
Image Approximation by means of Error

Minimization

Kayla Rockhill

May 2021

Abstract

Function approximation has many uses across many areas of physics,

mathematics, and computer science. It can be used to break up problems

into more manageable pieces and create solutions that are easier to under-

stand. Function approximation can also be used to simplify data which

allows for a faster and easier transmission of the data. This method is

also useful for clearing out any noise from data. An image can be repre-

sented as a two dimensional function and can therefore be approximated.

To visualize the results of function approximation and gradient descent,

the methods can be implemented in computing software. The platforms

used in this paper were Octave and Python. The one and two dimen-

sional cases of function approximation was implemented in both Octave

and Python. The one and two dimensional cases for gradient descent were

implemented in Python. Octave is a mathematical based platform while

Python is a more general language with a wider range of applications.

The function approximation method was implemented first in Octave and

was then translated to Python. The translation to Python was done so

that a comparison between the two could be made. Implementation into

Python also allows for the incorporation of hardware since a serial con-

i

nection between Python and Arduino can be made. Both Python and

Octave provided accurate approximations for various target functions in

the one and two dimensional cases. An extension to using hardware was

started but further work is needed to fix the issues that arose.

ii

Contents

1 Introduction 1

1.1 Theory of Function Approximation 2

1.2 Gradient Descent . 8

2 Coding 15

2.1 Octave Code . 16

2.1.1 One Dimensional Function Approximation 16

2.1.2 Two Dimensional Function Approximation 17

2.2 Python Code . 21

2.2.1 One Dimensional Function Approximation 22

2.2.2 Two Dimensional Function Approximation 25

2.2.3 One Dimensional Gradient Descent 27

2.2.4 Two Dimensional Gradient Descent 29

3 Arduino Setup 30

4 Conclusion 33

5 Appendix A 34

6 Appendix B 36

7 Appendix C 39

iii

1 Introduction

An approximation of a function may be necessary for a variety of reasons. The

approximation function is usually made up of simple components that are easy

to understand and manipulate. This simplification can result in a smaller data

set which allows for easier and faster transmission of the data. Function ap-

proximation may also be used to clean up data sets that have an abundance of

noise. This noise can make the data difficult to analyze so removing it allows for

easier readability. There are many methods of function approximation including

the method of least squares and gradient descent. The method of least squares

aims to minimize the squared difference between the target and approximation

functions. This method finds the weights of the approximation function that

best minimizes the squared difference. Gradient descent is an optimization algo-

rithm that iteratively minimizes the squared difference between the target and

approximation functions. Gradient descent finds new weights of the approxima-

tion function with every iteration and provides a better approximation of the

target function after each iteration.

These methods of approximation can be tested using software. The methods

can be implemented as code and can be used to estimate various functions. The

target function, approximation function, and the difference between them can

be graphed so the success of each approximation can be seen. These methods

can be used in the one and two dimensional cases and both can be implemented

into code. When using the two dimensional case, images can be used as a target

function for approximation. This can allow for an easy comparison when looking

at the target image compared to the approximation when testing the accuracy

of the approximation methods.

1

Figure 1: This is an example of a one dimensional Gaussian function located at
the origin with an amplitude of one.

1.1 Theory of Function Approximation

Function approximation often arises in mathematics as a method of dividing

a problem into smaller sections. The goal is generally to divide a complicated

problem into sections that are easier to work with. Function approximation can

also be used to estimate a relationship among data points, and therefore be used

to develop prediction models. The summation of a particular type of function

is often used to develop the approximation. For example, the function approx-

imation can use the summation of Gaussian functions with varying amplitudes

to approximate target functions. A Gaussian function can be described by

φ(x) = e
−(x−b)2

c (1)

where b is the distance from the origin on the x axis and c is a constant that

determines how wide the function is. The height can be adjusted by multiplying

the function with different values. In this case, the amplitude is one. Figure 1

shows an example of a one dimensional Gaussian function located at the origin

with an amplitude of one. A linear combination of these functions with varying

2

amplitudes can be used to approximate a target function.

The target function can be any function generally described by

f(x) : R −→ R (2)

where f is a function of x. The summation function can be defined as

g(x) =

n∑
i=1

aiφi(x) (3)

where φi is each Gaussian function, and ai is each amplitude. In the one di-

mensional case, the Gaussian functions can be distributed along the x axis and

the amplitudes to create the closest approximation of the target function can

be found. The amplitudes for each of the Gaussian functions are found by do-

ing an error minimization analysis. To find the cumulative error between the

target function and the approximation, the integral of the difference between

the target function f(x) and the approximation function g(x) is taken which is

represented by

err =
1

2

∫ b

a

[f(x)− g(x)]2dx (4)

where a and b are the horizontal bounds of the function. The difference between

f(x) and g(x) is squared the ensure a positive difference and the 1
2 is used as

convention because a derivative will be taken. A visual of this is shown by

Figure 2. To find each amplitude, the partial derivative of the error function is

taken with respect to each amplitude and set equal to zero since the goal is to

minimize the error.

∂err

∂ai
=

1

2

∫ b

a

∂

∂ai
[f(x)− g(x)]2dx = 0 (5)

3

Figure 2: This is a representation of the target function y = |3cos(5x)+5sin(3x)|
(blue line) being approximated using a summation of Gaussian functions (red
line) along with the difference of the two functions. The approximation function

was g = 7.8399 ∗ e−(x+0.6)2∗10 + 4.4364 ∗ e−(x−0.2)2∗10 + 1.5672 ∗ e−(x−0.99)2∗10 +
6.5491 ∗ e−(x−1.75)2∗10 + 7.7997 ∗ e−(x−2.55)2∗10. The difference function remains
around zero at the peaks of the target and approximation functions but drops
down at the sharp points of the target function. Sharp edges can be difficult
to approximate especially when solely using a sum of Gaussian functions. The
main goal was to accurately approximate the peaks.

4

Evaluating partial derivative of Equation 5, the resulting equation is

0 =

∫ b

a

[f(x)− g(x)](−φi(x))dx (6)

which can then be rewritten as

0 = −
∫ b

a

f(x)φi(x)dx+

n∑
j=1

aj

∫ b

a

φj(x)φi(x)dx (7)

Now let

bi =

∫ b

a

f(x)φi(x)dx (8)

and

wij =

∫ b

a

φi(x)φj(x)dx (9)

Thus, equation 7 becomes

0 = −bi +

n∑
j=1

ajwij (10)

Each i represents a partial derivative with respect to a new amplitude. The

collection of equations can be written as a matrix expression



w11, w12, ..., w1n

w21, w22, ..., w2n

...

wn1, wn2, ..., wnn





a1

a2

...

an


=



b1

b2

...

bn


(11)

5

with

W =



w11, w12, ..., w1n

w21, w22, ..., w2n

...

wn1, wn2, ..., wnn


(12)

A =



a1

a2

...

an


(13)

B =



b1

b2

...

bn


(14)

The amplitudes are then found by the following equation

A = W−1B (15)

where the result matrix is the approximate amplitudes for each of the Gaussian

functions. A very similar process was done for the two dimensional case with

the main difference being that a double integral of the difference function was

taken. Thus, equation 5 becomes

err =
1

2

∫ d

c

∫ b

a

[f(x, y)− g(x, y)]2dxdy (16)

where a and b are the x bounds and c and d are the y bounds. This results in

bi =

∫ d

c

∫ b

a

f(x, y)φi(x, y)dxdy (17)

6

Figure 3: This is an example a two dimensional Gaussian function with an
amplitude of one.

and

wij =

∫ d

c

∫ b

a

φi(x, y)φj(x, y)dxdy (18)

The rest of the analysis is then the same.

A two dimensional Gaussian function can be written as

φ(x, y) = ae
−(x−b)2−(y−c)2

d (19)

where b is the distance from the origin along the x axis, c is the distance from

the origin along the y axis, and d is the width of the function. Once again,

the amplitudes in a linear combination of the functions can be adjusted to

approximate a target function. Figure 3 shows a two dimensional Gaussian

function with an amplitude of one.

7

1.2 Gradient Descent

Gradient descent is an optimization algorithm that is used to minimize an error

function. This algorithm takes small steps in the direction of the negative

gradient of the error function until it reaches the minima. This means that it

walks downhill along the slope until it reaches the lowest point. The learning

rate η is used to determine the size of the step, and as the minima of the

function is approached the size of the step decreases. An example of this is

shown in Figure 4. An appropriate value for the learning rate must be chosen

since a very small value will cause the algorithm to require many iterations to

meet the minima while a very large learning rate will cause the algorithm to

overshoot the minima. The learning rate is adjusted depending on the function

the is being minimized, but typically values of 0.1, 0.01, or 0.001 are used. With

every iteration, the parameters of a function are adjusted and the gradient is

recalculated. This is repeated until the cost function has reached a minima.

Gradient descent is used to find these coefficients when they can’t be solved

for analytically, and the function must be differentiable. In this case, radial

basis functions are used to approximate a target image. A radial basis function

is a function that only depends on its distance from the origin. An example

function, as used before, is a Gaussian function. A linear combination of these

functions can be used to estimate a target function. The estimation is done

by finding the weights on each of the radial basis functions that minimize the

error function. Doing this, takes a complex function and makes it more readily

understood so the it becomes easier to manipulate. This method can be derived

by starting with an error function.

E =

m∑
i=1

1

2
(yi − ŷi)2 (20)

Here, y is the target function and ŷ is the approximation function. Since in

8

Figure 4: An example graph of gradient descent being used to approach the
minima of a cost function f(x). Each point represents another iteration of the
algorithm and therefore another step. As the steps approach the minima the
step size decreases.

9

this case the error should always be positive, the difference between the target

function and approximation function is squared. This makes the error positive

and creates a greater error for outlying points. To get the error for all data

points, the sum of the errors for every data point can be found. This equation

is referred to as the sum of squared errors. The 1
2 is used as a convention since

the derivative will be taken at a later point. This is the same idea used with

the function approximation method except a summation is used instead of an

integral. The approximation function can be written more specifically with

ŷ =

n∑
j=1

ajφj(x) (21)

Where φj(x) represents a Gaussian function and aj is the amplitude of the

Gaussian function. Equation 20 then becomes

E =

m∑
i=1

1

2
(yi −

n∑
j=1

ajφj(x))2 (22)

The goal is to take small steps towards the minima of the function. To do this,

each coefficient of φj(x) can be updated by

aj = aj + ∆aj (23)

It can be said that

∆aj = −∇E (24)

Meaning that the change in aj should be in the direction of the negative gradient.

Therefore,

∆aj ∝ −
∂E

∂aj
(25)

The relationship can be rewritten as an equality by multiplying by the size of

10

the descent steps.

∆aj = −η ∂E
∂aj

(26)

Where η is known as the learning rate. This derivative can be represented by

∂E

∂aj
=

∂

∂aj
(

m∑
i=1

1

2
(yi −

n∑
j=1

ajφj)
2) (27)

Taking this derivative with the chain rule results in

∂E

∂aj
= (y − ŷ)(

∂y

∂aj
− ∂ŷ

∂aj
) (28)

This becomes

∂E

∂aj
= (y − ŷ)(0− ∂ŷ

∂aj
) (29)

Simplifying,

∂E

∂aj
= −(y − ŷ)

(
∂ŷ

∂aj

)
(30)

The partial derivative of ŷ can be written as

∂ŷ

∂aj
=

∂

∂aj

n∑
k=1

akφk (31)

This can be rewritten as

∂ŷ

∂aj
=

∂

∂aj
[a1φ1 + a2φ2 + ...+ anφn] (32)

Each partial derivative can be calculated by

∂

∂a1
[a1φ1 + a2φ2 + ...+ anφn] = φ1 + 0 + ...+ 0 = φ1 (33)

∂

∂a2
[a1φ1 + a2φ2 + ...+ anφn] = 0 + φ2 + ...+ 0 = φ2 (34)

11

∂

∂an
[a1φ1 + a2φ2 + ...+ anφn] = 0 + 0 + ...+ φn = φn (35)

This can be represented as

∂

∂aj

n∑
k=1

akφk = φj (36)

Rewriting equation 30 using equations 31 and 36 becomes

∂E

∂aj
= −(y − ŷ)φj (37)

Equation 26 becomes

∆aj = η(y − ŷ)φj (38)

Thus, equation 23 becomes

aj = aj + η(y − ŷ)φj (39)

And putting the summation notion back in,

aj = aj +

m∑
i=1

η(yi − ŷi)φj (40)

This is the equation to iteratively find the value of the amplitudes for each of

the Gaussian functions in the approximation function. This method can be

implemented into Python code so the approximations of functions can be visu-

alized. Figure 5 shows a target function in blue that is being approximated by

using gradient descent. The approximation function for 200 iterations is shown

in red. Each iteration calculates a new approximation function which is ideally

a better approximation than the one before it. The earlier approximations are

shown in a lighter red and with each iteration the color darkens. The darkest

color is the closest approximation to the target, showing that every iteration

12

Figure 5: This image shows a target function in blue and each of the 200
estimations of the target function in red. The color of the estimations becomes a
darker red with each iteration. The color darkens as the approximation function
approaches the target function which shows that the later estimations are a much
better approximation than the earlier estimations. The tail ends diverge showing
that a perfect approximation isn’t always possible and there are limitations to
this method.

13

Figure 6: This graph shows the target function and the current approxima-
tion along with the difference between the two. The target function used
was y = 3cos(5x) + 5sin(3x) and the found approximation function was

ŷ = 4.1582 ∗ e−(x−0.2)2∗10 + 1.3760 ∗ e−(x−0.99)2∗10. Most of the difference func-
tion is approximately showing that the approximation was a good estimation of
the target function even though the tail ends diverge.

was a closer approximation. Figure 6 shows the target function with the ap-

proximation and the difference between the two functions. The goal is to get

the difference function to be zero and the difference function stays right around

zero and only diverges at the very end.

This method can be extended to the two dimensional case to approximate

approximate images. The theory behind the two dimensional case uses the same

methods as described in the one dimensional case. When approximating images,

a grid of Gaussian functions can be created with initial amplitudes of one. The

gradient descent algorithm can the adjust each amplitude to best approximate

14

Figure 7: The image on the left is the target image and the image on the right
is the approximation of the target image using 700 Gaussian functions after 100
iterations. The approximation image is slightly blurred but is still an accurate
representation of the target image.

the target. Figure 7 shows a target image and the approximation after 100

iterations using 700 Gaussian functions.

2 Coding

The graphs shown for each of the figures were developed either in Octave or in

Python. Octave is a software that is used primarily for numerical computations.

There are many tools for solving mathematical problems and graphing results.

The method of function approximation involves a great deal of linear algebra for

which the coding process within Octave is intuitive. For these reasons, function

approximation codes were written in Octave. The first code used five Gaussian

functions to approximate a one-dimensional target function. This code was then

extended to the two dimensional case so that images could be approximated.

After this point, the Octave code and all other code was written in Python. By

implementing the function approximation method into Python, a comparison

between the approximations made in Octave and Python could be made. Im-

plementation in Python also allows for the inclusion of hardware. Python can

15

establish a serial connection with Arduino so any work done in Python can be

extended to Arduino. Python has a wider range of applications than Octave

and is therefore less mathematically based. Because of this, there are more

steps involved when coding function approximation. While the implementation

is more challenging, the same goals can still be achieved.

2.1 Octave Code

The Octave code for the one and two dimensional cases are described in Ap-

pendix A.

2.1.1 One Dimensional Function Approximation

For the one dimensional case, the first section of code

dx = 0.001;

x = [-1:dx:3];

y = abs(3*cos(x*5)+5*sin(x*3)); % target function to approximate.

ea = exp((-(x+0.6).^2)*10);

eb = exp((-(x-0.2).^2)*10);

ec = exp((-(x-0.99).^2)*14);

ed = exp((-(x-1.75).^2)*10);

ee = exp((-(x-2.55).^2)*10);

defines the different x values that the functions will be evaluated at, the target

function y, and five Gaussian functions along the x-axis. The next section

bf = [ea; eb; ec; ed; ee];

W = [];

B = [];

puts each of the Gaussian functions into a basis function matrix and defines two

empty matrices W and B. These will serve the same purpose as the W and B

16

matrices described in the function approximation method. The for loops

for i = 1:5

for j = 1:5

W(i,j) = sum(bf(i,:).*bf(j,:)*dx);

endfor

endfor

for i = 1:5

B(i,1) = sum(bf(i,:).*y.*dx);

endfor

calculate the values for the W and B matrices by using equations 9 and 8. In

the final section,

A = inv(W) * B;

plot(x,y, x,(A(1,1)*ea+A(2,1)*eb+ A(3,1)*ec+A(4,1)*ed+A(5,1)*ee),

x, y-(A(1,1)*ea+A(2,1)*eb+ A(3,1)*ec+A(4,1)*ed+A(5,1)*ee))

legend ({"Target Function", "Approximation", "Difference"},

"location", "east");

the amplitudes of each Gaussian function are found and the target, approxima-

tion, and difference functions are plotted. The resulting graph is seen in Figure

2.

2.1.2 Two Dimensional Function Approximation

The two dimensional case approximates an image. The first section of code

clf;

colormap gray;

axis xy;

dx=1;

dy=1;

x = 1:dx:100;

y = 1:dy:75;

[xx,yy]=meshgrid(x,y);

17

defines the length of the x and y axes, the number of points that will be evaluated

for each variable, and sets up the two dimensional grid of points. Since an image

will be used as a target function,

m = imread(’test2.jpg’);

n = imresize(m,[75,100]);

gr = rgb2gray(n);

c = imcomplement(gr);

the image must be imported and resized. For this project, the gray-scale and

complement of the image were taken. Many Gaussian functions are needed to

accurately represent images, so a grid of evenly distributed Gaussian functions

is created with

mu = [];

x1 = 30;

k1 = 1;

xnum = 9;

ynum = 10;

total = xnum*ynum;

for i = 1:xnum

for j = 1:ynum

mu(1,k1)= x1;

k1 = k1+1;

endfor

x1 = x1+5;

endfor

k2 = 1;

for i = 1:xnum

y1 = 10;

for j = 1:ynum

mu(2,k2) = y1;

k2 = k2+1;

y1 = y1+5;

endfor

endfor

mu2 = mu’;

18

brightness = 10;

bf = [];

for i = 1:total

bf(i,:) = exp(-((xx(:)-mu2(i,1)).^2)/brightness-((yy(:)

-mu2(i,2)).^2)/brightness);

endfor

Where there are 90 total Gaussian functions that start from the point (30,10)

and end at (75,60) forming a grid that is 9 Gaussian functions wide and 10

Gaussian functions high. The first two sets of nested for loops find the x and

y coordinates of each Gaussian function and store them in the mu matrix. The

last for loop creates a Gaussian function for each point and stores them in a

basis function matrix. The next block of code

Tr=c(:)’;

W = [];

B = [];

for i = 1:total

for j = 1:total

W(i,j) = sum(sum(bf(i,:).*bf(j,:)*dx)*dy);

endfor

endfor

for i = 1:total

B(i,1) = sum(sum(bf(i,:).*Tr.*dx)*dy);

endfor

A = inv(W) * B;

has the same idea as the one dimensional case where the first set of for loops

finds the values for the W matrix and the final for loop finds the values for

the B matrix. A double sum is now used because the integration is over two

dimensions instead of one. The last line finds the amplitudes of each Gaussian

function. In the final section of code

19

Figure 8: The image on the left is the target image after being edited for
approximation. The image on the right is the approximation of the target
image using a grid of 90 Gaussian functions. Since only 90 Gaussian functions
were used, the approximation image is pixelated but still accurately represents
the target image.

sum1 = 0;

for i = 1:total

sum1 = sum1 + bf(i,:)*A(i,1);

endfor

sum1 = reshape(sum1, [75,100]);

subplot(1,2,1)

imagesc(x, y, c)

subplot(1,2,2)

imagesc(x, y, sum1)

colormap gray;

the approximation function is created by multiplying each Gaussian function

by its corresponding amplitude and summing all the functions together. The

target image and approximation image are then plotted and shown in Figure 8.

Using the two dimensional case, the distribution of Gaussian functions was

20

Figure 9: This is another example of an image approximation using Octave.

adjusted from a grid to a random placement. This was done by using a random

number generator to determine the placement of Gaussian functions. Figure 10

shows the output of this method using 1000 randomly placed Gaussian functions.

2.2 Python Code

The final Python codes for function approximation in the one and two dimen-

sional cases can be found in Appendix B. The Gradient Descent code is found in

Appendix C. To translate the Octave code into the Python language, the same

steps that were applied in building the Octave code were used. First, the one

dimensional function approximation was translated into Python. An example

output of this Python code is shown in Figure 11. The Python packages numpy

and matplotlib where used for the development since both function similarly to

how Octave functions. All matrices were converted to numpy matrices to allow

for manipulation, and all graphs were plotted using matplotlib.

21

Figure 10: The image on the left is the target image after being edited for
approximation. The image on the right is the approximation of the target
image using 1000 randomly placed Gaussian functions. Since 1000 Gaussians
were used, the approximation image is of high quality and is a very accurate
estimate of the target image.

2.2.1 One Dimensional Function Approximation

The first section of code is the same as before

import matplotlib.pyplot as plt

import numpy as np

import math

dx = 0.01

x = np.arange(-1., 3., dx)

y = 3*np.cos(5*x)+ 5*np.sin(3*x)

ea = np.exp((-(x+0.6)**2)*10)

eb = np.exp((-(x-0.2)**2)*10)

ec = np.exp((-(x-0.99)**2)*10)

ed = np.exp((-(x-1.75)**2)*10)

ee = np.exp((-(x-2.55)**2)*10)

bf = [[ea],

[eb],

[ec],

[ed],

[ee]]

22

Figure 11: This is an example of a one dimensional function approximation
using Python. The target function of y = 3cos(5x) + 5sin(3x) is shown in blue,

the approximation of the target with function g = −8.1050 ∗ e−(x+0.6)2∗10 +
4.6712∗ e−(x−0.2)2∗10 + 1.6849∗ e−(x−0.99)2∗10−7.0481∗ e−(x−1.75)2∗10 + 8.1259∗
e−(x−2.55)2∗10 is shown in red, and the difference between the two is shown in
green. The difference function is almost zero for most of the graph and only
diverges slightly at the ends showing that the approximation function is a good
estimation of the target.

23

with the exception of a few import statements. Since Python is less mathemat-

ically based than Octave, these import statements are needed to run packages

that allow for numerical computations and graphing. The rest of the section is

essentially the same in that it defines the target function, sets up each of the

Gaussian functions, and puts each Gaussian into a basis function matrix. The

next step is the same as before

bf = np.array(bf)

W = np.empty((5,5))

for i in range(5):

for j in range(5):

W[i][j] = np.sum((bf[i]*bf[j]*dx))

W = np.array(W)

B = np.empty((5,1))

for i in range(5):

B[i][0] = np.sum((bf[i]*y*dx))

B = np.array(B)

where the values for the W and B matrices are calculated. Using these,

inv = np.linalg.inv(W)

A = inv.dot(B);

print(A)

fig, ax = plt.subplots()

ax.plot(x, y,’b--’, label=’Target’)

ax.plot(x, A[0][0]*ea+A[1][0]*eb+A[2][0]*ec+A[3][0]*ed+A[4][0]

*ee,’r--’,

label=’Approximation’)

ax.plot(x, y-(A[0][0]*ea+A[1][0]*eb+A[2][0]*ec+A[3][0]*ed+A[4][0]

*ee),’g--’,

label= ’Difference’)

leg = ax.legend();

the amplitudes for each of the Gaussians can be found and the results are

24

plotted. The resulting graph can be seen in Figure 11.

2.2.2 Two Dimensional Function Approximation

For the image approximation, the Pillow and matplotlib packages were used to

manipulate the image so it could be approximated. Once again, the first section

of code sets up the xy plane and imports the image. The image must then be

adjusted to allow for approximation.

import matplotlib.image as mpimg

from matplotlib import cm

from PIL import Image

import numpy as np

dx = 1

dy = 1

x = np.arange(0., 75., dx)

y = np.arange(0., 100., dy)

xx, yy = np.meshgrid(x, y)

print(xx.shape, yy.shape, (xx.flatten()).ndim)

def rgb2gray(rgb):

return np.dot(rgb[...,:3], [0.299, 0.587, 0.144])

m = Image.open("test2.jpg")

n = m.resize((75, 100))

n = np.array(n)

gray = rgb2gray(n)

c=255-gray

n = np.array(c)

print(n.shape)

plt.imshow(c, cmap = plt.get_cmap(’gray’))

plt.show()

The manipulation of the image is slightly more involved with Python than with

Octave but the same results are achieved. A grid of Gaussians is created by

25

xnum = 17

ynum = 18

total = xnum*ynum

mu = np.empty((2,total))

x1 = 20

k1 = 0

for i in range(xnum):

for j in range(ynum):

mu[0][k1]= x1

k1 = k1+1

x1 = x1+2

k2 = 0;

for i in range(xnum):

y1 = 10;

for j in range(ynum):

mu[1][k2] = y1;

k2 = k2+1;

y1 = y1+4;

mu2 = np.transpose(mu)

brightness = 5;

bf = list()

for i in range(total):

curr_bf = np.exp(-(xx-mu2[i][0])**2/brightness-(yy-mu2[i][1])

**2/brightness)

bf.append(curr_bf)

This results in a 17x18 grid of Gaussians that starts at the point (20, 10) and

ends at (54, 82). The Gaussians are stored in a basis function matrix which is

then used to find the values of the W and B matrices.

Tr = np.empty((7500,1))

Tr = (c)

W = np.empty((total, total))

B = np.empty((total,1))

for i in range(total):

26

for j in range(total):

W[i][j] = np.sum((np.sum((bf[i]*bf[j]*dx))*dy))

for i in range(total):

B[i][0] = np.sum((np.sum((bf[i]*c*dx))*dy))

inv = np.linalg.inv(W)

A = inv.dot(B)

The values for the W and B matrices are then used to find the amplitudes and

the approximation function can be formed.

sum1 = 0;

for i in range(total):

sum1 = sum1 + bf[i]*A[i][0]

sum1 = np.reshape(sum1, (100,75))

sum1 = np.array(sum1)

#fig, (ax1, ax2) = plt.subplots(2)

#ax1.imshow(c, cmap = plt.get_cmap(’gray’))

plt.imshow(sum1, cmap=cm.Greys_r)

plt.show()

Once the approximation function is formed, the resulting image is graphed and

shown in shown in Figure 12.

2.2.3 One Dimensional Gradient Descent

Gradient Descent was first implemented in the first dimension. The first part

of the code is the same as before

import matplotlib.pyplot as plt

import numpy as np

dx = 0.01

x = np.arange(0, 1.5, dx)

27

Figure 12: The graph on the left shows the target image and the graph on the
right shows the approximation image developed in Python using 306 Gaussian
functions.

y = 3*np.cos(5*x)+ 5*np.sin(3*x)

plt.plot(x,y,’b-’)

phi_1 = np.exp((-(x-0.2)**2)*10)

phi_2 = np.exp((-(x-0.99)**2)*10)

w_1=1

w_2=1

y_hat=(w_1*phi_1)+(w_2*phi_2)

plt.plot(x,y_hat,’r-’)

where y is the target function, phi 1 and phi 2 are Gaussian functions, w 1

and w 2 are each amplitude, and y hat is the current approximation function.

The next section of code begins the implementation of the Gradient Descent

algorithm.

learn = 0.4

def summation(y_hat, x_range, y):

total1 = 0

total2 = 0

28

total1 = np.sum((((y-y_hat)*phi_1)*0.1))

total2 = np.sum((((y-y_hat)*phi_2)*0.1))

return total1 / len(x_range), total2 / len(x_range)

The learning rate was set to 0.4 and the summation function calculates part

of equation 38. These values can then be used to find the amplitude of each

function.

for i in range(200):

s1, s2 = summation(y_hat, x, y)

w_1 = w_1 + learn * s1

w_2 = w_2 + learn * s2

y_hat=(w_1*phi_1)+(w_2*phi_2)

plt.plot(x,y_hat, color=’r’, alpha=i/200)

plt.plot(x, y, ’b-’)

This section implements the function and equation 40 to find the amplitudes

for both Gaussian functions. Every iteration of this for loop creates a better

approximation of the function and this for loop iterates 200 times to create

the graph seen in Figure 7. The lighter red color shows earlier approximations

of the function and the darkest red shows the final approximation. The final

approximation is much closer to the target function than the first approximation.

2.2.4 Two Dimensional Gradient Descent

Gradient Descent was also used to estimate a target image. The setup of the

code was very similar to the other two dimensional python code. The image

was first adjusted for approximation and a grid of Gaussian functions was setup

and put into a basis function so the approximation function y hat could be set

up. After the initial setup, the algorithm could then be implemented.

29

learn = 0.01

total1 = list()

for i in range(100):

for j in range(total):

curr_total = np.sum((((y-y_hat1)*bf[j])*0.1))

avg = curr_total / len(xx)

total1.append(avg)

for k in range(total):

vals[k][0] = vals[k][0] + learn * total1[k]

y_hat = y_hat + vals[k][0]*bf[k]

The learning rate was set to 0.01 and the for loops are used to calculate part of

Equation 38 and Equation 40 so that the target function can be updated and

improved. The remainder of the code

y_hat = np.reshape(y_hat, (100,75))

y_hat = np.array(y_hat)

fig, (ax1, ax2) = plt.subplots(2)

ax1.imshow(y, cmap=cm.Greys_r)

ax2.imshow(y_hat, cmap=cm.Greys_r)

plt.show()

reshapes the target function and forms the graphs shown in Figure 7.

3 Arduino Setup

An Arduino board and a Neopixel grid can be used to display the approximation

image. An Arduino is a microcontroller that is used to control various types of

hardware. A Neopixel grid is an 8x8 grid of LED lights that can be controlled

with an Arduino. The brightness of each LED light can be adjusted to form

an image. Each LED would serve the same purpose as a Gaussian function

and the brightness of each LED would be similar to the amplitudes on each

30

Figure 13: This is a wiring diagram of the NeoPixel grid and the Arduino. A
resistor was also used between the data wire of the grid and the Arduino, and
a capacitor was used between the power source and the grid.

Gaussian function. The amplitudes found using the gradient descent method

can be manipulated and sent to Arduino by means of a serial connection. The

amplitudes must be adjusted to correspond to a particular brightness value

before they are sent to Arduino.

Figure 13 shows a wiring diagram of the Arduino board and the NeoPixel

grid. A resistor were also used between the data wire of the grid and the board

along with a capacitor between the grid and the power source. Figure 14 shows

a labeled picture of the Ardunio setup. The Neopixel grid has four wires: two

ground, one power, and one data. A capacitor is used between the power wires

and the power supply to protect the grid from any power surges or fluctuations

in power that may occur. An outside power supply is used so that the grid has

enough current to power the LEDs without drawing it from the USB port on

31

Figure 14: This shows the setup of the Arduino with the Neopixel grid. The
labels are as follows 1: Arduino board 2: Neopixel grid 3: Power wires to the
grid with red being the 5 volt wire and black being the ground 4: The green
wire is another ground and the red wire is for data transmission 5: A 470
ohm resistor that connects the data wire to pin 6 on the Arduino 6: A 1000
microfarad capacitor connecting the power wires of the grid to jumper wires 7:
Jumper wires that connect to an outside 5 volt power source 8: Power wires for
the outside power source 9: Data cable that connects the Arduino to a computer
via USB

32

the computer which could cause damage. The USB data cord is used to upload

code from Arduino IDE to the Arduino board. A resistor is needed between the

data wire and the Arduino board to protect the grid from any high current flow

from the Arduino. The resistor connects the data wire to pin 6 on the Arduino.

The Arduino has 14 data pins that are to transmit information from the board

to any hardware that is being used. All Neopixel products are designed to be

used on pin 6.

A serial connection was established between Python and Arduino, and Python

was used to control basic elements of Arduino. However, issues arose when

sending the amplitudes to Arduino to control the LEDs. Further research is

still needed to fix these issues and complete this extension to Arduino.

4 Conclusion

Function approximation has many uses and overall allows for easier readability

and manipulation of functions. Both the method of function approximation and

gradient descent showed accurate approximations when implemented in Octave

and Python. Even tough Python requires more steps to implement the methods

than Octave it can still achieve the same goal.

Once the gradient descent method was implemented into Python, the next

step was to incorporate the use of hardware. An Arduino can be used to control

a Neopixel grid to display the result image of gradient descent. Each amplitude

found by the algorithm can be manipulated and sent to Arduino through a

serial connection. Even though a serial connection was established between

Python and Arduino, there were still problems using the amplitudes to control

individual LEDs so this extension could not be finished.

33

5 Appendix A

This is the octave code that approximates a function in the one dimensional

case.

dx = 0.001;

x = [-1:dx:3];

y = abs(3*cos(x*5)+5*sin(x*3)); % target function to approximate.

ea = exp((-(x+0.6).^2)*10);

eb = exp((-(x-0.2).^2)*10);

ec = exp((-(x-0.99).^2)*14);

ed = exp((-(x-1.75).^2)*10);

ee = exp((-(x-2.55).^2)*10);

bf = [ea; eb; ec; ed; ee];

W = [];

B = [];

for i = 1:5

for j = 1:5

W(i,j) = sum(bf(i,:).*bf(j,:)*dx);

endfor

endfor

for i = 1:5

B(i,1) = sum(bf(i,:).*y.*dx);

endfor

vals = inv(W) * B;

plot(x,y, x,(vals(1,1)*ea+vals(2,1)*eb+ vals(3,1)*ec+vals(4,1)*ed+vals(5,1)*ee))

legend ({"Target Function", "Approximation"}, "location", "east");

This is the octave code that uses the two dimensional case to approximate

an image.

clf;

colormap gray;

axis xy;

dx=1;

dy=1;

x = 1:dx:100;

34

y = 1:dy:75;

[xx,yy]=meshgrid(x,y);

m = imread(’test2.jpg’);

n = imresize(m,[75,100]);

gr = rgb2gray(n);

c = imcomplement(gr);

mu = [];

x1 = 30;

k1 = 1;

xnum = 9;

ynum = 10;

total = xnum*ynum;

for i = 1:xnum

for j = 1:ynum

mu(1,k1)= x1;

k1 = k1+1;

endfor

x1 = x1+5;

endfor

k2 = 1;

for i = 1:xnum

y1 = 10;

for j = 1:ynum

mu(2,k2) = y1;

k2 = k2+1;

y1 = y1+5;

endfor

endfor

mu2 = mu’;

brightness = 10;

bf = [];

for i = 1:total

bf(i,:) = exp(-((xx(:)-mu2(i,1)).^2)/brightness-((yy(:)-mu2(i,2)).^2)/brightness);

endfor

Tr=c(:)’;

W = [];

B = [];

for i = 1:total

35

for j = 1:total

W(i,j) = sum(sum(bf(i,:).*bf(j,:)*dx)*dy);

endfor

endfor

for i = 1:total

B(i,1) = sum(sum(bf(i,:).*Tr.*dx)*dy);

endfor

A = inv(W) * B;

sum1 = 0;

for i = 1:total

sum1 = sum1 + bf(i,:)*A(i,1);

endfor

sum1 = reshape(sum1, [75,100]);

subplot(1,2,1)

imagesc(x, y, c)

subplot(1,2,2)

imagesc(x, y, sum1)

colormap gray;

6 Appendix B

This is the python code for a one dimensional function approximation.

import matplotlib.pyplot as plt

import numpy as np

import math

dx = 0.01

x = np.arange(-1., 3., dx)

y = 3*np.cos(5*x)+ 5*np.sin(3*x)

ea = np.exp((-(x+0.6)**2)*10)

eb = np.exp((-(x-0.2)**2)*10)

ec = np.exp((-(x-0.99)**2)*10)

ed = np.exp((-(x-1.75)**2)*10)

ee = np.exp((-(x-2.55)**2)*10)

36

bf = [[ea],

[eb],

[ec],

[ed],

[ee]]

bf = np.array(bf)

W = np.empty((5,5))

for i in range(5):

for j in range(5):

W[i][j] = np.sum((bf[i]*bf[j]*dx))

W = np.array(W)

B = np.empty((5,1))

for i in range(5):

B[i][0] = np.sum((bf[i]*y*dx))

B = np.array(B)

inv = np.linalg.inv(W)

A = inv.dot(B);

print(A)

fig, ax = plt.subplots()

ax.plot(x, y,’b--’, label=’Target’)

ax.plot(x, A[0][0]*ea+A[1][0]*eb+A[2][0]*ec+A[3][0]*ed+A[4][0]*ee,’r--’,

label=’Approximation’)

ax.plot(x, y-(A[0][0]*ea+A[1][0]*eb+A[2][0]*ec+A[3][0]*ed+A[4][0]*ee),’g--’,

label= ’Difference’)

leg = ax.legend();

This is the python code used to approximate a two dimensional image.

import matplotlib.image as mpimg

from matplotlib import cm

from PIL import Image

import numpy as np

dx = 1

dy = 1

x = np.arange(0., 75., dx)

y = np.arange(0., 100., dy)

37

xx, yy = np.meshgrid(x, y)

print(xx.shape, yy.shape, (xx.flatten()).ndim)

def rgb2gray(rgb):

return np.dot(rgb[...,:3], [0.299, 0.587, 0.144])

m = Image.open("test2.jpg")

n = m.resize((75, 100))

n = np.array(n)

gray = rgb2gray(n)

c=255-gray

n = np.array(c)

print(n.shape)

plt.imshow(c, cmap = plt.get_cmap(’gray’))

plt.show()

xnum = 17

ynum = 18

total = xnum*ynum

mu = np.empty((2,total))

x1 = 20

k1 = 0

for i in range(xnum):

for j in range(ynum):

mu[0][k1]= x1

k1 = k1+1

x1 = x1+2

k2 = 0;

for i in range(xnum):

y1 = 10;

for j in range(ynum):

mu[1][k2] = y1;

k2 = k2+1;

y1 = y1+4;

mu2 = np.transpose(mu)

brightness = 5;

bf = list()

for i in range(total):

curr_bf = np.exp(-(xx-mu2[i][0])**2/brightness-(yy-mu2[i][1])**2/brightness)

38

bf.append(curr_bf)

Tr = np.empty((7500,1))

Tr = (c)

W = np.empty((total, total))

B = np.empty((total,1))

for i in range(total):

for j in range(total):

W[i][j] = np.sum((np.sum((bf[i]*bf[j]*dx))*dy))

for i in range(total):

B[i][0] = np.sum((np.sum((bf[i]*c*dx))*dy))

inv = np.linalg.inv(W)

A = inv.dot(B)

sum1 = 0;

for i in range(total):

sum1 = sum1 + bf[i]*A[i][0]

sum1 = np.reshape(sum1, (100,75))

sum1 = np.array(sum1)

#fig, (ax1, ax2) = plt.subplots(2)

#ax1.imshow(c, cmap = plt.get_cmap(’gray’))

plt.imshow(sum1, cmap=cm.Greys_r)

plt.show()

7 Appendix C

This is the python code that uses gradient descent to approximate a one dimen-

sional graph.

import matplotlib.pyplot as plt

import numpy as np

dx = 0.01

x = np.arange(0, 1.5, dx)

39

y = 3*np.cos(5*x)+ 5*np.sin(3*x)

plt.plot(x,y,’b-’)

phi_1 = np.exp((-(x-0.2)**2)*10)

phi_2 = np.exp((-(x-0.99)**2)*10)

w_1=1

w_2=1

y_hat=(w_1*phi_1)+(w_2*phi_2)

plt.plot(x,y_hat,’r-’)

learn = 0.4

def summation(y_hat, x_range, y):

total1 = 0

total2 = 0

total1 = np.sum((((y-y_hat)*phi_1)*0.1))

total2 = np.sum((((y-y_hat)*phi_2)*0.1))

return total1 / len(x_range), total2 / len(x_range)

for i in range(200):

s1, s2 = summation(y_hat, x, y)

w_1 = w_1 + learn * s1

w_2 = w_2 + learn * s2

y_hat=(w_1*phi_1)+(w_2*phi_2)

plt.plot(x,y_hat, color=’r’, alpha=i/200)

plt.plot(x, y, ’b-’)

This is the python code that uses gradient descent to approximate an image.

from matplotlib import cm

import matplotlib.pyplot as plt

import numpy as np

import matplotlib.image as mpimg

from PIL import Image

import numpy as np

from random import randint

dx = 1

dy = 1

X = np.arange(0., 75., dx)

40

Y = np.arange(0., 100., dy)

xx, yy = np.meshgrid(X, Y)

print(xx.shape, yy.shape, (xx.flatten()).ndim)

def rgb2gray(rgb):

return np.dot(rgb[...,:3], [0.299, 0.587, 0.144])

m = Image.open("test2.jpg")

n = m.resize((75, 100))

n = np.array(n)

gray = rgb2gray(n)

y=255-gray

plt.imshow(y, cmap = plt.get_cmap(’gray’))

plt.show()

xnum = 20

ynum = 35

total = xnum*ynum

mu = np.empty((2,total))

x1 = 20

k1 = 0

for i in range(xnum):

for j in range(ynum):

mu[0][k1]= x1

k1 = k1+1

x1 = x1+2

k2 = 0;

for i in range(xnum):

y1 = 10;

for j in range(ynum):

mu[1][k2] = y1;

k2 = k2+1;

y1 = y1+2;

mu2 = np.transpose(mu)

print(np.shape(mu2))

brightness = 5;

bf = list()

41

for i in range(total):

curr_bf = np.exp(-(xx-mu2[i][0])**2/brightness-(yy-mu2[i][1])**2/brightness)

bf.append(curr_bf)

vals = np.empty((total,1))

y_hat = 0

for i in range(total):

vals[i][0] = 0

y_hat = y_hat + vals[i][0]*bf[i]

learn = 0.01

total1 = list()

for i in range(100):

for j in range(total):

curr_total = np.sum((((y-y_hat1)*bf[j])*0.1))

avg = curr_total / len(xx)

total1.append(avg)

for k in range(total):

vals[k][0] = vals[k][0] + learn * total1[k]

y_hat = y_hat + vals[k][0]*bf[k]

y_hat = np.reshape(y_hat, (100,75))

y_hat = np.array(y_hat)

fig, (ax1, ax2) = plt.subplots(2)

ax1.imshow(y, cmap=cm.Greys_r)

ax2.imshow(y_hat, cmap=cm.Greys_r)

plt.show()

42

References

[1] M. Buhmann. Radial basis function. Scholarpedia, 5(5):9837, 2010. revision

#137035.

[2] Jason Lachniet. Introduction to GNU Octave: A brief

tutorial for linear algebra and calculus students. 2020.

http://www.wcc.vccs.edu/sites/default/files/Introduction-to-GNU-

Octave.pdf.

[3] Hans Petter Langtangen. Approximation of Func-

tions. 2016. http://hplgit.github.io/num-methods-for-

PDEs/doc/pub/approx/pdf/approx-4print-A4.pdf.

[4] Amit Saha. Doing Math with Python. 2015. http://index-of.es/Varios-

2/Doing%20Math%20with%20Python.pdf.

[5] Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. Dive into

Deep Learning. 2020. https://d2l.ai.

43

