple translation of the game of ping pong

(also known as table tennis) into a digital environment. It was from this translation of the game

to a digital frontier that inspired other developers to branch out and create games of their own.

Pong was among the first games to contribute to the growth of game development as a whole.

The features of Pong that are significantly worth noting are how it implemented simulation of

movement, collision detection, reflection logic, and its impact on the video game industry as a

whole.

1.2.1 Simulation of Movement

One of the challenges in early game development was simulating the movement of an

object and representing that movement graphically. In Pong, simulating the ball's movement

requires calculation of the ball's position, speed, and direction. This calculation operates on the

ball by judging where it was and where it is moving toward. Upon completion, the calculation is

then reflected on the ball by graphically moving it to the new location. This process occurs for

the movement of both the left and right paddles, with a more restricted ruleset which locks them

to y-axis movement at a static speed. Pong lacks advanced graphical capabilities due to hardware

limitations at the time of its creation, but still is able to represent movement by lighting select

pixels that represent the ball and paddle objects.

1.2.2 Collision Detection and Reflection Logic

31

The way that the ball’s movement is programmed and its interaction with the paddles is

the key driving factor to the gameplay of Pong. To simulate the physics of bouncing off surfaces,

the game requires a minimal detection system for the presence of other objects. When the ball

collides with the top or bottom edges of the screen, the vertical velocity of the ball is inverted to

simulate a bounce with no loss of momentum. This is implemented in a different manner

compared to collisions with the paddles, the reason being that when the ball collides with a

paddle, its horizontal velocity is inverted and incremented upward while the vertical velocity is

set according to the distance from the center of the paddle that the ball collides with. This

reflection is variable, unlike the consistent reflection with the top and bottom of the screen.

The early form of collision detection systems that Pong and similar games implemented

goes by the name of “axis aligned bounding box” (AABB) collision. This form of collision

detection reduces each object to a square with four vertices. If any one of these vertices overlaps,

a collision is detected. This form of collision detection is not what was used for the version of

Pong created in this paper, but can be manually implemented by hand or with the AABB class.

The reflection logic is inherently tied to the game's pacing. As the ball accelerates with

each paddle collision, it becomes increasingly difficult for both players to react in time. This is

especially so when the ball collides with the edges of the paddle, causing it to reflect at a steep

angle. This logic is quintessential for the development of engaging gameplay for Pong.

1.2.3 The Impact on the Video Game Industry

Pong is an exceptionally simple game, consisting only of two player controlled paddle

objects and a ball with simple movement logic. It can be argued that Pong is one of the trend

setters for the many games that followed with the way it implemented the game loop, a cycle of

32

states (such as "start", "play", "game over") for players to navigate. This structure has become

fundamental in game design, allowing for comprehensible game progression. Games following

the example of Pong have clear states for the player to interact with in a way that ensures a sense

of progression. The use of states and score tracking also laid the groundwork for other game

mechanics, such as achievements, leveling systems, and player progression found in modern

gaming. It is the systems that were implemented into Pong that helped contribute the growth of

the early game industry and the developers who supported it.

33

2 Asteroids

 While Pong is among some of the first games to be widely released for two players,

Asteroids (“Asteroids (Video Game),” 2025) is one of the earliest produced games for a single

player. In Asteroids, the player controls a triangle which represents a spaceship. Around the

spaceship an assortment of polygonal shapes of various sizes move around at variable speeds.

While playing the game, the player is capable of two things, moving and shooting. In terms of

movement, the player is capable of only accelerating in the direction the spaceship is facing,

while also being able to change this direction by rotating left and right. As far as shooting goes,

this action allows a player to “fire” a laser-like projectile in the direction the spaceship is facing.

The player’s goal is to gain points by shooting as many of the asteroids as they can without

getting hit by them, as getting hit would result in the player losing lives. Upon losing all of their

lives, the player loses the game and is presented with their score.

For Asteroids, the fun of the game comes from playing to achieve the highest score. This

attribute of achieving the highest score, as it is documented on a leaderboard, creates gameplay

that has social implications, with people playing the game to beat either their own personal best

score or the highest score on the leaderboard. The game has functionally unlimited playability

with the Player being limited by their level of skill at using the free moving ship they control.

2.1 Developing Asteroids

 The game of Asteroids, despite its construction being based around single player

functionality, is composed of somewhat more complex elements than that of the two player game

of Pong. The version of Asteroids created for this paper is composed of several objects, including

the user interface (UI), the player, the lasers that the player fires, and the asteroids. With these

34

elements combined, the game of Asteroids is born. First we have the board: this is an object that

exists in most games constructed around a single frame of view and is often paired quite closely

with the main script (see Appendix A2 for Asteroids gameplay images). The “board” for the

Asteroids game developed is captured by the “AsteroidsGame” scene. Inside this scene lies the

background, the player, the UI, as well as containers to hold instantiated objects including the

asteroids and the lasers (see figure 2.1.1).

Figure 2.1.1: Asteroid Game Scene

The asteroid game scene can be seen above on the right and the node hierarchy of the asteroid

game scene can be seen on the left.

The main script (see figures B2.1 to B2.5) for the game is responsible for several core

functionalities, all of which are centered around the operation of a state machine. The state

machine for this game is very similar in terms of functionality and labeling to the Pong state

machine. The states used for Asteroids include “start”, “running”, and “game_over”. The game

begins in the “start” state, in which the player is paused and invisible. No input will cause any

response from the game except for pressing the “ENTER” key. Upon pressing “ENTER”, the

35

game shifts to the “running” state in which the player is now visible and interactable. The UI is

also toggled to be invisible and the “AsteroidTimer” starts and begins to instantiate new

asteroids. In this state, the game checks for the player’s position every frame in order to

determine whether their position falls outside of the board. If this occurs, the player’s position is

then set to the opposite side and maintains its velocity upon falling outside the board. The game

enters the “game_over” state under one condition: the player’s life falling below zero. When the

player collides with an asteroid on the screen, they lose a life, which is kept track of in the main

script. This is also represented graphically with duplicates of the player in the bottom left-hand

corner of the screen (see figures A2.2 & A2.5). Once there is no player icon in the bottom left

corner and the player is hit, the game enters the “game_over” state. In this state, the game

operates in a very similar fashion to that of the “start” state, the major difference being what

occurs when the player presses the “ENTER” key. When the player presses “ENTER”, instead of

initiating gameplay, the main scene is instead reset. By doing this, with the way the game is

constructed, only the high score of the player persists to the next iteration of gameplay.

 The main script is responsible for manipulating the behavior of all objects in the game

with its focus primarily on the Player, Asteroid, and UI objects. The Player and Asteroid object

(see figures 2.1.2 & 2.1.4) have their own script based behaviors and are both responsible for

instantiating new objects of their own. To start, the behavior of the player scene and its

composition can be described. The Player object has several core components, which include a

polygonal shape, an area with a nested collision shape, a collision shape, and an invulnerability

timer. Beyond these components, at the root of the scene is a kinematic body with the player

script attached. Among the shapes that are children to the player, each serves a different purpose.

The polygonal shape is the part of the player character that the person playing the game sees. It is

36

a white triangle on top of the position of the player character. The area with a nested collider

serves the purpose of detecting other objects that make contact with the Player. This area reads

for collisions with asteroids in particular. The collision shape that is a direct child to the Player

would have been used for this purpose, however, due to the lack of this built in functionality in

this version of Godot, it is not. This collision shape solely exists for the purpose of satisfying the

requirements of the “CharacterBody2D” node. This type of node necessitates a collision shape as

a child node in order to perform the appropriate operations of managing object position and

collision. In this version of asteroids, the Player is designed to not “collide” with any objects.

Instead, it detects whether it is in contact with another object, takes damage, and has

invulnerability for a short period of time as well as reduced acceleration. The collider that would

otherwise bump into other objects, halting momentum, is set to not mask/read other objects.

Figure 2.1.2: Player Scene

The player scene can be seen above on the right and the node hierarchy of the player scene can

be seen on the left.

 The script of the Player scene (see figures B2.6 to B2.8) serves many purposes, however,

there are two core functionalities most relevant to playing the game. One such functionality is

being able to manage the movement of the Player in accordance with user input. As established

37

earlier, the Player has two means of movement: accelerating forward and rotating left and right.

The Player can move forward with a fixed rate of acceleration and a fixed upper limit for their

speed. By pressing the “W” or “UP” key the Player accelerates in the direction it is facing. The

Player can rotate left and right at a fixed rate dictated by the Player script. By pressing the “A” or

“LEFT” key, the Player can rotate counterclockwise and by pressing the “D” or “RIGHT” key,

the Player can rotate clockwise. The second functionality of the Player script is the ability to

shoot lasers. By pressing the “SPACE” key or “LEFT MOUSE BUTTON”, a laser scene is

instantiated directly in front of the Player, moving in the direction that the Player is facing.

 The laser scene is structured similarly to that of the Player scene with two major

differences (see figure 2.1.3). First, rather than having a timer for dictating an invulnerability

period, the laser has a timer node called “ClearTimer” which starts upon instantiation. When this

timer ends, the scene is “freed” resulting in the laser being removed from the game. This is done

to ensure that there are not too many lasers on the screen at the same time. Second, the root node

of the laser scene is not a kinematic body, but rather is a rigid body instead. The reason for this is

simple, as the laser scene does not require any complex manipulation to its movement behavior.

The only thing the laser has to do in terms of movement is to move in a straight line. As a result,

a rigid body is used in place of a character/kinematic body. The script attached to the laser scene

root (see figure B2.11) is responsible for the initiation and maintenance of the laser’s movement

as well as reading for collisions with asteroids in order to break them.

38

Figure 2.1.3: Laser Scene

The laser scene can be seen above on the right and the node hierarchy of the laser scene can be

seen on the left.

 The last object of note responsible for constructing the game of Asteroids is, of course,

the asteroid. The Asteroid object scene is one that actually is far simpler in it’s node structure

than that of the player and laser objects. It is made with two polygons that are responsible for

forming the black asteroid with a white border and one collision polygon in order for the Player

and Laser objects to detect it. The Asteroid scene does not require an area node for detecting any

collisions because the asteroid simply needs to exist for the player and laser objects to collide

with it. Similar to that of the laser scene, the root node of the Asteroid object is a rigid body. The

asteroid does not require any changes to its trajectory once it is instantiated, making this choice

suitable. As for the script attached to the root of the Asteroid scene (see figures B2.9 & B2.10),

the asteroid has two main functions: the initMovement() function, which is responsible for

initiating movement and size and the breakAsteroid() function, which is responsible for

destroying the asteroid.

39

In this version of asteroids, there are 5 asteroid sizes with every asteroid starting at the

largest size, size 5. The size of the asteroid dictates the speed at which the asteroid moves and the

scale by which the asteroid is multiplied by. The smaller the asteroid, the faster its speed and the

lower its scale. When an asteroid is struck by either the player or a laser, the asteroid is destroyed

by the breakAsteroid() function. While for most objects, a simple free() or queueFree() method is

called to destroy the object, the asteroid object bears one unique quirk that is the ability to split.

When an asteroid is instantiated by the main script (see figure B2.5), it is given an integer value

between 1 and 5 that determines the number of times it will split. When an asteroid is hit, if it has

splits remaining, it instantiates two new asteroids that are one size smaller and have one less split

remaining. Upon instantiation, each instantiated asteroid is provided an initial speed at random

according to their size and has their movement initialized by the initMovement() function. Over

the duration of the game, the asteroids spawn with more splits, which consequently increases the

difficulty of gameplay. Upon reaching zero splits and breaking, the asteroid is eliminated without

creating any additional asteroids.

Figure 2.1.4: Asteroid Scene

40

The asteroid scene can be seen above on the right and the node hierarchy of the asteroid scene

can be seen on the left.

2.2 Intricacies Behind the Development of Asteroids

The game Asteroids in its development required thoughtful consideration of the single

player gameplay experience. As opposed to games such as Pong (see Chapter 1), in which two

players play against one another with the goal of winning against the other, Asteroids derives a

different goal—to score the highest number of points. It is a game that challenges the player to

beat their own personal best and all others who have played the game, and is among some of the

first games to establish the leaderboard, right after Space Invaders in 1978. Where Pong set the

foundation for games with a player vs player focus, Asteroids further established and popularized

the use of a leaderboard in which every player’s score is recorded and the top scores are

displayed for anyone to see.

Aside from the social and competitive introduction of the leaderboard and single player

gameplay, the game of Asteroids contains game elements with greater complexity than its

predecessors. Asteroids implements gameplay elements such as a free moving character,

projectiles, and recursively instantiated objects. The game builds upon the core fundamentals of

the gameplay loop and state management by adding greater game interactivity.

2.2.1 Game Objects

The core of Asteroids revolves around the interaction between the player, lasers created

by the player, and asteroids. Each of these objects are designed with distinct characteristics based

upon their node structures and their respective scripts.

41

2.2.1.1 Spaceship

The ship's movement mechanics in Asteroids are more nuanced compared to its

predecessors like Pong. The player is able to rotate the ship and accelerate in the direction it is

facing without any constraints to a particular axis. Furthermore, the ship is able to wrap around

to the other side of the board upon crossing the threshold of the screen space, further increasing

the liberty of player mobility.

It could be said that the ship in Asteroids is a far more involved player controlled object

than that of the paddle in Pong. The ship in Asteroids is used in the same manner as the paddle is

used in Pong, as a medium through which the player interacts with the game. With this said, the

ship is directly linked to a greater scope of impact on the game. The ship is responsible for

gaining points for the player, clearing asteroids in close proximity to the player, and is a risk for

losing the game for the player. The ship is directly tied to the progression and ending of the

game, meanwhile the paddle of Pong is adjacent, due to the paddle’s only job being to block and

reflect the ball.

The laser object is created by the ship during gameplay due to the player’s actions and is

a key feature of the game. The laser scene allows the player to break asteroids in pursuit of

gaining points and preserving the life of the player. This scene adds complexity to the ship that

the player controls, as it enables the player to exert their will outside of solely the ship they

control.

42

2.2.1.2 Asteroid

In the game of Pong, difficulty is scaled over the course of each exchange between the

players by means of the horizontal speed of the ball increasing until it crosses the threshold on

either side of the screen. In the game of Asteroids, the difficulty is instead scaled with an increase

in the number of times asteroids are able to split. At the beginning of the game asteroids are only

able to split once and that is their limit. However, as the game progresses, the number of splits

each asteroid is able to perform increases up to five times.

The asteroid also does something unique from a programming standpoint, as it

implements the functionality of a recursive function, a function that calls itself, in the way it is

designed. Each asteroid's splits variable is decremented and provided to new instantiated

asteroids when it is broken. This creates a recursive creation of asteroids based around the initial

amount of splits provided to the originally instantiated asteroid.

2.2.2 Object Instantiation

 The game of Asteroids is among the first to introduce elements of object instantiation to

games. In Asteroids, the game revolves around the instantiation of objects. This is to say that

objects being created and objects being destroyed is core to the gameplay of Asteroids and the

functioning of game objects. The ship controlled by the player necessitates the instantiation of

laser scenes to interact with asteroids to gain points and the asteroids require the ability to create

new asteroids upon splitting.

 This concept of instantiating objects during gameplay was an important feature at the

time of this game’s inception. This concept is also something that is implemented into the games

43

created after Asteroids due to its addition of game complexity and flexibility. Instantiation is used

in a variety of cases, from projectile creation to recursive objects.

44

3 Tetris

 Tetris (“Tetris,” 2025) is a game that can be described as a “speed-based puzzle”. The

game occurs on a grid pattern typically consisting of 10 squares horizontally and 20 squares

vertically. The premise of the game is that you control an object made of four squares called a

“tetromino”. This tetromino’s squares are positioned directly in-line with the grid space of the

tetris board, the 10 by 20 grid behind the tetromino, and it progressively moves down the board

at a set rate. The player has several means of moving the tetromino, being able to move it left,

right, and even down to quicken its descent. The player also has the ability to rotate the

tetromino clockwise and “drop” the tetromino in an instant bringing it to the lowest possible

position in its current position and rotation. Upon reaching the bottom, the tetromino will “snap”

to the grid. This snap is the act of the tetromino being removed as a player controlled object and

being turned into data which is added to the board. In the place where the tetromino once was

remains its squares, while a new tetromino is spawned at the top of the board. If another

tetromino is to shift downward where the squares of a previous tetromino were deposited, it will

display the same behavior as it would if it were to hit the bottom of the board. The player’s goal

in this game is to create full horizontal lines which provide the player with differing amounts of

points. The player receives the fewest number of points when they complete a singular line while

they receive the greatest amount of points when they complete four lines at the same time. When

these lines are completed, all squares in the lines are removed and all squares above are lowered

down by the number of lines cleared. As the player completes lines and scores points the level of

the game increases. Based on the level of the game, the speed at which the tetromino controlled

descends increases. As the game progresses, eventually the board is filled up due to the

45

increasing difficulty of the game and mistakes made. If a new tetromino is made that cannot go

anywhere, then the game ends and the player is presented with their score.

In Tetris, the goal of gameplay is similar to that of Asteroids. You score points in order to

get the highest score possible. Tetris diverges from Asteroids, however, in its implementation of

graphics and mechanics. Graphically, Tetris is a large leap from Asteroids, providing a variety of

colors as opposed to solely black and white. Tetris also offers far more in terms of strategy-based

compared to Asteroids, which emphasizes more on being able to shoot at asteroids effectively to

gain points and dodge them to avoid losing lives. While Tetris also requires experience and skill

to effectively control the active tetromino, the game has greater emphasis on planning out the

next steps and adjusting a plan accordingly to changing conditions.

3.1 Developing Tetris

 Compared to the previous two games developed, the game of Tetris separates itself in its

complexity and implementation of different means of gameplay. In Pong the player controls a

paddle and in Asteroids, the player controls a spaceship. These objects are represented with

simple geometric shapes (a rectangle and a triangle, respectively) and share the quality of being

manipulated through intervention with their velocity, setting it to a static value for the paddle and

modifying it by a set acceleration and friction for the spaceship. In these cases, the physics

engine built into Godot does a good deal of the heavy lifting by performing calculations on a

basis of the amount of time passed from the last calculation performed. In the case of Tetris, due

to the mathematical precision of the grid-based game, such calculations were not needed nor

utilized. Instead, the game’s “character,” so to speak, is the tetromino which the player controls.

46

This tetromino (see figure A3.2) can be moved left, right, and down as well as rotated clockwise

and “snapped” to the lowest possible position of the board. It does this not by its velocity, but

rather by direct modifications to its position with restrictions to ensure it does not leave the

confines of the board nor overlap with parts of the board that are filled. This is all done through

communication between the main script attached to the “TetrisGame” scene and a child script

attached to the “Board” scene.

 The TetrisGame scene (see figure 3.1.1) holds all of the components of Tetris except for

the tetromino object which is instantiated during gameplay. Going in order of the many

components that make up the main scene, the first thing of note is the “Board” node. This object

is unique to all other objects so far, as it only serves the purpose of running a script. Godot limits

each node to only having up to one script attached, however, there are no limitations on the

number of scripted objects that can be children to any given node. For the Board node in

particular, its purpose is to hold the board script which contains a singular array of size 240 for

storing every space on the grid as well as many methods for reading from and manipulating this

array. The tetromino that moves about in the TetrisGame scene is able to interact with this array

due to one very important utility function in the main script called “convertTetrominoToArray()”.

This function is responsible for finding the active tetromino by name and converting its

positional data by pixel coordinates directly into indices of a one dimensional array of size 240.

These coordinates are then compared to those of the board array to check if a desired operation

can be fulfilled. If the operation (e.g. slide to the side, rotate, shift down, etc.) can be fulfilled,

then the tetromino performs the operation accordingly. Otherwise, the operation will not be

performed.

47

After the board node, there are three timers that are primarily used to influence gameplay:

the “MovementTimer”, the “CleanupTimer”, and the “SlideTimer” (see figure B3.10). First, the

MovementTimer is the timer responsible for shifting the tetromino down over the course of the

game. The more points the player accrues, the faster this timer fires, resulting in the tetromino

moving faster. Second, the CleanupTimer is responsible for dictating when child objects of the

cleanup node are removed from the scene. When an object is no longer needed and has to be

removed, it is parented by the node titled “Cleanup” to be removed when the cleanup timer fires.

The primary purpose of this timer is to increase the efficiency of the cleanup process and to

ensure no extra objects linger around. Lastly, the SlideTimer is primarily used as a convenience

feature which cycles when the “LEFT/A” or “RIGHT/D” keys are pressed to move the tetromino

left or right. This allows for smooth incremental movement when the keys are held instead of

simply being pressed.

 The following nodes are all present for the UI and background of the game. The

background, frame, and grid persist for all states of the game, while the “Start”, “Paused”,

“GameOver”, and “Running” scenes have their visibility altered on the basis of the state of the

game. Following these are two scripted nodes which are responsible for two of the core

mechanics of the game: the “hold” and “display” mechanics. The “HoldTetromino” object is in

the top right corner of the scene and acts as a place for the player to hold precisely one tetromino

at a time. If a player does not want to use the tetromino they have been given or want to use it

later, they may press the “E” or “H” key to move it to the top right corner on top of the hold

tetromino space. If there is no tetromino in that space, then a new tetromino is instantiated; if

there is a tetromino in that space, then the two are swapped. The “DisplayTetromino” object can

be found directly above the grid and is responsible for showing the next tetromino to be created.

48

When the active tetromino is moved to an empty hold space or locked to the grid, the tetromino

seen in the display space becomes the new active tetromino.

The components that have been discussed so far make up the node architecture for the

game of Tetris. However, there is a great deal that goes into the main script attached to the root of

the TetrisGame scene (see Appendix B3). This version of Tetris has three distinct states

programmed and four “visible” states. More specifically, one of the three states implemented into

the game has two different modes. The three states used in this game are “Start”, “GameOver”,

and “Running” (see figures A3.1, A3.5, A3.6, & A3.8). The Start and GameOver states exist

only to preserve a clean transition from one state of the game to another. In the Start state, the

player is presented with the start screen and only allowed to initiate gameplay by entering the

Running state. In the GameOver state, the player is instead presented with the game over screen

and is only allowed to return to the Start state. The Running state is where the game really

begins, as the first tetromino is instantiated and begins to fall. In this state, the player is able to

move the tetromino around and, provided the correct moves, the player can clear rows of squares

to gain points. Within the Running state, the player is able to press the “P” key to pause the

game. When the game is paused, a simple UI element is made visible and all action of the scene

ceases. In this state, the tetromino cannot move by any action of the player or by any action of

the movement timer. To unpause the game, the player can simply press the “P” key again and

return to playing.

49

Figure 3.1.1: TetrisGame Scene

The tetris game scene can be seen above on the right and the node hierarchy of the tetris game

scene can be seen on the left.

While playing the game, multiple operations occur in each frame, many of which are

centered around the Tetromino object. These operations all occur within the main script (see

figure B3.4 to B3.10), dictating the movement of the tetromino, the creation of a new tetromino,

the conversion of the tetromino into an array, and the addition of a tetromino to the display and

hold spaces. The Tetromino object itself (see figure 3.1.2) does not have much content in terms

of its construction and programming. The node architecture is simply composed of a singular 2D

50

sprite titled “TetrominoSquare” and a 2D root node with the tetromino script attached. This is the

first usage of a sprite thus far, that being a 2D image used to represent an object or environment.

The reason for the way the tetromino is structured lies in how the tetromino is coded (see figures

B3.14 & B3.15). Every tetromino, by their nature, must be constructed with four squares. The

square that each tetromino begins with is the square at the origin point of the object and is

mathematically represented as “Vector2(0,0)” or “Vector2.ZERO”. The tetromino script is

responsible for instantiating three additional squares to complete the tetromino. It does this by

using a dictionary called “cells” in the “Globals” script.

Globals is a script that serves the sole purpose of storing important values and has no

code to directly run. Among these values is the list “cells” which contains each value of the

tetromino enumeration as a key. This key is attached to a list of four vectors that designate the

positions of each square in the tetromino. This relative positioning is in units of a full square

width, consequently each square’s position is multiplied in order to be placed at the appropriate

location in units of pixels. After all of the four squares have been created, their color is set by

changing the frame of the spritesheet they inherit their texture from.

Figure 3.1.2: Tetromino Scene

51

The tetromino scene can be seen above on the right and the node hierarchy of the tetromino

scene can be seen on the left.

3.2 Intricacies Behind the Development of Tetris

The development of Tetris introduces a unique set of challenges that are distinct from

previous games such as Pong and Asteroids. Unlike the focus of prior games being focused

around vector-centered game objects, as seen with the ball of Pong and the laster/asteroids of

Asteroids, Tetris is a puzzle game that deals with the management of player controlled pieces in a

grid-based environment. While Pong and Asteroids work with setting the speed of objects and

the direction they are moving, Tetris works with the timing and validation of movements of a

tetromino while considering squares fixed to a limited board space. The game is centered around

an active tetromino being controlled by the player as their means of interacting with the game

and progresses with their completion of full rows.

3.2.1 Grid-Based Movement and Tetromino Manipulation

At the heart of Tetris is its grid system, a fixed board where tetrominoes fall and interact

with previously placed tetrominoes. The grid occupies 10 spaces of width and 20 spaces of

height, where the grid is initiated empty and is filled as tetrominoes are placed. Each tetromino is

made of four squares, and each square has a position within the grid. The tetromino is

represented as a set of these squares, which are initialized in one of seven predetermined shapes

(I, J, L, O, S, T, and Z). Unlike vector-based movement where speed and direction are the values

of interest, Tetris operates in the movement of a tetromino to the sides, downwards, and rotated

clockwise.

52

Provided that there is grid space available for all of the squares of a tetromino to occupy,

the tetromino can move all of its squares horizontally by one space with player input. If there is

no grid space available, the tetromino remains stationary. Upon being shifted down, the same

condition is checked as is done for horizontal movement. If the tetromino passes the check, the

tetromino is shifted down. If the tetromino encounters conflicts with the grid, it is then attached

to the grid and the next tetromino is instantiated. The remaining movement the tetromino can

perform is a clockwise rotation, which has slightly more nuance than previous movement

validations. If the rotation would move the tetromino outside of the grid space, the tetromino is

moved horizontally to keep it within the border of the grid. Additionally, if a rotation would

move a square of the tetromino into an occupied part of the grid, the tetromino is then unable to

perform any rotation.

These movements are implemented through direct changes to the tetromino’s position on

the grid. This system requires precise manipulation of the falling tetrominoes and careful

planning of where to place tetrominos to maximize the number of points gained through

gameplay.

3.2.2 Board Management

In Tetris, it is vital to keep track of the state of each square in the grid. To do this, a

one-dimensional array of size 240 is used, where each index corresponds to a specific grid

square. This array is manipulated to track which spaces are filled and which type of square fills

each grid space. When any movement operation is attempted to be performed on the active

tetromino, its pixel-based coordinates are converted into array indices of the grid array

53

corresponding to the current position of the four squares of the tetromino. If there is an overlap

with existing squares on the board or a boundary breach, the movement operation is prevented.

When the active tetromino fully descends down the board to a valid location for it to

become part of the grid, several important steps take place. The indices which the tetromino

occupies in the grid array are filled with a character to represent the type of tetromino being

attached to the board (‘i’, ‘j’, ‘l’, ‘o’, ‘s’, ‘t’, or ‘z’). These values added to the array are used to

determine whether those spaces are filled and with what color of square they should be filled

with. Based on which spaces of the board are containing squares or missing squares dissonant

with the array due to the addition of a tetromino or the clearing of a row, squares are added to the

board, removed from the board, or have their positions changed.

3.2.3 Timers and Speed Management

While there is no “speed” that the tetromino is moving at, there is a rate at which the

tetromino descends by one space at a time. The primary factor influencing the increase in

difficulty of gameplay for the player is the time it takes for the tetromino to descend. The

tetromino descends by one space at a set interval of time designated by the MovementTimer. As

the player accumulates points and the game increases in level, the time designated by the

MovementTimer decreases, therefore increasing the speed of the tetromino’s descent. The faster

the tetromino becomes, the harder it can be to control where it falls and plan where it could best

be placed.

In Asteroids, timers were utilized to clear the lasers created by the player as well as

manage the invulnerability period of the player. With this said, the usage of timers for the game

of Tetris is integral to the core mechanics of the game. Additionally, another timer used for the

54

purpose of more engaging gameplay is the SlideTimer. This timer has the expressed purpose of

providing the player with the ability to smoothly move the tetromino to the sides and downwards

by holding down the corresponding keys rather than tapping the keys for each increment of

movement.

3.2.4 Informational Mechanics

There are two mechanics introduced in Tetris that contribute greatly to strategy building

during gameplay: the hold and display mechanics. Above the Tetris board are two spaces

designated to hold and display tetromino. The held tetromino is a tetromino that is being held by

the player to be used at a later time while the displayed tetromino is the next tetromino to

descend. These provide vital information to the player and the opportunity to control more of the

game then if tetrominoes were to descend at complete random with no information regarding

which tetromino is going to descend.

Information is valuable when playing any strategy-based game and contributes to more

entertaining gameplay by giving the player the ability to think their way through the game

provided their limited resources. The player has to make thoughtful decisions about their moves

as they influence future gameplay, with a mistake being able to come back at a later time to end a

run of the game early.

55

4 Platformer

 A platformer (“Platformer,” 2025) is a game designed around the set purpose of getting

from one place to another. In a typical 2D platformer, the player typically comes in the form of a

2D animated sprite which the viewport of the game follows as they move about the screen. The

most conventional controls for this type of game include the player’s ability to move the player

character left and right, as well as the ability to make the character jump. This allows the player

character to move from platform to platform to get to their desired goal, hence the name

“platformer”. Some games provide additional capabilities such as limited flight or even restrict

some movement such as limiting the player to one direction of movement or to only being able

to jump (e.g. Jump King; Jump King, n.d.). This formula also extends into 3D games, with some

modifications due to the addition of navigating a 3 dimensional space. By convention, in a 3D

platformer the player has the ability to move forwards, backwards, and side-to-side. The camera

also follows a few standard orientations, viewing the character from the back or side with a fixed

or free camera, or viewing the world from a first-person perspective in the player character's

viewpoint.

The direction of platformer games can vary greatly, with some games emphasizing the

completion of puzzles (e.g. Portal 2; Official Portal 2 Website, n.d.) and others emphasizing

platforming challenges of increasing difficulty (e.g. Celeste; Celeste, n.d.). What platformers

provide in spades compared to the games created prior (Pong, Asteroids, and Tetris), is the

freedom to traverse the game environment. In a game like Pong and Tetris, the game is centered

around a fixed viewpoint of the pong board and tetris grid respectively. Meanwhile, in a

platformer, the game’s viewpoint is fixed upon the player character and follows them wherever

they go. This freedom allows for a vast array of options through which gameplay can be

56

constructed, leading the genre to branch into many different routes. The intent and purpose

behind these games at their core is traversal, moving to a designated location with purpose.

4.1 Developing a Platformer

 In developing a platformer, two primary requirements must be met. A player character

that can move about its environment and an environment for the player character to move around

in. In this particular platformer prototype, three primary objects are created which include a

tilemap to create platforms and walls for the player character to make contact with, a parallax

background, and the player character itself (see figures 4.1.1 to 4.1.3). Unlike the previous games

developed so far, platformers often necessitate the development of multiple scenes to switch to

on the basis of progression. Consequently, there is far more emphasis on modular objects than

before, so much so that the “PlatformerLevel1” scene doesn’t need to have a script attached to it

(see figure 4.1.1). This scene contains multiple elements which function independent of their

parent scene, making them capable of being used to construct multiple levels of different designs

and difficulties.

Figure 4.1.1: Platformer Level Scene

57

The platformer level scene can be seen above on the right and the node hierarchy of the

platformer level scene can be seen on the left.

The first object in the platformer scene is the “DungeonTilemap” node, which is the

tileset themed with blue tiles (see figure 4.1.2). This tilemap combines three primary features:

the ability to place a tileset onto a 2D environment, add collision to a tileset, and automatically

configure tiles drawn onto a 2D environment. The first feature allows the developer to draw a

tileset into a 2D environment. A tileset is a collection of drawings with even spacing that allows

them to be drawn recursively into an environment. The tilemap sections off each individual

drawing of a tileset for this expressed purpose. The second feature allows the tileset to interact

with other physics bodies, allowing the player to stand on platforms and collide with walls. The

third feature allows the developer to “autotile”, an incredibly resourceful tool when creating

levels. To begin autotiling, each tile is split into a 3 by 3 grid which can be filled according to

where each tile connects to adjacent tiles (see figure 4.1.2). If this is done for a complete tileset

that can represent all configurations within a 2D space, the tiles can simply be drawn into the

environment in which they are desired while Godot is able to handle which tiles are most

appropriate to use and fills in the spaces drawn in using the tileset. In the creation of a 2D

platformer, tilemaps are typically some of the most versatile tools for level building.

58

Figure 4.1.2: Tilemap Scene

The tilemap scene can be seen above on the right and bottom left and the node hierarchy of the

tilemap scene can be seen on the left.

After the tilemap node, there are three more objects of note that compose the platformer:

the Player object, the Camera object, and the Parallax Background object. The Player object (see

figure 4.1.3) is composed of a set of three timers, a collider, and a sprite sheet. The timers

“CoyoteTime”, “WallJumpTime”, and “SpriteAnimationTimer” all have expressed purposes

based on how the player’s behavior is programmed (see figures B4.3 & B4.4). CoyoteTime is

responsible for giving the player a brief period of time in which they can jump after leaving a

ledge. This is implemented for the sake of providing forgiveness for small and common mistakes

by the player when jumping off of a ledge. This same principle carries over into WallJumpTime

which creates a refractory period for when the player leaves a wall. The last timer,

SpriteAnimationTime, is a utility timer with the expressed purpose of creating fluid animation.

The player has multiple states that dictate which frame of the sprite sheet (see figure A4.4) is

used at a given moment. Two of these states, “walk” and “idle”, use multiple frames. While in

59

these states, SpriteAnimationTime is responsible for cycling between the appropriate sprite

frames for these animations.

Figure 4.1.3: Player Scene

The player scene can be seen above on the right and the node hierarchy of the player scene can

be seen on the left.

 As would be expected, the root node of the player scene is a character body similar to that

of the paddle of Pong, the spaceship of Asteroids, or the tetromino of Tetris. Compared to those

characters, though, the player character of this platformer has the most complex movement and

animation behavior seen thus far in the analysis (see figures B4.1 to B4.4). Nearly all processes

of the player script occur each frame, as they are run in _physics_process(delta). Each frame, the

player’s movement, friction, jump, timers, and animation are handled in a sequential fashion (see

figure B4.1). In terms of movement, the player character has access to several means of

platforming. The player has the base capabilities of being able to move left and right using the

“A/LEFT” and “D/RIGHT” keys respectively and the ability to jump using the “SPACE” key.

These allow for the simple traversal of platforms. Alongside these capabilities, the player may

additionally jump a second time by pressing the “SPACE” key while mid-air and wall jump by

pressing the “SPACE” key while in contact with a wall. Beyond these actions the player may

60

also slow their descent and place themself into the “float” state by holding the “W/UP” key while

falling.

Throughout the management processes of the players’ movement, the player’s state is

changed according to user input and the player character’s position relative to the world

surrounding it. The player’s state is then accounted for during the animation step, which

manipulates the graphics of the player to match their current action (e.g. walking, jumping,

standing, etc.).

4.2 Intricacies Behind the Development of a 2D Platformer

Developing a 2D platformer is a process that involves the management of physics

processes, animation handling, and level designing. In a platformer game, the purpose of all

objects is to exist for the player to interact with and observe as a means of gameplay. The level is

designed for the player to traverse, meanwhile collectibles are designed for the player to acquire,

enemies are designed to challenge the player, and goals are designed to give direction to the

player’s traversal of the game. In creating a 2D platformer, the player character lies at the core of

development, as it is through the character that the player is able to experience the game.

4.2.1 Player Movement

Out of the games seen thus far in this piece of work (Pong, Asteroids, Tetris), the 2D

platformer provides the most fast array of options for the player to interact with the game. The

player can walk, jump, double jump, and wall jump to traverse all parts of the game, and

provided the camera that follows the player around the scene, levels can be constructed to

provide any amount of the world for the player to traverse. All interactions with the game occur

61

through the player’s movement. As the player character navigates the scene, the player is able to

observe more of the game world and make decisions on where to go accordingly.

4.2.1.1 Jump Mechanics

Platformers necessitate one particular quality to be a platforming gaming, which is the

ability to jump. While this may seem like a trivial mechanic in which the player must be

launched upwards before being brought back to the ground, there is a great deal of thought that

goes into this process. The jump designed for a platformer character can vary, some games

implement a custom jump that manipulates the velocity progressively over the course of the

jump. In this prototype, all jumps (jump, wall jump, and double jump) are implemented through

simply setting the vertical velocity of the player to the set value. Upon double jumping, this

value is slightly minimized and upon wall jumping, some horizontal velocity is applied to the

player to move them away from the wall. These create a varied array of options for the player to

traverse the world. The player is then brought back to the ground by applying gravity to the

player while they are in the air.

4.2.1.2 Flexible Movement Mechanics

Something that maximizes the quality of controlling the player character’s movement is

the usage of two timer’s to support movement: the CoyoteTime timer and the WallJumpTime

timer. The CoyoteTime timer is implemented to create forgiveness for the player making small

mistakes and accounting for cases in which the player performs a jump at the very edge of a

ledge, but the game fails to identify that the player is still in contact with the floor. People are not

perfect, consequently mistakes in which the player just barely misses a ledge is inevitable. Such

62

moments are unsatisfying during gameplay, resulting in the implementation of the leeway that

CoyoteTime provides.

This same thing is implemented using WallJumpTime for the player’s wall jump. This

implementation also varies from the CoyoteTime slightly in its purpose. While both timers work

to reduce the dissonance between the actions of the player and the responsiveness of the player

character, the WallJumpTime timer is integral to maximizing the functionality of the wall jump

as a whole. When jumping from a wall, based on the construction of the environment around the

player, the player might encounter a platform or another wall that they need to access. This

would naturally necessitate the player to move towards their goal directly after jumping from the

wall. If the player attempts to move away from the wall just before the player performs a wall

jump, the WallJumpTime will be able to catch the player’s attempt at a wall jump and allow the

action despite the player not being in contact with the wall.

These timers are so brief, that they often never even go noticed, yet they provide an

overall improvement to the feel of gameplay for the player. Work like this often goes unnoticed

in many games, but it does not take away from the value they provide.

4.2.2 Animation Systems and State Management

While handling every input event from the player, the state of the player is changed. This

same process occurs even when there is no player input on the basis of the objects the player is in

contact with and the speed at which the player is moving. The state of the player reflects all of

the various conditions that surround the player. For example, the player is walking if the player is

moving to the side and they are in contact with the floor. Alternatively, if the player is moving

upwards and in the air, they are jumping. Provided that the player is in the air, moving

63

downwards, and the “W/UP” key is pressed, they are floating. These states of the player are kept

track in order to appropriately animate the player in accordance with their actions.

During the animation step, the player is provided one of five animations congruent with

their state. Three of these animations are static while two cycle between multiple frames. To

account for this limited animation cycle, while the player character has a single frame animation

active, their sprite is simply set to that state. During the jump state, the jump frame is set and

during the float state, the float frame is set. Alternatively, during the multi-frame animations, the

SpriteAnimationTimer is started and the player character’s animation is initialized at its first

frame. Every time the timer completes a cycle, the frame increments by one. Provided overflow

past the frames available for the animation, the frame is set back to the initial frame of the

animation.

4.2.3 Level Creation

 Levels in a 2D platformer constitute the world through which the player travels. Through

each level the player might have an objective to fulfill, quota to meet, or a destination to arrive

at. There are two particular features of a level to give depth to the scene and provide

traversability to the scene: the background and the foreground.

 The background that was used in this platformer prototype is a parallaxing background. It

adjusts the position of individual background elements relative to the player’s movement in order

to give depth to the scene despite its 2D nature. These background elements exist solely to add

aesthetic value and depth to the scene. What is needed to create parts of the level which the

player can interact with directly is a foreground. In this game prototype, a tilemap is used to

place squares of varying text into the foreground. These tiles are provided the capacity to interact

64

with the player through the addition of colliders to each tile, giving the player the ability to walk

along them and use them to traverse the scene.

Functionally anything can be used to represent the level, even simple shapes and colors.

With this said, implementing mechanics such as parallaxing and tile mapping can create games

with far greater depth and with larger level scope.

65

5 First Person Shooter

 A first person shooter (FPS) is a type of game developed in a 3D or 3D-like environment,

centered around the mechanics of a free moving character body and shooting projectiles in some

manner. Such games have a vast variety of objectives and goals, some having the set purpose of

fighting computer controlled enemies, while others have player characters which you fight

against (“First-Person Shooter,” 2025). As elaborated briefly in regards to a platformer game in a

3D environment, an FPS typically gives the player the liberty of moving forward, backward, left,

and right. Often, an FPS also will integrate the ability to jump, crouch, and sprint. Some even go

a step further by giving the player unique mobility options such as diving and crawling. Beyond

such options of mobility, the core mechanics of shooting often comes from items which the

player equips, often being in the form of guns. All FPS games, by their nature, give the user a

view of gameplay from the first person, but not all of such shooters are limited to one such

perspective. Some FPS games allow for the player to view gameplay from different perspectives

such as the third person view (e.g. Fortnite, Valorant; Fortnite, n.d.; VALORANT, 2025).

For an FPS, the range of games that exist has the very same variety as that of platformers.

In the very same way as a platformer, an FPS follows the player, giving liberty to the player to

navigate their environment as they please. Some of the first games of this genre provide the

player with a maze to navigate through with enemies to defeat along the way (e.g. Doom; “Doom

(1993 Video Game),” 2025). Some of the newer games take a different approach, producing

gameplay in which the players are pitted against each other in battle (e.g. Fortnite, Valorant;

Fortnite, n.d.; VALORANT, 2025). These games are constructed around the premise of defeating

all opponents, whether that is by yourself or on a team, facing computer controlled characters or

other players.

66

5.1 Developing a First Person Shooter

 The FPS game is the only project in this paper that utilizes 3D nodes. These 3D nodes

occupy the same use cases as 2D nodes, but instead bear characteristics of a 3D object and exist

in a 3D space. The vast majority of 2D nodes have direct counterparts in 3D to account for a

third dimension to methods and data values. For example, the player character for this project

(see figure 5.1.3) has a root node “CharacterBody3D” which is the 3D counterpart to

“CharacterBody2D”. Instead of position, velocity, and acceleration data being stored in a

Vector2, a vector with x and y values, such data is stored in a Vector3, a vector with x, y, and z

values. In this particular version of an FPS, the elements in the scene are kept relatively minimal,

similar to the development of the platformer prototype.

Figure 5.1.1: Main Scene

The main scene can be seen above on the right and the node hierarchy of the main scene can be

seen on the left.

In the test level scene (see figure 5.1.1) there are different objects that are responsible for

the composition of the environment. The island acts as a base or floor, on top of which a

67

selection of rocks and trees populate. This island as well as the rocks and trees are all constituted

by a mixture of two primary nodes: A “MeshInstance3D” and a “StaticBody3D” (see figure

5.1.2). The mesh instance for these objects is a 2D sprite or color array resource, this resource

being an array of color values and points of positional data to represent the object in a 3D space.

The “mesh” terminology used here refers to any object presented in a 3D environment. The static

body allows these objects to interact with objects also containing physics bodies such as the

player. For these objects, the static body shares the same positional data points as each object’s

mesh instance. One object that has not been seen until now is the node titled “Sun” which is a

“DirectionalLight3D” node. The purpose of this node is to illuminate the scene from a single

point, making it crucial for a 3D environment in which shadows are vital for representing depth

graphically. This node has a 2D counterpart that has not been used so far due to its purpose being

more out of aesthetics rather than need. None of these objects are scripted, as the sole purpose

they need to fulfill is to take part in helping to compose the world environment.

68

Figure 5.1.2: Tree Scene

The tree scene can be seen above on the right and the node hierarchy of the tree scene can be

seen on the left.

 What remains in this game’s level design is a player and two enemies (see figure 5.1.3).

The Player and Enemy objects are formed of nearly an identical node structure with two notable

exceptions. The first being the presence of a UI for the player, given that they need for a

graphical representation of their data and the enemy does not. The second exception of note is

that the Player object has two different cameras, one for their first person perspective and another

for their third person perspective (see figure 5.1.4). The first person camera is simply attached to

the head of the character (see figure 5.1.5), while the third person camera is more complex in its

construction. It is built around a set of two nodes called “Path3D” and “PathFollow3D” which

allow the camera to move fluidly between two points on a set path. The purpose of this is to

allow the third person camera to adjust its position based on the presence of objects that enter the

69

range of the camera. The camera detects such objects through the usage of two raycasts, which

work to detect objects in a straight line in front of and behind the camera’s view. This ensures

that this camera does not get stuck in objects and provides that player with a consistent third

person view of the game.

 What does remain consistent between the player scene and the enemy scene are the

hitboxes used and the model used. Both scenes (see figure 5.1.4) utilize what is called a capsule

shape for their collision detection. While in previous 2D projects a simple square or circles

sufficed for all intents and purposes, 3D shapes need to account for there being three

dimensionality to their influence on the environment. The capsule shape in particular is a

common option for characters in 3D, as it has a rounded top and bottom which makes it harder to

get stuck on objects, while also having a cylindrical body that maintains other objects at an exact

distance from the character in all directions. Aside from the capsule collider, another thing the

player and the enemy both share is a character model, which bears significantly more complexity

in its design..

Figure 5.1.3: Player Scene

70

The player scene can be seen above on the right and the node hierarchy of the player scene can

be seen on the left.

Figure 5.1.4: Third Person Camera Scene

The third person camera scene can be seen above on the right and the node hierarchy of the third

person camera scene can be seen on the left.

 This character model (see figure 5.1.5) is a demonstration of the interaction between 3D

modeling software and its compatibility with the Godot engine. The model itself is imported

from Blender (Blender.org - Home of the Blender Project, n.d.), a community-developed and free

to use software used for the development of 3D models. The model here is composed of

precisely 14 different meshes. Among these meshes are two feet, two hands, one head, two lower

arms, two lower legs, one torso, two upper arms, and two upper legs. All of these body parts, as

themselves, would not be able to properly constitute a player model, as there is nothing that

allows for the model to move or be animated in any fashion. In theory, each body part can be

moved and rotated on an individual basis in order to create the appropriate animations for the

character such as walking and jumping. However, such methods are highly inefficient due to the

amount of time it would take to produce animations. The solution to this problem is to create a

skeleton for the model. A skeleton is an invisible collection of objects called “bones” which are

responsible for manipulating 3D models based upon their position, rotation, and size. The

skeleton of a 3D model is similar in purpose to that of the skeleton of a person: it is a non-visible

71

part of the body that constrains movement by the nature of its construction. For a 3D model, a

skeleton is responsible for connecting the various individual parts together in order to create one

cohesive object.

 The primary means by which the skeleton works to tie the different parts of the model

together is through hierarchies, using the very same parent-child relationships as the Godot

engine. Conventionally, the parent’s behavior directly influences the child’s behavior. This is the

default behavior of the hierarchy in Blender, with positional and rotational changes made to a

bone influencing its children. Such behavior is referred to as “forward kinematics”, as all

changes are applied forward in the hierarchy. However, such methods are not ideal when

animating certain movements, such as movements of the hand which often necessitate the hand

moving to set positions. Such movements would be achieved easiest through the usage of

another form of kinematics, “inverse kinematics”. This technique is applied to the hands and

arms of the model and results in changes to the child bone, in this case the hand, affecting its

parent nodes, the lower arm and upper arm. While this method reverses the way in which the

bones interact with one another, it still abides by and utilizes the convention of the parent-child

relationships present.

 Outside of the usages of the hierarchical nature of the skeleton, one more method was

used to improve the animation process, which is the usage of “targets”. A target is a bone that is

removed from the hierarchy and serves mainly the purpose of acting as a pointer for other bones

to aim towards. The target bone is a child of only the main bone of the model, meaning it does

not follow the convention of being a child of another bone of the character’s body parts. For this

model, there are four pointers, two for the arms and two for the legs, which serve the purpose of

keeping the elbows of the arms back and the knees of the legs forward.

72

 In the character model (see figure 5.1.5), each of the 14 meshes has a corresponding

“BoneAttatchment3D” node. This particular type of node allows for additional items to be added

to the skeleton. Every bone, at minimum, has a static body attached to it with the same positional

data as the mesh corresponding to that particular bone. The only exception to this is the torso

which is split between three bones: the hip, the chest, and the spine, which are all responsible for

manipulating the torso mesh and are all given their own cuboid shape that follows the

dimensions of the torso. Despite not being exactly one-to-one with the model, the effect is

negligible during gameplay. Beyond the static bodies which are added to the player model, there

are a few more notable attachments: attached to the head is a first person camera, to the main

bone a third person camera, and to the right hand a gun.

73

Figure 5.1.5: Player Model Scene

The player model scene can be seen above on the top right and the node hierarchy of the player

model scene can be seen on the left across two columns.

 For the purposes of this prototype, a simple gun (see figure 5.1.6) and bullet (see figure

5.7) are used. The gun scene is of a relatively simple construction designed around the set

purpose of instantiating bullet scenes (see figure B5.12). The first node in this scene is a raycast,

a 3D vector with a set length, titled “BulletPath”, which is responsible for giving bullets a point

74

to start from and a set direction to move towards. After the raycast is a set of three meshes that

constitute the gun object. The scene also contains a node to contain instantiated bullet scenes and

a timer that is implemented for the purpose of demonstrating simple enemy behavior, as bullets

are produced by timeouts of the timer rather than player input. As far as player input is relevant

to the gun scene, upon pressing “LEFT MOUSE BUTTON” a new bullet is created and is

informed by the raycast of where to be positioned and at what angle. After that, all behavior of

the bullet is carried out by the bullet’s script.

Figure 5.1.6: Gun Scene

The gun scene can be seen above on the right and the node hierarchy of the gun scene can be

seen on the left.

 The bullet scene (see figure 5.1.7) is also light in construction, possessing a single mesh

for its body, one timer to free the bullet after a set amount of time, and a simple hitbox for

detecting objects. What makes the gun scene different from projectile objects seen thus far, such

as the ball in Pong or the laser in Asteroids, is that it is not a physical object nor does it use the

physics engine. This is made apparent first by the fact that the root node of the bullet scene is a

simple 3D node, but also in the script of the bullet scene (see figure B5.13). The bullet script has

a few primary purposes: move the bullet, emit damage signals, and destroy the bullet. The bullet

object is moved by multiplying the speed of the bullet by the amount of time passed and adding

75

that value to the position of the bullet in the direction it is moving. This is the reason while this

bullet is so different from previous projectiles, as instead of manipulating the velocity of the

projectile, the speed of the bullet is directly applied to the position of the bullet over time

(therefore achieving the same effect without work of the game engine). The bullet runs a

function upon colliding with an object, which checks for the layer the colliding object is on and

emits a signal of varying damage on the basis of which layer the object is on. This is done so that

different parts of a character, player or enemy, take damage according to the severity of a hit. By

the logic of the bullet script and the player scene, the player’s head receives the largest amount of

damage and the arms and legs receive the least amount of damage, with the torso receiving the

average of the two. Upon colliding with the object, the bullet also is destroyed, irrelevant of what

object it collides with. If the bullet does not collide with anything within 10 seconds it will also

be destroyed from a timeout call from the “ClearTimer” node.

Figure 5.1.7: Bullet Scene

The bullet scene can be seen above on the right and the node hierarchy of the bullet scene can be

seen on the left.

5.2 Intricacies Behind the Development of a First Person Shooter

Developing an FPS involves a similar level of focus to the player character as is required

for developing a platformer game. At the center of gameplay is the player and their capacity to

76

interact with and influence the environment. In this FPS prototype, a 3D environment and 3D

player character are created, with the player character having the capacity to walk and jump

around their environment much like that of a platformer character. The FPS character, however,

separates itself from a standard platformer character greatly in the focus of its construction. The

place where gameplay has its greatest focus is the implementation of mechanics to shoot

projectiles. Additionally, actions are implemented for the purpose of preserving the player’s

capacity to not be hit or increase their capacity to hit targets of their own. The ability to sprint,

crouch, and view the player character from the third person perspective revolve around this

virtue.

5.2.1 Player Movement

Movement for the 3D FPS game differs greatly from any of the movement in game seen

thus far. Due to the implementation of a third dimension, the player has access to an x-axis,

y-axis, and z-axis. The player has the ability to traverse the x and z-axis by walking forwards

backwards, left, and right. They are also able to access the y-axis by jumping, falling, or walking

up and down inclined surfaces. The degree of freedom that 3D movement provides is

incomparable to that of 2D games, as it provides many means through which the player can

manipulate their position. This is the evolution of player freedom seen throughout the projects

presented thus far. Pong gives one axis of movement. Asteroids, Tetris, and the 2D platformer

give the player two axes of movement. The FPS gives the player a full three axes of movement.

5.2.2 Camera Management and Perspective

77

In creating an FPS, there is a great deal of attention on how the camera is managed. In the

prototype FPS there are two cameras that are created for the player to observe the game world.

The primary camera is the first person camera, being located where the head of the character is.

This camera moves wherever the player’s head is and shows the world as the player character

would “see” the world. The secondary camera, which the player can switch to from the primary

camera, is the third person character. This camera is located behind the player and follows them

wherever they go. This camera shows the player character as they exist in the world around

them. This camera is also constructed with additional features to improve gameplay. This third

person camera has the problem of potentially being inside of or obscured by objects behind the

player that are too close. This problem is mitigated by the third person camera by dynamically

changing its position if it is too close to an object. This results in an overall improvement to

gameplay for the player and accounts for known pitfalls of the third person camera.

5.2.3 Handling Projectiles and Combat

Something else the FPS introduces unique to other projects is the implementation of

multiple objects with the capacity to affect one another through a damage manager. Since this is

a FPS game, the aim is to shoot opponents to damage them until their health reaches zero. In this

prototype, the player character and enemy characters are able to inflict damage by firing bullets

at opponents are receive damage upon being hit. Through the usage of a damage manager, the

game registers where a character has been hit, by which character they were hit by, and is able to

calculate the appropriate amount of damage in accordance with this information.

Each individual projectile is instantiated by a gun scene held by its respective character.

This gun is given an id according to the character that is holding it and each instantiated bullet is

78

given this same id. This information is valuable for when the damage manager need to find

which character shot the bullet. These features constitute the core of gameplay, setting a

groundwork for customization of player and enemy characters.

5.2.5 3D Models and Animation Systems

Among the most complicated parts of designing an FPS is a creation of a fully animated

3D character. As far as differences go between the FPS prototype and prior games, this process

has by far the greatest leap in complexity. The player character is constituted of a rigged and

animated 3D model created in Blender. This means that not only is it a culmination of different

3D body parts, but each of these parts are assembled together through the use of a skeleton and

are provided animation with adjustments to the values of that skeleton. Compared to the frame

by frame animation used in the 2D platformer, this is both a different means of animation and a

different medium of art as a whole. 2D games have also been seen using skeleton-based

animation systems (e.g. Rain World), but such a system was unnecessary for the purposes of the

2D plaformer created. For 3D games such as this FPS, this animation style is the default due to

the nature of the 3D environment.

79

6 Conclusion

 Game development is a process that delves into the most minute details of constructing

game objects and scripts that work together to create one coherent whole. It is during the process

of creating a game that a developer must consider how each component contributes to the final

product. While the developer is able to see the entire picture at all times, what they have built

and how it works, the player is exposed to a limited scope of that work at a given time in the

form of gameplay. From the moment a person picks up a game, they enter an intricate logical

web created by the game developer that dictates the actions the player can take. A game

developer's goal is to create a game that guides the player through the game in a way that is

intuitive to the player and flows naturally, allowing them to appreciate gameplay to its fullest.

The player comes first in the creation of a videogame, as it is their enjoyment that the game is

created for.

 With all that is done for the player, there is one question that comes to mind from the

developer’s perspective: what does the player know about the construction of a game? This

thesis serves to provide insight into this question by showing what goes on behind the scenes of

developing a video game. Each object of a game is intricately crafted in a manner that fits into

the game it is part of and contributes to the gameplay experience of the player.

6.1 Future Work

There is a vast list of details involved in the game development process that were not

touched in this work. A thorough breakdown of a more complicated game project than the games

displayed in this paper would be able to cover a variety of concepts unexplored. Other directions

for work outside of programming, such as art and sound design, would also be incredibly

80

valuable for the purpose of showing more about game development from the ground up. A

particular area of focus touched upon briefly in this paper is the 2D and 3D art animation

process. There are many methods of creating an animated game character and implementing that

character into a game that are worth investigating further.

Study into game development practices that make games more or less successful is

another area that could also be valuable in future research. This could help contribute to the

growing body of research into refining best practices in the game development process. Research

can take a psychological approach that delves into the elements of game development and how

each element of the game is observed by the player. Alternatively, a sociological approach can be

taken to investigate players’ reviews of games across the internet with consideration to each of

those games and how they were constructed.

6.2 Final Remarks

 I am fortunate to have had the opportunity to write this thesis in a subject matter that I

love. Through this thesis, I was given the freedom to delve into new and creative projects in

game development, a passion of mine. I hope that anyone who reads this paper can share some of

the love I have for game development and that anyone reading can learn something new

irregardless of technical background.

81

Appendix A - Screenshots

A1 Pong

Figure A1.1: Pong Game Initialization

Initial game state. Player 1 controls the paddle on the left using the “W” and “S” keys on a

keyboard. Player 2 controls the paddle on the right using the “UP” and “DOWN” keys.

82

Figure A1.2: Pong Gameplay 1

The game moves from the initial game state called the “start” state to the “running” state when

the “SPACE” key or “ENTER” key is pressed. Upon entering the “running” state, the ball is

propelled left or right at a random angle up or down with a maximum of 45 degrees. Upon

starting the game, the ball moves right on the first turn and switches direction on every

consecutive turn. The ball maintains its velocity as it moves across the screen, reflecting with a

fully elastic collision upon colliding with the top or bottom of the screen. Upon colliding with

the paddle on either side (right paddle in the image above), the ball reflects in the direction

furthest from the center of the paddle collided with. The ball moves at the greatest vertical speed

when colliding with the very edges of the paddle. In the image above, the ball strikes the upper

portion of the right paddle, moving up and to the left as a consequence.

83

Figure A1.3: Pong Gameplay 2

As the game progresses, the players will score points when the ball crosses the edge of the screen

on their opponents’ side. In the image above, the player on the left has scored 5 points, while the

player on the right has scored 2 points.

84

Figure A1.4: Pong Player Wins

Once either of the players reach a score of 11, the game enters the “game_over” state. In this

state, similar to the “start” state, the ball is positioned in the center of the screen and its

momentum is arrested. It differs, however, in the fact that the text “PLAYER 1 WINS!” and

“PLAY AGAIN” are displayed on the screen. Upon pressing the “SPACE” key or “ENTER” key

the game is reset to the “start” state and the player scores are reset to 0.

85

A2 Asteroids

Figure A2.1: Asteroids Game Initialization

Upon starting the game, the player is presented with the screen above. There is the text “PLAY

AGAIN?” with both the score and the high score displayed beneath it.

86

Figure A2.2: Asteroids Gameplay 1

Upon pressing the “SPACE” key or “ENTER” key during the start screen, the player will enter a

brief period of invulnerability in which the ship flashes between visible and invisible.

Figure A2.3: Asteroids Gameplay 2

87

Over the course of the game, the player will end up colliding with the asteroids that spawn in

over time. When the player collides with an asteroid, they enter a period of invulnerability,

flashing between visible and invisible, and they lose a life. Consequently, one of the lives in the

bottom left hand corner of the screen disappears.

Figure A2.4: Asteroids Game Over

When the player has no lives remaining in the bottom left corner of the screen and they collide

with an asteroid, the game enters the “game_over” state. This state appears similar to that of the

“start” state with some simple adjustments to the text shown.

88

Figure A2.5: Asteroids Gameplay 3

Here the player is shooting by pressing either the “SPACE” key or “LEFT MOUSE BUTTON”.

The lasers produced from this action are what break the asteroids and as a result lead to the score

increasing. The high score shown is saved between plays of the game, while the high score

persists across multiple playthroughs.

89

A3 Tetris

Figure A3.1: Tetris Game Initialization

In the “Start” state, the game can only be moved to the “Running” state. There is also a banner

across the screen that prompts the player to start the game this way.

90

Figure A3.2: Tetris Gameplay 1

Upon starting the game and entering the “Running” state, one tetromino will be created and

begin to descend while another tetromino is created and stored in the “DisplayTetromino” scene

at the top of the board. These tetrominoes are randomly generated on the basis of a randomized

seed based on runtime and can be of any shape.

91

Figure A3.3: Tetris Gameplay 2

In this particular image, it can be seen that the player has gained 100 points to their score. For

clearing a single row at a given point, the player is awarded 100 points multiplied by the level of

the game at the point of scoring. In this case, the player has completed one line at level one,

resulting in a score of 100.

92

Figure A3.4: Tetris Gameplay 3

This figure is a direct continuation of figure 3.3A showing the player completing an additional

line, bringing the score from 100 to 200.

Figure A3.5: Tetris Hold Tetromino

93

By pressing the “E” or “H” key, the player is able to use the “hold” mechanic. This moves the

active tetromino to the space in the top right of the board. In this instance, there is no tetromino

in the hold space which results in the active tetromino to be moved to the hold space and the

display tetromino being made into the new active tetromino. If there is already a tetromino in the

hold space, that tetromino and the active tetromino will simply be switched.

Figure A3.6: Tetris Pause Screen

Presented here is a pseudo-state of the “Running” state of the game, the “Paused” state. During

this state, there is no change to the state value in the main script, but rather the property of the

main scene “paused” is set to true. This can only be done in the running state by pressing the “P”

key. The game returns to normal operations upon pressing the “P” key again.

94

Figure A3.7: Tetris Gameplay 4

Upon crossing over certain point thresholds, the level of the game increases. With the increase in

level, there are two major changes to gameplay: The first notable change is the increase in the

speed by which the active tetromino falls. The period of time it takes for the tetromino to fall one

space decreases with the accruement of levels up to a finite point. The second notable change is

the increase in points earned from completing new lines. The points earned for the completion of

one or more lines is multiplied by the level during calculation.

95

Figure A3.8: Tetris Game Over

As the difficulty level increases, the player will inevitably miss spaces, resulting in incomplete

lines. When enough of these stack up and the tetromino cannot move down when it is at the very

top of the board, the game enters the “GameOver” state. In this state, the player is presented with

the score and high score achieved during their session of gameplay. To exit this state and return

to the “Start” state, the player can press the “ENTER” key.

96

Figure A3.9: Tetris New Game

Upon starting a new game after a previous playthrough, the high score of previous games

persists. This figure is a continuation of gameplay from figure 3.8A, in which the score achieved

was 9800. This value persisted and is shown in the top left corner of the screen as a consequence.

If a score exceeds 9800 during gameplay, that score will become the new high score.

97

A4 Platformer

Figure A4.1: Platformer Game Initialization

This is what the player sees upon starting the game. Here the player character is seen at the

bottom of the screen in the center.

Figure A4.2: Jumping

98

In this image the player character can be seen in the “jump” state while jumping from one

platform to the next. To perform this movement, the player presses the “SPACE” key to jump

upwards and the “D/RIGHT” key to move to the right.

Figure A4.3: Platformer Gameplay 1

The player character can be seen here at the top of the tower. As the player stands here, the

clouds in the background move across the screen to simulate an active and real environment.

99

Figure A4.4: Floating

Shown here is the player in the “float” state, in which they descend through the air at a fixed rate.

The player character enters this state when the player is holding the “W/UP” key in addition to

the player character moving downward through the air at or above the speed of descent for the

“float” state.

100

Figure A4.5: Platformer Gameplay 2

The player character can be seen here with a full display of all components of the parallax

background. These components include the following: the sun, the sky, the mountains and the

clouds.

Figure A4.6: Parallax 1

101

The background behind the player is displayed here and provides a reference point for the

dynamic movement of the background in accordance with parallaxing (see figure A4.7).

Figure A4.7: Parallax 2

A shift in all elements of the parallax background can be seen here, with reference to prior

positioning of the player character (see figure A4.6). Elements that are meant to be closest to the

player (e.g. darkest mountains) move the most relative to the player, while elements meant to be

furthest away from the player move the least relative to the player (e.g. lightest mountain).

Figure A4.8: Platformer Character

Here is the sprite-sheet that is used to make the player character’s animations. In this sprite sheet,

there are five animations of note, two of which are two frames and three of which are one frame

102

each. The first and second frames are responsible for creating the idle animation in which the

player bobs up and down. This animation plays when the player is stationary and making contact

with the ground. The third frame and fourth frame make up the walking animation. This

animation plays when the player is moving while touching the ground. The fifth frame makes up

the jump/falling animation which plays while the player is in the air. The sixth frame makes up

the float animation which plays while the player is in the air falling down and holding the

“W/UP” key causing their descent to be slowed. The seventh frame makes up the slide animation

which plays while the player is moving while pressed against a wall.

A5 First Person Shooter

Figure A5.1: First Person Shooter Game Initialization

This is the “first person view” of the first person shooter in which the player is viewing the

environment through the player character’s eyes. In this view, the arms of the player and their

gun are visible, alongside features of the environment and the player’s UI, which is composed of

103

a simple health bar in the bottom left corner. From this perspective, features of the environment

include scattered trees and the ground.

Figure A5.2: First Person Shooter Enemies

From this perspective, two simple enemies can be seen shooting in front of themselves. These

are exceptionally simple enemies who shoot in a straight line in front of them on a timer. We can

see some additional features of the environment including stones and a horizon from here.

104

Figure A5.3: First Person Shooter Third Person

Despite having the title of “first person shooter” such games are not always resolved to solely a

first person view. Seen here is the player in their “third person view” in which the player is

viewed from behind.

105

Figure A5.4: First Person Shooter Jump Animation

The player is capable of the “jump” action which provides them vertical force concurrent with

the jump animation seen here.

106

Figure A5.5: First Person Shooter Walk Animation

Like the previous figure 5.4A demonstrates, the player can perform the “walk” action which

plays the walking animation simultaneously.

107

Figure A5.6: First Person Shooter Player Damage

Upon being struck with a damaging projectile, in this case a bullet, the player is damaged. At the

instance of impact, the player receives damage which updates their health total which begins at

100. This health reduces by the amount of damage caused.

108

Appendix B - Code

B1 Pong

Figure B1.1: ball.gd

This script has the purpose of managing the movement behavior of the ball scene by running the

runMovementBehavior() function every frame. In this function, the velocity of the ball is set to

the ball’s speed, and the speed of the ball being set according to logical processes that follow the

setting of the velocity. To clarify, the velocity of the ball is a property of the object that is used in

the move_and_slide() function which works to move the object in accordance with its velocity.

Meanwhile, the speed of the ball is a variable the script modifies to set its velocity.

109

Figure B1.2: paddle.gd

This script regulates the movement behavior of the paddle script on the basis of player input.

Based on a player_num that is provided to the script to designate player one and two, the paddle

will move up or down at the set speed according to either the “W/S” or “UP/DOWN” key input.

110

Figure B1.3: pong_game.gd 1

This is the main script of the game Pong. In this code, functions are run each frame according to

a simple state machine in _physics_process(delta). If the state is “play”, the checkPosition()

function is called. If the state is “start” and the “ENTER/SPACE/LEFT MOUSE BUTTON” key

is pressed, the state changes to “play” and the initBallMovement() function (see figure B1.4) is

called. If the state is “game_over” and the “ENTER/SPACE/LEFT MOUSE BUTTON” key is

pressed, the restartGame() function (see figure B1.5) is called.

111

Figure B1.4: pong_game.gd 2

Continuation of the pong_game.gd script. Here are the checkPosition(), resetPlayArea(), and

initBallMovement() functions. The checkPosition() function searches for the position of the ball

and assigns a point to a player if its X coordinates exceed the boundaries of the play area

followed by updating the labels accordingly and calling resetPlayArea(). The resetPlayArea()

function sets the ball’s position to the center of the board, its velocity to zero, and sets the game

state to “start” so that the next round of play can be initiated. Lastly, the initBallMovement()

function is responsible for initiating the ball’s movement, switching which direction the ball is

moving each turn and sending the ball at a randomized angle of up to 45 degrees of magnitude.

112

Figure B1.5: pong_game.gd 3

Continuation of the pong_game.gd script. Here is what remains of the main script, containing the

checkWinner() and restartGame() functions. The checkWinner() function checks whether either

players’ score exceeds or is equal to 11 and shows text on the screen to congratulate that player.

The game state is then switched to “game_over”, from which the player can run the

restartGame() function. The restartGame() function acts to reset all values that could be modified

during gameplay to their original state followed by a run of resetPlayArea().

113

Figure B1.6: Globals.gd

These are two global values which are set by the paddle.gd script (see figure B1.2) and utilized

by the ball.gd script (see figure B1.1). Various means could be used to communicate this

information from one scene to the other, but this method is the most simple.

114

B2 Asteroids

Figure B2.1: asteroids_game.gd 1

This is the beginning of the asteroids_game.gd script, the main script of the game Asteroids. In

this portion of the script only the initialized values and processes can be seen. Upon instantiation,

the main script connects the “playerIsDamaged” signal from the player scene to the

receiveDamage() function, values are changed in accordance with global values, labels are made

invisible, and the updateLives() function followed by the resetPlayerPosition() function are

called.

115

Figure B2.2: asteroids_game.gd 2

Continuation of the asteroids_game.gd script. Here we see the logic run each frame in

_process(delta) and three functions of the main script: checkPosition(), updateScoreLabel(),

checkLifeTalley() and updateLives(). Each frame the runStateMachine() function is run (see

116

figure B2.3), followed by updateScoreLabel() and checkLifeTalley(), followed by the

checkPosition() function, which takes every asteroid and laser as an argument. The

checkPosition() function takes in an object and a buffer as arguments, the buffer being different

for asteroids and lasers. This function then determines whether the object exceeds the boundaries

of the board with the provided buffer. If the object exceeds that range, its position is flipped to

the opposite side of the board where it has surpassed that limit. The updateScoreLabel() function

changes the text of the score labels to match the scores they are meant to reflect. It sets the high

score to be equal to the score if the new score exceeds the former high score. The

checkLifeTalley() function is responsible for reading whether the “life_talley” global exceeds a

certain threshold and responding to such an occurrence by resetting the talley, adding one life,

and calling updateLives(). The updateLives() function is responsible for updating the visual

representation of the player’s remaining lives. It does this through the usage of a loop, with the

range of the number of lives, to generate a sprite of the player evenly spaced apart in the bottom

left corner of the screen.

117

Figure B2.3: asteroids_game.gd 3

Continuation of the asteroids_game.gd script. In this section of the main script, there are four

functions to be seen: playerIsDamaged(), gameOver(), toggleUIVisibility(), and

runStateMachine(). The playerIsDamaged() function is run each time the player collides with an

asteroid. In this function the health of the player, which is stored in the main script as a variable,

is decremented by one, followed by a logical expression that ends the game using the

gameOver() function if the player’s lives falls below zero and calls updateLives() (see figure

B2.2) followed by a halt in the player’s velocity. The gameOver() function ceases gameplay by

modifying the text of multiple labels, calling toggleUIVisibility(), and calling

118

resetPlayerPosition(). This shows the text “GAME OVER” to the player and displays the score

and high score. The toggleUIVisibility() function is a simple flip for the visibility of UI elements

by changing their visibility to the opposite of what they were previously. The runStateMachine()

function displays two different flows of logic: one occurs when the player has pressed the

“ENTER” key and another which is run unconditionally. Provided the appropriate player input,

the “start” state will switch to the “running” state, followed by a reset of globals, a call to

initPlayer() (see figure B2.4), a timer initialization to produce asteroids, and a call to

toggleUIVisibility(). Providing the same input in the “game_over” state results in a full reset of

the game scene, with the only carry-over being the high score value stored in globals. Irrelevant

of player input, if the game is in the “running” state, the function checkPosition() (see figure

B2.2) will be called with the player as an argument. This ensures that the player never leaves the

screen space while the game is running.

Figure B2.4: asteroids_game.gd 4

Continuation of the asteroids_game.gd script. In this section of the main script, there are two

functions for managing the player object: resetPlayerPosition() and initPlayer(). These functions

119

contrast one another, as their functionalities are opposite to one another, though they also depend

on one another. The resetPlayerPosition() function makes the player invisible, brings the player

to the center of the screen and pauses the scene. This resets the player’s position, and primes the

scene to be started. The initPlayer() function is built to work off of this setup, as it unpauses the

scene, makes the player visible, and brings the player to the center of the screen. The first two of

these actions are opposite to that of the resetPlayerPosition() function, while the third action is

shared between the two of them. Additionally, the initPlayer() scene also calls upon the player’s

initInvulnerability() function (see figure B2.8) to start the player in a state in which they cannot

be harmed. After this, the player’s lives is set to three and updateLives() (see figure B2.2) is

called upon to visually represent the player’s lives.

Figure B2.5: asteroids_game.gd 5

Continuation of the asteroids_game.gd script. Here is what remains of the main script, containing

three functions for managing the asteroids of the game. These functions are: clearAteroids(),

createNewAsteroid(), and _on_asteroid_timer_timeout(). The clearAsteroid() function is the

most simple of the three, designed to iterate through all asteroids present and free them from the

scene. The createNewAsteroid() function contains a greater amount of logic, but has a simple

120

premise, which is to generate one asteroid at the perimeter of the screen in a randomized

location. One detail of note is that the number of times the asteroid is meant to split is

randomized between one and five based on the level of the game. The last function,

_on_asteroid_timer_timeout(), is called upon solely when the asteroid timer reaches zero. Upon

reaching this point, the function creates two new asteroids using createNewAsteroid(), the wait

time between asteroids spawning is decreased, and the level is incremented by one.

Figure B2.6: player.gd 1

121

Beginning of the player.gd script. Here the variables used in the player scene alongside the

processes run each frame and the handleMovement() function can be seen. As far as variables

go, the player script has some variables of note that are valuable during calculations for

movement of the player. These variables include the speed, acceleration, and friction values, as

well as the initial versions of these values. Notably, there is also a receiveDamage signal which is

used later on for the purpose of sending a message up to the main script about the player

colliding with an asteroid. Each frame _physics_process(delta) is called, the handleMovement(),

handleInvulnerability() (see figure B2.8), and move_and_slide() functions are called.

Additionally, provided that the player presses the “SPACE/LEFT MOUSE BUTTON” key, the

fireLaser() function is called (see figure B2.7). These function calls are what gives the player

mobility, the ability to shoot, and a brief period of invulnerability upon colliding with an

asteroid. The handleMovement() function takes delta as a parameter in order to ensure consistent

gameplay on the basis of time rather than framerate. For the purpose of determining whether the

player should rotate, an axis is generated based on player input of the “A” and “D” keys. The

acceleration of the player is handled by checking for whether the player is holding the“W” key;

provided that input, the function applyAcceleration() is run. Irrelevant of player input, the

function applyFriction() is also run to slowly bring the player to a stop (see figure B2.7). Lastly,

provided the axis that is already made from the player’s input, the player character is rotated by

that axis at a rate of half a rotation per second.

122

Figure B2.7: player.gd 2

Continuation of the player.gd script, containing the applyAcceleration(), applyFriction(), and

fireLaser() functions. The applyAcceleration() function takes delta as a parameter and accelerates

the player forward in the direction they are facing. This acceleration is applied until the player

reaches maximum speed in any given direction, at which point they maintain that speed. The

applyFriction() function is responsible for bringing the player’s speed to zero. This force acts

upon the player at all times, but does not exceed the acceleration force of applyAcceleration(),

allowing the player to propel themselves forward. The fireLaser() function is responsible for

instantiating a new laser scene. It adds these lasers to a node in the main scene and creates the

123

lasers facing the same direction of the player, places them a short distance in front of the player,

and initializes their speed vector using set_speed().

Figure B2.8: player.gd 3

Final portion of the player.gd script, this section contains two functions for managing the

invulnerability state of the player and two functions attached to a timer signal. These functions

include handleInvulnerability(), initInvulnerability(), _on_area_2d_body_entered(), and

_on_invulnerability_timeout(). The handleInvulnerability() function is responsible for managing

the visual representation of the player’s invulnerability state, maintaining the player’s visibility

when they are not invulnerable and flipping the player between being visible and invisible when

they are invulnerable. The initVulnerability() function performs multiple operations to precede

124

the invulnerability state appropriately. This function stops the player from detecting other

objects, reduces the player’s speed, acceleration, and friction, and starts the invulnerability timer.

Upon colliding with an object, the _on_area_2d_body_entered() function is run with the body of

the object colliding with the player taken as a parameter. This function calls the function

breakAsteroid() on the colliding object if that object contains the method breakAsteroid(), with

asteroids being the desired subject. After this, the player emits the receiveDamage signal and the

initInvulnerability() function is run. After the invulnerability timer runs out, the

_on_invulnerability_timeout() function is run in order to cease the invulnerability state of the

player. The function does this by reenabling the detection of other objects and returning the

player’s speed, acceleration, and friction to their initial values.

Figure B2.9: asteroid.gd 1

125

Beginning of the asteroid.gd script. Here some of the variables involved with the asteroid scene,

the _ready(), _physics_process(), and the breakAsteroid() functions can be seen. The asteroid

script has two functions to run overall, one being the function shown here and the other being the

initMovement() function (see figure B2.10). The initMovement() function is the sole operation

called in the _ready() function. As for _physics_process(), only move_and_colide() is run in

order to move the asteroid every frame. The breakAsteroid() function is not run by the asteroid

script itself, but rather by other objects such as the player when they are struck by an asteroid

(see figure B2.8). This function acts to instantiate one to two asteroids at random, that are a size

smaller and have one fewer splits than the current asteroid. After this happens, the asteroid is

freed, eliminating it from the scene.

Figure B2.10: asteroid.gd 2

Here the second function of the asteroid.gd script can be seen. The initMovement() function

modifies two properties of the asteroid object on the basis of one of the asteroid’s properties. The

property that initAsteroid() depends on for its logic is the size property, which ranges from one to

five. Based upon this, the speed and scale of the asteroid are adjusted accordingly. The speed of

the asteroid in any given direction can be as high as ~141 for the largest asteroid and as high as

126

~707 in any given direction for the smallest asteroid. Meanwhile the scale of the asteroid

decreases by 0.2 for every size under five.

Figure B2.11: laser.gd

Here the laser.gd script in its entirety can be seen. This script is simple due to the nature of the

laser scene, which has the job of moving in a straight line. It does this using the same means as

the asteroid scene (see figure B2.9): by feeding its speed and delta into move_and_collide(). This

operation takes place in _physics_process() and is the only operation that takes place each frame.

It is also notable that this speed is set in the first place using set_speed() during the instantiation

of the laser object. The laser scene meets its end through two possible means: collision with an

127

object resulting in a call of _on_area_2d_body_entered() or timeout of the clear timer resulting in

a call of _on_clear_timer_timeout(). The latter of these two functions has the sole purpose of

freeing the laser object and nothing more, meanwhile the former of these two, the

_on_area_2d_body_entered() function, performs a few operations before freeing the laser. Upon

colliding with an asteroid, the laser increments the score according to the size of the asteroid and

increments the life_talley, a variable responsible for keeping track of giving the player extra

lives, before calling breakAsteroid() on the colliding asteroid.

Figure B2.12: Globals.gd

Here are the globals used in the Asteroids game. The high_score is maintained between games

and changes only when a score higher than it has been achieved. The score keeps track of the

points gained by the player in the current run of the game. The life_talley keeps track of the

points gained and rewards the player with an extra life at a set increment of points.

128

B3 Tetris

Figure B3.1: tetris_game.gd 1

This is the beginning of the tetris_game.gd script, the main script of the game Tetris. In this part

of the script, all of the variables involved and initial setup in the _ready() function can be seen.

Some values of note are as follows: the board_width and board_height variables which are set to

320 and 640 respectively. These directly translate to a grid of width 10 and height 20, provided a

129

division of 32. The can_hold_tetromino variable which is a boolean value set to true each time a

tetromino has been placed and false each time a tetromino is held. The score variable which is

initialized at zero and added upon during gameplay. Lastly, there is the state variable which is

initialized to “Start”. In the _ready() function, three signals are connected between the board and

the main script. These three signals are rowCleared, gameOver, and increaseScore (see figure

B3.11) and are respectively connected to functions in the main script initCleanup, gameOver, and

increaseScore (see figures B3.2, B3.3, & B3.9).

130

Figure B3.2: tetris_game.gd 2

Continuation of the tetris_game.gd script, here the _physics_process(), startGame(), and

gameOver() functions can be seen. In every frame, on the basis of both game state and user

input, different operations are performed in _physics_process(). If the game is in the “Start” state

and the player presses the “ENTER” key, the startGame() function is run. Likewise, if the game

is in the “GameOver” state and the player presses “ENTER”, the resetGame() function is run

(see figure B3.3). Alternatively, so long as there is an active tetromino and the game is in the

131

“Running” state, the game runs one string of operations at all times and another solely while the

game is unpaused. At any and all times during the running state the player may press the “P” key

to pause and unpause the game.

Figure B3.3: tetris_game.gd 3

Continuation of the tetris_game.gd script, in this section of code the resetGame(),

increaseScore(), and levelUp() functions can be seen. The resetGame() function returns the game

back to its initial state, with its first operation being to change the game’s state to “Start”. The

clearBoard() method of the board scene (see figure B3.13) is then called in order to turn the

board into a blank slate. All tetrominoes present in the scene are freed, first the active tetromino,

then the display tetromino, and last the held tetromino. The score is set to zero, the level is set to

1, and the starting UI is made visible. The increaseScore() function takes in one parameter,

132

which is the amount the score is increasing by. The base functionality of this is to increment the

score by the amount provided to the function, but following this act a few additional operations

are made. The score label is updated with the new score after the increase and the same occurs

for the high score label if the score exceeds the former high score. Upon the increase in score,

should a set threshold be reached, the levelUp() function is called. This levelUp() function is

responsible for increasing the difficulty of the game as the player progresses. Upon being called,

this function first increments the level by one. According to the level of the game, the wait time

of the movement timer is reduced by an increment of five percent of its initial magnitude. This

occurs every level for the first ten levels gained before this reduction occurs every other level.

This will occur until the wait time reaches the minimum threshold of 0.05 seconds and the

difficulty ceases scaling. With each call of the function, the level label is updated to match the

level of the game.

133

Figure B3.4: tetris_game.gd 4

Continuation of the tetris_game.gd script, here the checkPositionOnMove() function can be seen.

In terms of regulating player movement, this is one of the most important functions for

constraining the player to the limitations of the board. This function takes in one parameter

“direction” which is responsible for directing the logical structure that is run. The particular

movement that this function constraints is the movement of the player left and right. It constrains

the movement of each tetromino by iterating over the squares of the tetromino. Each tetromino

has four squares of different offset from the origin of the tetromino. The rotation state of the

tetromino and the relative position of the tetromino’s squares from its origin are used to inform

the game whether the tetromino would exceed the bounds of the board by moving either left or

right. A shift to the right is checked by adding one square of distance to each square and

134

comparing it with the width of the board, while a shift to the left is checked by subtracting one

square of distance to each square and comparing it to zero, the leftmost part of the board.

Figure B3.5: tetris_game.gd 5

Continuation of the tetris_game.gd script. The two functions shown here, checkForWallKick()

and kickOffWall(), directly work with one another to “kick” the tetromino off of the side of the

board upon rotating. The checkForWallKick() function iterates through the squares of the active

tetromino upon rotating. The purpose of this function is to search for whether the tetromino

exceeds the boundaries of the board in either direction. If the tetromino exceeds these

boundaries, the string “left” or “right” is returned as the direction the tetromino needs to be

moved. If the tetromino does not exceed any boundaries, an empty string is returned instead. The

purpose of these returns is solely to be fed into the kickOffWall() function, which takes in a

string for the direction of movement and moves the tetromino left or right by one square

135

accordingly. This function also will recursively call itself with checkForWallKick() as an

argument, provided that it has not received an empty string. This ensures that the function will

move the tetromino until it is within the boundaries of the board.

Figure B3.6: tetris_game.gd 6

Continuation of the tetris_game.gd script. Here is the manageTetrominoMovement() script which

runs a series of logical expressions checking for player input and performing operations on the

136

active tetromino accordingly. Provided that the player presses the “W” key, the function performs

a rotation operation. This rotates the tetromino around its origin by 90 degrees and the squares of

the tetromino by 90 degrees in the opposite direction, causing them to stay upright. The

tetromino’s new position after rotation is then checked using a combination of the

checkForOverlap() function of the board script (see figure B3.12) and the

convertTetrominoToArray() function from the main script (see figure B3.9). If there is overlap

detected in this operation, the rotation is undone. After this check, the kickOffWall() function is

called with checkForWallKick() as an argument (see figure B3.5). Input from the player pressing

the “A” or “D” key is checked in order to move the player left or right, respectively. Alongside

this check, the checkPositionOnMove() function (see figure B3.4) is called in order to determine

whether the shift would move the tetromino outside of the board space. With this movement, the

same check that was used for rotation overlap is used again. If the player presses the “S” key, the

tetromino is shifted down using the shiftTetrominoDown() function (see figure B3.7). If this shift

succeeds, the player is awarded an additional point for accelerating gameplay. The movement

and slide buffer timers are also reset upon shifting the tetromino down. Lastly, if the player is to

press the “SPACE” key, the dropTetromino() function is called (see figure B3.7).

137

Figure B3.7: tetris_game.gd 7

Continuation of the tetris_game.gd script. The following two functions are responsible for the

primary driver of the gameplay of Tetris: the shiftTetrominoDown() and dropTetromino()

functions. The shiftTetrominoDown() function first checks whether any one square of the

tetromino will exceed the boundaries of the board. If the tetromino would do so, it is then locked

to the board using the lockTetrominoToBoard() function (see figure B3.11) and a new active

tetromino is created in its place using the createNewTetromino() function (see figure B3.8). If the

tetromino does not exceed the boundaries of the board upon moving, it is moved downward by

one space and is checked for whether it overlaps with any squares occupied on the grid. If there

is overlap, the movement is undone, the teromino is locked to the board, and a new tetromino is

created. If there are no obstacles upon moving down by one space, the tetromino continues to

138

move down one space at a time due to action of either the timer or the player. The

dropTetromino() function acts as a utility function to snap the tetromino to the lowest position it

can reach on the board from the space it occupies. It does this by recursively calling

shiftTetrominoDown() and awarding two points each time it succeeds.

Figure B3.8: tetris_game.gd 8

Continuation of the tetris_game.gd script. Here the functions responsible for the generation of a

new tetromino. These functions are createNewTetromino() and addTetrominoToDisplay(). The

createNewTetromino() function first takes the active tetromino, renames it, and reparents it to the

cleanup node while also starting the cleanup timer to dispose of it. A new tetromino is added to

the top middle of the board, in-line with the grid, with a type that is either provided for it through

the parameter tetromino_type, given to it by the display tetromino, or created at random due to a

lack of input and display tetromino. After this new tetromino is created, a new tetromino is added

139

to the display using addTetrominoToDisplay(). This function creates a tetromino of a random

type and places it above the top middle of the board. This tetromino is immobile and serves the

purpose of displaying the next piece to the user and storing its type data for retrieval when the

next tetromino is created.

Figure B3.9: tetris_game.gd 9

Continuation of the tetris_game.gd script. In this portion of the script the addTetrominoToHold(),

convertTetrominoToArray(), and initCleanup() functions can be seen. The

addTetrominoToHold() function is responsible for adding the active tetromino to the hold space

while taking the inactive tetromino in the hold space to make it into the active tetromino, if there

is a held tetromino. The function starts by instantiating an empty string variable and changing it

140

to the type of tetromino held in the hold space, if a tetromino is held. A new held tetromino is

instantiated using data of the active tetromino, the active tetromino is freed, and a new tetromino

is generated on the basis of the string variable created. If this variable has a tetromino type, that

type of tetromino is created. Otherwise, a tetromino is created based on the tetromino is the

display tetromino space based on the logic of the createNewTetromino() function (see figure

B3.8). The convertTetrominoToArray() function is the most important function for allowing the

game to communicate information about the active tetromino and the state of the board. This

function takes the tetromino and, based upon its position and rotation, finds the position of each

square. The position of each square is converted into an index that corresponds to the array of

length 240 of the board script (see figure B3.11). The initCleanup() function serves the simple

purpose of removing all children of the cleanup node by iterating through every child and freeing

them.

Figure B3.10: tetris_game.gd 10

141

Final section of the tetris_game.gd script Here the function calls of each timer’s timeout can be

seen. These functions are as follows: _on_movement_timer_timeout(),

_on_cleanup_timer_timeout(), and _on_slide_timer_timeout(). The

_on_movement_timer_timeout() is called to move the tetromino downwards. It does this by

calling the shiftTetrominoDown() function (see figure B3.7), so long as the game is not paused.

The _on_cleanup_timer_timeout() is called to begin the cleanup process. This is done by calling

the initCleanup() function (see figure B3.9), again under the condition that the game is not

paused. Lastly, the _on_slide_timer_timeout() function is responsible for rapidly shifting the

tetromino right, left, or down based on the direction they hold. This operates only while the game

is unpaused and is limited by another slide_buffer_timer. This is so that when the player taps left,

right, or down the tetromino does not rapidly shift twice at once provided player input close to a

cycle of the shift timer. The logic resembles that of the manageTetrominoMovement() function

(see figure B3.6).

142

Figure B3.11: board.gd 1

This is the beginning of the board.gd script, a script that works closely with the main script with

the purpose of managing the board_array variable. Here the signals, _ready() function, and

lockTetrominoToBoard() can be seen. There are three signals emitted by the board script for the

main script to pick up: the rowCleared signal is emitted when a row of the board has been

completed or filled. The increaseScore signal is emitted when rows are cleared and the score is to

be incremented by a set amount. The gameOver signal is emitted when an operation is performed

on the board that deems the game finished. In the _ready() function, the board array is initialized

to a length of 240 and filled with an empty string value. The lockTetrominoToBoard() function

takes in two parameters, a tetromino_array and a tetromino_type. This function is what changes

the indices of the board array to have substance, by taking the type of tetromino provided and

placing that type into the array indices provided. If any of those spaces are occupied or any of

those spaces are among the first 40 indices of the array, then the gameOver signal is emitted,

143

ending the game. If the space is already occupied, it indicates that the tetromino is not in a space

where it can appropriately shift downward or lock to the grid, indicating it is at the top of the

board at an inappropriate location. As for the first 40 spaces of the array, these indices are

associated with spaces above the board that a tetromino cannot occupy. At the end of the

function, the checkForFullRow() and updateBoard() functions are called (see figures B3.12 &

B3.13) in order to check whether any rows have been completed and update the board

graphically.

Figure B3.12: board.gd 2

Continuation of the board.gd script, here the updateBoard() and checkForOverlap() functions can

be seen. The updateBoard() function is designed to visually represent the board array as

individual square objects shown on the grid. To do this, the function iterates through the existing

squares on the board and removes them if they are no longer in the board array. Alternatively, if a

square has a color that does not line up with the tetromino type that occupies that space on the

144

board, the color of the square is changed to match the color of the corresponding board array

space. After this is completed, the board array is iterated through and has squares added to it if

any of the grid spaces are missing. The checkForOverlap() function takes in a tetromino array

and compares that array to the spaces of the board. This function returns a boolean that is used

by the main script in order to determine whether the tetromino should be able to perform an

operation.

Figure B3.13: board.gd 3

145

Final section of the board.gd script, here the checkForFullRow(), clearRows(), and clearBoard()

functions can be seen. The checkForFullRow() function iterates through every row in the board

array and checks for whether a space is missing. If a space is missing, the row number is

appended to an array to store all filled lines. After iterating through the board array in its entirety,

the list of rows is passed to the clearRows() function. The increaseScore signal is then emitted

with variable points based upon how many lines were completed simultaneously. The

clearRows() function takes in a list of rows as a parameter and starts by emitting the rowCleared

signal for the main script to pick up. Each row in rows is iterated through and every value is

shifted down the array by 10 until the row to clear has been reached. This functionally eliminates

all cleared rows, after which the updateBoard() function is called (see figure B3.12). The

clearBoard() function serves to fully reset the board array and graphics by setting all values to an

empty string and calling updateBoard().

Figure B3.14: tetromino.gd

This is the tetromino.gd script, which solely has the purpose of initiating the tetromino object.

This script has one function, initTetromino(), which takes a tetromino type as a parameter. Based

upon the tetromino type provided and the cells and tetromino global variables (see figure B3.13),

146

squares are added to the base tetromino object to form the desired shape. After this is done, the

color of each square is changed to fit the tetromino type accordingly.

Figure B3.15: Globals.gd

This is the global script of the Tetris game, which stores several key variables. The Tetromino

enumeration sets the types of tetrominoes that can be created, limiting them to seven shapes

containing four squares each. This enumeration is used by the cells variable which shows the

distribution of each square from the origin point of each tetromino. Each cell item contains four

vectors, one for each square. The last two variables in this script are the high score and level

variables which are utilized by the main script for difficulty scaling and storing the high score

between gameplay sessions.

147

B4 Platformer

Figure B4.1: player.gd 1

This is the beginning of the player.gd script. Tne of the core objects of the 2D platformer. In this

script, the properties and operations of the player every frame can be seen. As far as variables go,

148

the player has many values relevant to the player object’s behavior such as speed for regulating

the player’s top horizontal speed, jump velocity for the amount of velocity applied to the player

on jump, terminal velocity for limiting the player’s highest speed of descent, alongside a list of

boolean values for dictating actions the player can take and is able to take including can_jump,

can_double_jump, double_jump_unlocked, and wall_jump_unlocked. Beyond these, the player

has a set gravity, friction, and air resistance to add some limitations to their movement. The

player also has a state variable which is used to keep track of the state of the player and regulate

their behavior according to their state. In the _ready() function, the player’s initial position is the

only thing recorded. As for the _physics_process() function, all of the operations performed on

the player to handle their movement, friction, jump, timers, and animations are completed in

order (see figures B4.2 to B4.4). The global for player position is also set to equal the player

position in this script to be utilized by other scripts more freely.

149

Figure B4.2: player.gd 2

Continuation of the player.gd script. Here the apply_gravity(), handle_movement(), and

handle_friction() functions can be seen. Each of these functions take in delta as a parameter and

work to manage the various facets of the player’s behavior. The apply_gravity() function moves

the player’s vertical velocity towards their terminal velocity at the rate of gravity. One detail of

note in this function is that if the player is in the “float” state, they will be limited to a

significantly reduced terminal velocity. The handle_movement() function first finds the direction

of player input based on whether the player is pressing “A/LEFT” or “D/RIGHT”. An

acceleration and air acceleration is created for the player on the basis of the player’s speed. If the

player is holding a direction and is touching the ground, they will be accelerated in that direction

up to their speed and will be placed into the “walk” state. If the player is in the air, they will not

150

be placed into the “walk” state and will be accelerated at half the speed. If the player is not

holding a direction and is on the floor, they will instead be placed into the “idle” state. The

handle_friction() function is responsible for applying friction to the player when they are moving

through the air, on the ground, and against a wall. Provided the player is pressed against a wall,

their maximum vertical velocity is set to a finite point. If the player is in contact with the ground,

they will be decelerated to a static velocity at a rate of the player’s friction, meanwhile when the

player is in the air, their horizontal velocity is decelerated to zero at a rate of the player’s air

resistance.

Figure B4.3: player.gd 3

151

Continuation of the player.gd script. The handle_jump(), handle_wall_jump(), and

handle_double_jump() functions can be seen here. The handle_jump() function begins by

checking for whether the player is in contact with the ground and resets the can_jump and

can_double_jump booleans to true. After this, the function checks for whether the player has

pressed “SPACE” and is able to jump. Provided that the player fulfills these conditions, its

vertical velocity is set to the jump velocity of the player and the can_jump variable is set to false,

not allowing the player to jump again until they make contact with the ground again. Provided

that the player was not on the ground, the coyote timer had no time remaining upon pressing

“SPACE”, and double jump is unlocked, the handle_double_jump() function is run instead.

Nested at the end of the handle_jump() function, given that the player has unlocked wall jump,

the handle_wall_jump() function is run as well. The handle_wall_jump() function checks for

whether the player is in contact with or was just in contact with a wall. Provided that this is true

and the player presses “SPACE”, the player’s vertical velocity is set to their jump velocity and

their horizontal velocity is set to their speed in the opposite direction of the wall. After a wall

jump has been performed, the player’s double jump is recovered. Last, the

handle_double_jump() function sets the player’s vertical velocity to the jump velocity provided

that the player presses “SPACE” and the player is not in contact with the ground and they have

not performed a double jump already while airborne.

152

Figure B4.4: player.gd 4

Last section of the player.gd script. Here the manage_timers(), handleAnimation(), and

_on_sprite_animation_timer_timeout() functions can be seen. The manage_timers() function

takes two parameters was_on_wall and was_on_floor and serves the purpose of starting the

wall_jump_time timer and coyote_time timer according to the surfaces the player was and is in

contact with. Provided that the player was in contact with a wall and is no longer in contact with

153

a wall, the wall_jump_time timer is started. Provided that the player was in contact with the floor

and is no longer in contact with the floor, the coyote_time_timer is started. The

handleAnimation() function takes one last look at the player’s positioning and user input to make

final adjustments to the player’s state before changing the player’s animation accordingly. The

player’s state works as a conditional code that determines the frame of the player’s spritesheet is

set. For the states “jump”, “float”, and “wall”, the frame is directly set, regardless of any other

factors. As for the “walk” and “idle” states which correspond to multi-frame animations, the

frame is set to the first frame in the animation so long as the frame is outside of the bounds of the

animation cycle. The _on_sprite_animation_timer_timeout() is responsible for the multi-frame

animations of the player. When called, this function shifts the “walk” and “idle” animations

forward by one, provided that the player is in the corresponding state.

154

Figure B4.5: parallax_item.gd 1

Beginning of the parallax_item.gd script. Here the setup of the script, the _ready() function, and

_physics_process() function can be seen. One variable and two constants of note in the setup of

this script are the parallax_position variable and the SPEEDS and MOBILE_SPEEDS constants.

The parallax_position variable keeps track of the order of the main image and its two children

images. The speed constants are a couple of dictionaries that are used to apply motion to the

background items with variable speeds. The _ready() function is responsible for creating a

duplicate of the background item to the left and right of itself. The purpose of these copies is to

create a flush transition of the background while it moves according to the movement of the

155

player. Copies of the image are created only in the case that the image is not static. The

_physics_process() function runs a few sequences of logic in order to call appropriate functions

for the given parallax item. If the item is static, the applyStatic() function is run (see figure B4.7)

meanwhile if the item is a parallax, the checkParallax() and applyParallax() functions are run

instead (see figure B4.6). If the image is a moving object with a mobile speed, the applyMobile()

function is applied to it as well (see figure B4.7).

Figure B4.6: parallax_item.gd 2

Continuation of the parallax_item.gd script. Here the checkParallax() and applyParallax()

functions can be seen. The checkParallax() function checks the state of the parallax item using

the parallax_position variable which has three values that correspond to the order of the main

image, the first child image, and the second child image respectively. Based on the state of the

item and position relative to the player position, the shiftParallax() function (see figure B4.7) is

called with either “Left” or “Right” as an argument. The applyParallax() function works to move

the parallax item according to movement of the player. The speed of this movement is variable

based on the item_type of the parallax item which is used as a key for the SPEEDS dictionary.

156

Figure B4.7: parallax_item.gd 3

Final section of the parallax_item.gd script. Here the shiftParallax(), applyStatic(), and

applyMobile() functions can be seen. The shiftParallax() function takes in one parameter for

direction, which is used to inform which way the parallax item is to be shifted. This function

works to move each image in the parallax item around one another in order to create a seamless

transition as the player moves between them. When the player moves to the right, the leftmost

image is moved to the right of the rightmost image. Meanwhile, when the player moves left, the

157

rightmost image is moved to the left of the leftmost image. The parallax_position property is

used to keep track of the relative position of these images and is changed accordingly when the

images shift. The applyStatic() function works to keep the horizontal position of the image

centered with the player in order to make the image static relative to the player. The

applyMobile() function takes delta as a parameter and works to move a parallax item across the

screen at a constant rate determined by the mobile_speed property of the item which is used as a

key for the MOBILE_SPEEDS constant.

Figure B4.8: player_camera.gd

This script shows the custom player_camera.gd script used for keeping the player in view. As

opposed to a typical player camera that is attached to the player as a descendent of the player,

this camera operates separately from the player, with the player’s information accessed via the

exported player variable. Alongside this exported variable, is the exported background_image

variable, which is used for the script to get an idea of the scale of the background the player is

traversing through. This script has solely one function, the _physics_process() function which is

responsible for keeping the player in the center of the viewport. The exception to this is if

keeping the player in the center of the viewport would cause the camera’s view to exceed the

upper bounds of the background. Should that occur, based upon the camera’s zoom, the viewport

height, and background height, the vertical positioning of the camera is locked to the top of the

background.

158

Figure B4.9: Globals.gd

Here the Globals script of the 2D platformer can be seen which is responsible for keeping track

of the player’s initial and active position.

B5 First Person Shooter

Figure B5.1: player.gd 1

Beginning of the player.gd script of the first person shooter game. Here the setup of the player’s

variables and the _ready() function can be seen. The player holds an entity number to keep track

of their identity alongside several values for the player’s properties including an array of

159

variables in charge of the player’s current speed and max speeds, the player’s jump velocity, and

the player’s health. Due to the muli-faceted nature of the player’s animations, there are several

booleans in charge of capturing the state of the player, as opposed to a string value to keep track

of the player’s state. A string-based state variable, however, is used to keep track of the

camera_mode which is initialized in the “first” person mode. The _ready() function works to

capture the mouse of the player, keeping it in the center of the screen, but allowing mouse

movement to be read by the program. The updateHealthBar() method of the player UI (see figure

B5.9) is also called with the player’s health passed as an argument to maintain an accurate

representation of the player’s health.

160

Figure B5.2: player.gd 2

Continuation of the player.gd script. Here the _physics_process(), _unhandled_input(), and

takeDamage() functions can be seen. The _physics_process() function is run every frame and

starts by checking for whether the player is in contact with the ground. If the player is not on the

ground, gravity is applied to them. Following this logical structure, the various functions that

constitute the player script are run in a sequential order. These functions are as follows:

161

handleCrouch(), handleSprint(), handleJump(), handleMovement(), handleAnimations(),

handleCamera(), and move_and_slide() (see figures B5.3 & B5.4). These functions are

responsible for managing the movement, animations, and camera of the player. The

_unhandled_input() function takes in an input event as a parameter and rotates the player

horizontally corresponding to horizontal mouse movement. Provided vertical mouse movement,

the updateChestRot() and updateSpineRot() functions are called on the player model (see figure

B5.7) with the change in mouse position passed as an argument. Changes here are scaled with

the mouse_sens variable. The takeDamage() function takes in one argument “damage” and works

to decrement the player’s health. The function reduces the player’s health by the provided value,

calls the updateHealthBar() function on the player UI scene (see figure B5.9), and checks for

whether the player’s health has fallen to or beneath zero. Should this happen, the die() function is

called (see figure B5.5).

162

Figure B5.3: player.gd 3

Continuation of the player.gd script. Here the handleCrouch(), handleSprint(), handleJump(), and

handleMovement() functions can be seen. The handleCrouch() function checks for whether the

player has pressed “SHIFT” and either places the player into the crouched position, keeping

track of the player’s state using the just_crouched, just_stood, and crouched boolean values. The

handleSprint() function works to set the player speed equal to either their base_speed, their

sprint_speed, or their crouched_speed. If the player is crouched, their speed is set to their

crouch_speed. Otherwise, if the player is holding “CONTROL” their speed is set to their

sprint_speed while if they are not holding “CONTROL” their speed is set to their base_speed.

The handleJump() function checks for whether the player has pressed “SPACE” and that the

player is standing and on the ground. Provided these conditions are fulfilled, the player’s vertical

163

velocity is set to the jump variable and the just_jumped variable is set to true. The

handleMovement() function finds the direction of the player by getting a vector of the player

input between “W”, “A”, “S”, and “D” corresponding to the forward, left, backward, and right

directions. This input is then converted into a direction in the form of a vector that can be applied

to the player and is normalized. The player is then moved at their set speed in the corresponding

direction. If there is no direction provided, the player is decelerated to a stationary position with

a speed of zero. Provided movement, the walking variable is set to true whereas without

movement the walking variable is set to false.

Figure B5.4: player.gd 4

Continuation of the player.gd script. Here the handleAnimations(), handleCamera(), and

getEntity() functions can be seen. The handleAnimations() function is responsible for managing

the player model’s animations according to the booleans setters for the player’s state. Provided

164

that the player has just_jumped, the state machine of the player model travels to the “JumpGun”

animation. Provided that the player has just_crouched, the travelToCrouchedState() function of

the player model is called (see figure B5.7). Provided that the player has just_stood, the

travelToStandingState() function of the player model is called (see figure B5.7). In all three of

these logical expressions, the boolean check value is set to false and the animation refractory

timer is started. The animation_refractory variable is set to true or false depending on whether

the animation refractory timer has time remaining or not. Provided that the player is walking,

according to the state machine of the player model, the travelInCrouchedState() and

travelInStandingState() functions of the player model (see figure B5.6) are called depending on

whether the player is crouched or standing respectively. The handleCamera() function manages

the state of the camera, toggling between the “first” and “third” person mode when the player

presses “T”. When toggled, the current camera switches between the first person camera and

third person camera attached to the player model. The getEntity() function is a getter that returns

the entity_num of the player.

Figure B5.5: player.gd 5

Final section of the player.gd script. Here the reset(), die(), and changeColor() function can be

seen. The reset() function resets the transformation basis, position, health, and health bar of the

165

player. The die() function calls the reset function. The changeColor() takes a color as a parameter

and sets the surface material color of the player model’s mesh to equal the color provided.

Figure B5.6: player_model.gd 1

Beginning of the player_model.gd script. Here the initial variable declarations alongside the

_ready(), travelInStandingState(), and travelInCrouchedState() functions can be seen. The player

model uses a state machine and five core bones to modify its model. These bones are the main,

head, chest, spine, and hip bones which are all set to their respective bones on the skeleton in the

_ready() function. The state machine is also set to the animation tree playback in the _ready()

166

function. The travelInStandingState() and travelInCrouchedState() both take in whether the

player is walking as a parameter and brings the state machine into the

“WalkGun/CrouchWalkGun” state if the player is walking and the “StandingGun/CrouchedGun”

state if the player is staying still.

Figure B5.7: player_model.gd 2

Continuation of the player_model.gd script. Here two state machine functions, five getters, and

three setters can be seen. The two state machine functions are the travelToStandingState() and

travelToCrouchedState() functions which bring the player into the “StandGun” and

“CrouchGun” states respectively. The five getters include the getHeadPos(), getHeadRot(),

getMainRot(), getChestRot(), and getSpineRot(). These functions return the rotation or position

of their respective bones. The three setters include updateHeadRot(), updateChestRot(), and

updateSpineRot(). These functions take an amount as an argument by which the rotation of their

respective bones are changed. For the updateChestRot(), and updateSpineRot() functions, the

rotation is limited to 20 degrees from the base rotation.

167

Figure B5.8: third_person_camera.gd

This script is responsible for moving the camera along a set path provided with collisions of

child raycast objects. Each frame the logic of the third person camera script is run in the

_process() function, in which the ray casts are checked for their collision status. If the first ray

cast is colliding, the progress of the camera along the set path is incremented by the set

progression speed of the camera. If this incrementation would set the progression of the camera

along the path to be above one, the progression is instead set to one. If neither of the ray casts are

colliding, the camera will move back down the path until it reaches the start.

Figure B5.9: player_ui.gd

This script contains a single method to update the health bar shown to the player. The

updateHealthBar() takes in a heath value as a parameter to set the value of the health bar.

168

Figure B5.10: enemy.gd

This script contains a few functions for simple enemy behavior. These functions include the

_ready(), takeDamage(), and getEntity() functions. The _ready() function initializes the model of

the enemy to have a set torso positioning using the updateChestRot() and updateSpineRot()

functions of the enemy model (see figure B5.11). The takeDamage() function takes a damage

value as a parameter and decrements the enemy’s health by the provided value. The getEntity()

function is a getter that returns the entity_num of the enemy.

 Figure B5.11: enemy_model.gd

169

The enemy_model.gd script can be seen here bearing a significant resemblance to the

player_model.gd script to a more limited degree (see figure B5.6 & B5.7). It contains only the

chest and spine bones alongside the getters and setters of their rotation with the getChestRot(),

getSpineRot(), updateChestRot(), and updateSpineRot() functions.

Figure B5.12: gun.gd

This script contains key values to the scene and the functions relevant to the purpose of the gun

scene. There functions involved with the gun script are the _process(), entityTakeDamage(),

170

startNPCTimer(), and _on_npc_timer_timout(). The _process() function reads for player input of

the “LEFT MOUSE BUTTON” and performs the act of firing the gun accordingly. It does this

by creating an instance of the bullet scene and giving it a position and transformation basis of the

end of the gun. The entityTakeDamage signal of the bullet scene is also connected to the

entityTakeDamage() function. The entityTakeDamage() function takes an entity and a damage

value as parameters and works to emit the emitEntityDamage signal with the same two values as

arguments. This works to chain the signal sent by the bullet scene up to the gun scene and

beyond. The startNPCTimer() is designed to start a timer of the gun scene solely for NPC

characters, enemy characters. It checks that the entity has an entity number of greater than four, a

value that is only provided for NPCs and starts the timer provided that is fulfilled. The

_on_npc_timer_timeout() function also operates solely for NPC characters and instantiates a

bullet in the very same manner as it would be for the player character pressing “LEFT MOUSE

BUTTON”.

171

Figure B5.13: bullet.gd

This script contains several functions designed around the purpose of moving the bullet forward,

colliding with objects, and destroying the bullet, very similar to that of the laser scene of the

Ateroids game (see figure B5.11). These include the _process(), destroyBullet(),

_on_clear_timer_timeout(), and _on_hit_box_body_entered() functions. The _process() function

simply works to move the bullet straight forward based upon its angle of instantiation by

applying the speed of the bullet to the bullet’s position over time. The destroyBullet() function

simply frees the bullet. The _on_clear_timer_timeout() calls the destroyBullet() function. The

_on_hit_box_body_entered() takes in a body as a parameter and is called when the bullet collides

with an object. Provided that the object collided with is on the collision layer corresponding to

172

the player and enemy objects, the entityTakeDamage signal is sent out with two arguments: The

entity number of the object collided with and the damage inflicted which is modified on the basis

of which body part is hit. The bullet is then destroyed using destroyBullet().

Figure B5.14: damageManager.gd

This script is responsible for connecting damage signals to their appropriate sources through the

_ready() and manageDamage() functions. Upon initiation, in the _ready() function all players

and enemies in the active scene are provided with an entity number and have their

emitEntityDamage signal connected with the manageDamage function. The manageDamage()

function takes in an entity number and damage value as parameters and calls the takeDamage()

function on the entity with the damage value as an argument.

173

Appendix C - Glossary

C1 General

Elastic: Ability of matter to maintain its energy upon collision with another object.

Frame: Single instance of calculation visible to the player.

Parent-Child Hierarchy: Object organization structure in which objects can be the parent of many

and the child of one. Children share attributes with their parent and are able to directly

communicate with them. Two children beneath the same parent are called siblings.

Print: To draw text to the screen or console of a program.

Scale: The multiplicative factor over the dimensions of an object.

Score: Numeric value denoting performance and/or achievement.

Screenshot: Image of a single instance of the screen of an electronic device.

Size: The volume of an object; typically measured in pixels.

User Interface (UI): Also known as Graphical User Interface (GUI); overlay of visualized data

for the purposes of a user.

Video Game: A program on a computer or console centered around entertainment and/or

competition often with a set of rules and goals.

Viewport: Space in which a player is able to observe the game space.

C2 Godot

C2.1 Base Nodes

Node: A base class from which all nodes inherit; contains all of the base properties, methods,

signals, enumerations, and constants of an object in Godot.

CanvasItem: Base class for all 2D nodes; is inherited by Node2D and Control.

174

Timer: A timer that counts down by a set amount.

AnimationMixer: Base class for animation nodes; is inherited by AnimationPlayer and

AnimationTree.

AnimationPlayer: A node responsible for cycling through animations with set parameters; all

manipulatable properties can be animated including sprite frame, position, and rotation.

AnimationTree: A node responsible for creating complex animation transitions; allows for

movement between one animation and another when set conditions are met.

C2.2 Control Nodes

Control: A base class for all UI nodes; contains features tailored to the development of a GUI

TextureRect: A node responsible for displaying a texture.

Panel: A node responsible for displaying a StyleBox (stylized 2D resource).

Container: A base class for UI containers.

BoxContainer: A node responsible for organizing items along one axis of alignment; is inherited

by VBoxContainer and HBoxContainer.

VBoxContainer: A node responsible for organizing items with vertical alignment.

HBoxContatiner: A node responsible for organizing items with horizontal alignment.

Label: A node responsible for displaying text.

C2.3 2D Nodes

Node2D: A base class for all 2D game objects; contains features tailored to the development of

game objects in a 2D scene.

175

CharacterBody2D: A 2D node responsible for the development of a kinematic object; tailored to

the development of a player character.

StaticBody2D: A 2D node responsible for creating stationary objects uninfluenced by the physics

engine.

Area2D: A 2D node responsible for detecting other objects and areas.

CollisionShape2D: A 2D node responsible for providing a shape for physics objects with preset

shapes; shapes include circle, rectangle, and capsule.

CollisionPolygon2D: A 2D node responsible for providing a shape for physics objects using

connecting points which come together to form a polygon.

Polygon 2D: A 2D node responsible for creating a visible polygonal shape.

Sprite2D: A 2D node responsible for visually representing a sprite.

Camera2D: A 2D node responsible for presenting the viewport to the player; can be constrained

and dynamically modified during gameplay.

C2.4 3D Nodes

Node 3D: A base class for all 3D game objects; contains features tailored to the development of

game objects in a 3D scene.

CharacterBody3D: A 3D node responsible for the development of a kinematic object; tailored to

the development of a player character.

StaticBody3D: A 3D node responsible for creating stationary objects uninfluenced by the physics

engine.

Area3D: A 3D node responsible for detecting other objects and areas.

176

CollisionShape3D: A 3D node responsible for providing a shape for physics objects with preset

shapes; shapes include circle, rectangle, and capsule.

CollisionPolygon3D: A 3D node responsible for providing a shape for physics objects using

connecting points which come together to form a polygon.

MeshInstance3D: A 3D node responsible for creating visuals for all 3D objects; 3D models are

automatically converted into this node when brought into Godot.

RayCast3D: A 3D node composed of a single line in 3D space; used to detect any collision

objects intersecting with a given space.

Path3D: A 3D node responsible for creating a path in 3D space for other nodes to follow.

PathFollow3D: A 3D node responsible for mediating behavior of nodes on a given path; works

closely with a parent Path3D node.

Skeleton3D: A 3D node responsible for holding a hierarchy of the bones of a 3D model; used for

the animation of 3D models.

BoneAttachment3D: A 3D node that attaches itself dynamically to the transformation basis of

the bone of a Skeleton3D.

Camera3D: A 3D node responsible for presenting the viewport to the player; can be constrained

and dynamically modified during gameplay.

177

References

AABB. (n.d.). Godot Engine Documentation. Retrieved March 26, 2025, from

https://docs.godotengine.org/en/stable/classes/classes/class_aabb.html

Asteroids (video game). (2025). In Wikipedia.

https://en.wikipedia.org/w/index.php?title=Asteroids_(video_game)&oldid=1289654658

blender.org - Home of the Blender project - Free and Open 3D Creation Software. (n.d.).

Blender.Org. Retrieved May 14, 2025, from https://www.blender.org/

Celeste. (n.d.). Celeste. Retrieved May 14, 2025, from http://celestegame.com/

cplusplus. (n.d.). Retrieved May 14, 2025, from https://cplusplus.com/

Doom (1993 video game). (2025). In Wikipedia.

https://en.wikipedia.org/w/index.php?title=Doom_(1993_video_game)&oldid=1290423544

First-person shooter. (2025). In Wikipedia.

https://en.wikipedia.org/w/index.php?title=First-person_shooter&oldid=1288872248

Fortnite. (n.d.). Fortnite | Free-to-Play Cross-Platform Game - Fortnite.

https://www.fortnite.com/

GDScript reference. (n.d.). Godot Engine Documentation. Retrieved February 27, 2025, from

https://docs.godotengine.org/en/stable/tutorials/scripting/gdscript/tutorials/scripting/gdscript/g

dscript_basics.html

Godot Docs. (n.d.). Godot Engine Documentation. Retrieved February 27, 2025, from

https://docs.godotengine.org/en/stable/index.html

Griffin, J. (n.d.). Leaderboards - the original and best social feature ... Retrieved April 7, 2025,

from

https://www.gamedeveloper.com/design/leaderboards---the-original-and-best-social-feature-

178

Is Python faster and lighter than C++? (2013, February 16). [Forum post]. Cross Validated.

https://stackoverflow.com/questions/801657/is-python-faster-and-lighter-than-c

Jose, S. (2024, October 30). Why C++ Is Climbing the Ranks: An In-Depth Look at its TIOBE

Popularity Surge. Medium.

https://medium.com/@najascj/why-c-is-climbing-the-ranks-an-in-depth-look-at-its-tiobe-popul

arity-surge-2a5f7b69e7f3

Godot Engine - Free and open source 2D and 3D game engine. (n.d.). Godot Engine. Retrieved

February 27, 2025, from https://godotengine.org/

Jump King. (n.d.). Retrieved May 14, 2025, from https://www.jump-king.com/

LOVE. (n.d.). Retrieved February 27, 2025, from https://love2d.org/wiki/Main_Page

LÖVE - Free 2D Game Engine. (n.d.). Retrieved February 27, 2025, from https://love2d.org/

Mendes, L. O., Cunha, L. R., & Mendes, R. S. (2022). Popularity of Video Games and Collective

Memory. Entropy, 24(7), 860. https://doi.org/10.3390/e24070860

Minecraft Website. (n.d.). Retrieved May 14, 2025, from https://www.minecraft.net/en-us

Node. (n.d.). Godot Engine Documentation. Retrieved May 14, 2025, from

https://docs.godotengine.org/en/stable/classes/classes/class_node.html

Nolan Bushnell | Lemelson. (n.d.). Retrieved March 18, 2025, from

https://lemelson.mit.edu/resources/nolan-bushnell

Official Portal 2 Website. (n.d.). Retrieved May 14, 2025, from

https://www.thinkwithportals.com/

Oliver, M. B., Bowman, N. D., Woolley, J. K., Rogers, R., Sherrick, B. I., & Chung, M.-Y.

(2016). Video games as meaningful entertainment experiences. Psychology of Popular Media

Culture, 5(4), 390–405. https://doi.org/10.1037/ppm0000066

179

Platformer. (2025). In Wikipedia.

https://en.wikipedia.org/w/index.php?title=Platformer&oldid=1290148893

Pong. (2025). In Wikipedia.

https://en.wikipedia.org/w/index.php?title=Pong&oldid=1290096191

Pygame Front Page — pygame v2.6.0 documentation. (n.d.). Retrieved February 27, 2025, from

https://www.pygame.org/docs/

RollerCoaster Tycoon. (n.d.). Atari®. Retrieved February 27, 2025, from

https://atari.com/pages/rollercoaster-tycoon

RollerCoaster Tycoon (video game). (2024). In Wikipedia.

https://en.wikipedia.org/w/index.php?title=RollerCoaster_Tycoon_(video_game)&oldid=1266

324800

Shivang. (2024, August 2). Game Development Team - Structure, Roles & Cost. Richestsoft.

https://richestsoft.com/blog/game-development-team-structure-roles/

Skopljakovic, E. (2019). Gaming as a Social Construct: Towards a Framework for Player

Socialization in Massive Multiplayer Online Videogames - ProQuest. Retrieved March 21,

2025, from https://www.proquest.com/docview/3059336401

Tetris. (2025). In Wikipedia.

https://en.wikipedia.org/w/index.php?title=Tetris&oldid=1290198146

The Programming Language Lua. (n.d.). Retrieved May 14, 2025, from https://www.lua.org/

The Ren’Py Visual Novel Engine. (n.d.). Retrieved February 27, 2025, from

https://www.renpy.org/

TIOBE Index. (n.d.). TIOBE. Retrieved February 27, 2025, from

https://www.tiobe.com/tiobe-index/

180

Unity Real-Time Development Platform | 3D, 2D, VR & AR Engine. (n.d.). Unity. Retrieved

February 27, 2025, from https://unity.com

Unreal Engine. (n.d.). Unreal Engine. Retrieved February 27, 2025, from

https://www.unrealengine.com/

VALORANT. (2025, May 13). https://playvalorant.com/en-us/

Welcome to Python.org. (2025, May 7). Python.Org. https://www.python.org/

Yoon, S. (n.d.). Gaming Culture: A New Language for the Digital Age. Forbes. Retrieved March

20, 2025, from

https://www.forbes.com/sites/forbesbooksauthors/2024/05/14/gaming-culture-a-new-language-

for-the-digital-age/

	
	A Deep Dive into Game Development:
	Exploring the Intricacies of the Game Development Process
	Abstract
	Acknowledgements
	Table of Contents
	0 Introduction
	0.1 Introduction to Game Development
	0.2 Introduction to Game Engines and Frameworks
	0.3 Introduction to Godot
	Figure 0.3.1: Base & Control Nodes
	Figure 0.3.2: 2D & 3D Nodes

	1 Pong
	1.1 Developing Pong
	Figure 1.1.1: Board Scene
	Figure 1.1.2: Ball & Paddle Scenes

	1.2 Intricacies Behind the Development of Pong
	1.2.1 Simulation of Movement
	1.2.2 Collision Detection and Reflection Logic
	1.2.3 The Impact on the Video Game Industry

	2 Asteroids
	2.1 Developing Asteroids
	Figure 2.1.1: Asteroid Game Scene
	Figure 2.1.2: Player Scene
	Figure 2.1.3: Laser Scene
	Figure 2.1.4: Asteroid Scene

	2.2 Intricacies Behind the Development of Asteroids
	2.2.1 Game Objects
	2.2.1.1 Spaceship
	2.2.1.2 Asteroid

	2.2.2 Object Instantiation

	3 Tetris
	3.1 Developing Tetris
	Figure 3.1.1: TetrisGame Scene
	Figure 3.1.2: Tetromino Scene

	3.2 Intricacies Behind the Development of Tetris
	3.2.1 Grid-Based Movement and Tetromino Manipulation
	3.2.2 Board Management
	3.2.3 Timers and Speed Management
	3.2.4 Informational Mechanics

	4 Platformer
	4.1 Developing a Platformer
	Figure 4.1.1: Platformer Level Scene
	Figure 4.1.2: Tilemap Scene
	Figure 4.1.3: Player Scene

	4.2 Intricacies Behind the Development of a 2D Platformer
	4.2.1 Player Movement
	4.2.1.1 Jump Mechanics
	4.2.1.2 Flexible Movement Mechanics

	4.2.2 Animation Systems and State Management
	4.2.3 Level Creation

	5 First Person Shooter
	
	5.1 Developing a First Person Shooter
	Figure 5.1.1: Main Scene
	Figure 5.1.2: Tree Scene
	Figure 5.1.3: Player Scene
	Figure 5.1.4: Third Person Camera Scene
	Figure 5.1.5: Player Model Scene
	Figure 5.1.6: Gun Scene
	Figure 5.1.7: Bullet Scene

	5.2 Intricacies Behind the Development of a First Person Shooter
	5.2.1 Player Movement
	5.2.2 Camera Management and Perspective
	5.2.3 Handling Projectiles and Combat
	5.2.5 3D Models and Animation Systems

	6 Conclusion
	6.1 Future Work
	6.2 Final Remarks

	Appendix A - Screenshots
	A1 Pong
	Figure A1.1: Pong Game Initialization
	Figure A1.2: Pong Gameplay 1
	Figure A1.3: Pong Gameplay 2
	Figure A1.4: Pong Player Wins

	A2 Asteroids
	Figure A2.1: Asteroids Game Initialization
	Figure A2.2: Asteroids Gameplay 1
	Figure A2.3: Asteroids Gameplay 2
	Figure A2.4: Asteroids Game Over
	Figure A2.5: Asteroids Gameplay 3

	A3 Tetris
	Figure A3.1: Tetris Game Initialization
	Figure A3.2: Tetris Gameplay 1
	Figure A3.3: Tetris Gameplay 2
	Figure A3.4: Tetris Gameplay 3
	Figure A3.5: Tetris Hold Tetromino
	Figure A3.6: Tetris Pause Screen
	Figure A3.7: Tetris Gameplay 4
	Figure A3.8: Tetris Game Over
	Figure A3.9: Tetris New Game

	A4 Platformer
	Figure A4.1: Platformer Game Initialization
	Figure A4.2: Jumping
	Figure A4.3: Platformer Gameplay 1
	Figure A4.4: Floating
	Figure A4.5: Platformer Gameplay 2
	Figure A4.6: Parallax 1
	Figure A4.7: Parallax 2
	Figure A4.8: Platformer Character

	A5 First Person Shooter
	Figure A5.1: First Person Shooter Game Initialization
	Figure A5.2: First Person Shooter Enemies
	Figure A5.3: First Person Shooter Third Person
	Figure A5.4: First Person Shooter Jump Animation
	Figure A5.5: First Person Shooter Walk Animation
	Figure A5.6: First Person Shooter Player Damage

	Appendix B - Code
	B1 Pong
	Figure B1.1: ball.gd
	Figure B1.2: paddle.gd
	Figure B1.3: pong_game.gd 1
	Figure B1.4: pong_game.gd 2
	Figure B1.5: pong_game.gd 3
	Figure B1.6: Globals.gd

	B2 Asteroids
	Figure B2.1: asteroids_game.gd 1
	Figure B2.2: asteroids_game.gd 2
	Figure B2.3: asteroids_game.gd 3
	Figure B2.4: asteroids_game.gd 4
	Figure B2.5: asteroids_game.gd 5
	Figure B2.6: player.gd 1
	Figure B2.7: player.gd 2
	Figure B2.8: player.gd 3
	Figure B2.9: asteroid.gd 1
	Figure B2.10: asteroid.gd 2
	Figure B2.11: laser.gd
	Figure B2.12: Globals.gd

	B3 Tetris
	Figure B3.1: tetris_game.gd 1
	Figure B3.2: tetris_game.gd 2
	Figure B3.3: tetris_game.gd 3
	Figure B3.4: tetris_game.gd 4
	Figure B3.5: tetris_game.gd 5
	Figure B3.6: tetris_game.gd 6
	Figure B3.7: tetris_game.gd 7
	Figure B3.8: tetris_game.gd 8
	Figure B3.9: tetris_game.gd 9
	Figure B3.10: tetris_game.gd 10
	Figure B3.11: board.gd 1
	Figure B3.12: board.gd 2
	Figure B3.13: board.gd 3
	Figure B3.14: tetromino.gd
	Figure B3.15: Globals.gd

	B4 Platformer
	Figure B4.1: player.gd 1
	Figure B4.2: player.gd 2
	Figure B4.3: player.gd 3
	Figure B4.4: player.gd 4
	Figure B4.5: parallax_item.gd 1
	Figure B4.6: parallax_item.gd 2
	Figure B4.7: parallax_item.gd 3
	Figure B4.8: player_camera.gd
	Figure B4.9: Globals.gd

	B5 First Person Shooter
	Figure B5.1: player.gd 1
	Figure B5.2: player.gd 2
	Figure B5.3: player.gd 3
	Figure B5.4: player.gd 4
	Figure B5.5: player.gd 5
	Figure B5.6: player_model.gd 1
	Figure B5.7: player_model.gd 2
	Figure B5.8: third_person_camera.gd
	Figure B5.9: player_ui.gd
	Figure B5.10: enemy.gd
	 Figure B5.11: enemy_model.gd
	Figure B5.12: gun.gd
	Figure B5.13: bullet.gd
	Figure B5.14: damageManager.gd

	Appendix C - Glossary
	C1 General
	C2 Godot
	C2.1 Base Nodes
	C2.2 Control Nodes
	C2.3 2D Nodes
	C2.4 3D Nodes

	References
	AABB. (n.d.). Godot Engine Documentation. Retrieved March 26, 2025, from https://docs.godotengine.org/en/stable/classes/classes/class_aabb.html
	Asteroids (video game). (2025). In Wikipedia. https://en.wikipedia.org/w/index.php?title=Asteroids_(video_game)&oldid=1289654658
	blender.org - Home of the Blender project - Free and Open 3D Creation Software. (n.d.). Blender.Org. Retrieved May 14, 2025, from https://www.blender.org/
	Celeste. (n.d.). Celeste. Retrieved May 14, 2025, from http://celestegame.com/
	cplusplus. (n.d.). Retrieved May 14, 2025, from https://cplusplus.com/
	Doom (1993 video game). (2025). In Wikipedia. https://en.wikipedia.org/w/index.php?title=Doom_(1993_video_game)&oldid=1290423544
	First-person shooter. (2025). In Wikipedia. https://en.wikipedia.org/w/index.php?title=First-person_shooter&oldid=1288872248
	Fortnite. (n.d.). Fortnite | Free-to-Play Cross-Platform Game - Fortnite. https://www.fortnite.com/
	GDScript reference. (n.d.). Godot Engine Documentation. Retrieved February 27, 2025, from https://docs.godotengine.org/en/stable/tutorials/scripting/gdscript/tutorials/scripting/gdscript/gdscript_basics.html
	Godot Docs. (n.d.). Godot Engine Documentation. Retrieved February 27, 2025, from https://docs.godotengine.org/en/stable/index.html
	Griffin, J. (n.d.). Leaderboards - the original and best social feature ... Retrieved April 7, 2025, from https://www.gamedeveloper.com/design/leaderboards---the-original-and-best-social-feature-
	Is Python faster and lighter than C++? (2013, February 16). [Forum post]. Cross Validated. https://stackoverflow.com/questions/801657/is-python-faster-and-lighter-than-c
	Jose, S. (2024, October 30). Why C++ Is Climbing the Ranks: An In-Depth Look at its TIOBE Popularity Surge. Medium. https://medium.com/@najascj/why-c-is-climbing-the-ranks-an-in-depth-look-at-its-tiobe-popularity-surge-2a5f7b69e7f3
	Godot Engine - Free and open source 2D and 3D game engine. (n.d.). Godot Engine. Retrieved February 27, 2025, from https://godotengine.org/
	Jump King. (n.d.). Retrieved May 14, 2025, from https://www.jump-king.com/
	LOVE. (n.d.). Retrieved February 27, 2025, from https://love2d.org/wiki/Main_Page
	LÖVE - Free 2D Game Engine. (n.d.). Retrieved February 27, 2025, from https://love2d.org/
	Mendes, L. O., Cunha, L. R., & Mendes, R. S. (2022). Popularity of Video Games and Collective Memory. Entropy, 24(7), 860. https://doi.org/10.3390/e24070860
	Minecraft Website. (n.d.). Retrieved May 14, 2025, from https://www.minecraft.net/en-us
	Node. (n.d.). Godot Engine Documentation. Retrieved May 14, 2025, from https://docs.godotengine.org/en/stable/classes/classes/class_node.html
	Nolan Bushnell | Lemelson. (n.d.). Retrieved March 18, 2025, from https://lemelson.mit.edu/resources/nolan-bushnell
	Official Portal 2 Website. (n.d.). Retrieved May 14, 2025, from https://www.thinkwithportals.com/
	Oliver, M. B., Bowman, N. D., Woolley, J. K., Rogers, R., Sherrick, B. I., & Chung, M.-Y. (2016). Video games as meaningful entertainment experiences. Psychology of Popular Media Culture, 5(4), 390–405. https://doi.org/10.1037/ppm0000066
	Platformer. (2025). In Wikipedia. https://en.wikipedia.org/w/index.php?title=Platformer&oldid=1290148893
	Pong. (2025). In Wikipedia. https://en.wikipedia.org/w/index.php?title=Pong&oldid=1290096191
	Pygame Front Page — pygame v2.6.0 documentation. (n.d.). Retrieved February 27, 2025, from https://www.pygame.org/docs/
	RollerCoaster Tycoon. (n.d.). Atari®. Retrieved February 27, 2025, from https://atari.com/pages/rollercoaster-tycoon
	RollerCoaster Tycoon (video game). (2024). In Wikipedia. https://en.wikipedia.org/w/index.php?title=RollerCoaster_Tycoon_(video_game)&oldid=1266324800
	Shivang. (2024, August 2). Game Development Team - Structure, Roles & Cost. Richestsoft. https://richestsoft.com/blog/game-development-team-structure-roles/
	Skopljakovic, E. (2019). Gaming as a Social Construct: Towards a Framework for Player Socialization in Massive Multiplayer Online Videogames - ProQuest. Retrieved March 21, 2025, from https://www.proquest.com/docview/3059336401
	Tetris. (2025). In Wikipedia. https://en.wikipedia.org/w/index.php?title=Tetris&oldid=1290198146
	The Programming Language Lua. (n.d.). Retrieved May 14, 2025, from https://www.lua.org/
	The Ren’Py Visual Novel Engine. (n.d.). Retrieved February 27, 2025, from https://www.renpy.org/
	TIOBE Index. (n.d.). TIOBE. Retrieved February 27, 2025, from https://www.tiobe.com/tiobe-index/
	Unity Real-Time Development Platform | 3D, 2D, VR & AR Engine. (n.d.). Unity. Retrieved February 27, 2025, from https://unity.com
	Unreal Engine. (n.d.). Unreal Engine. Retrieved February 27, 2025, from https://www.unrealengine.com/
	VALORANT. (2025, May 13). https://playvalorant.com/en-us/
	Welcome to Python.org. (2025, May 7). Python.Org. https://www.python.org/
	Yoon, S. (n.d.). Gaming Culture: A New Language for the Digital Age. Forbes. Retrieved March 20, 2025, from https://www.forbes.com/sites/forbesbooksauthors/2024/05/14/gaming-culture-a-new-language-for-the-digital-age/
	

