
The Student-Course Assignment Problem:

Simulated Annealing for Bipartite Graph

Optimization and Comparative Analysis

by

Ryan Kulyassa

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Bachelor in Arts

With Specialized Honors in Mathematics

May 2025

i

Abstract

The Student-Course Assignment Problem (SCAP) models the challenge

of assigning students to courses based on ranked preferences while satisfying

real-world constraints such as course capacities and enrollment considera-

tions. This problem arises frequently in academic institutions, where admin-

istrators must balance student demand with limited resources and ensure

equitable access to course offerings. A traditional optimization approach

like the Hungarian Algorithm (HA) guarantees optimal matchings under

rigid conditions and assumes a square cost matrix with one-to-one assign-

ments. While mathematically elegant, HA struggles to accommodate real-

world considerations such as variable course capacities, enrollment distribu-

tion, and other complex constraints. It also suffers from poor scalability in

large datasets due to its cubic time complexity. In this thesis, we formalize

SCAP as a bipartite graph optimization problem and propose a heuristic

solution using Simulated Annealing (SA). SA offers greater flexibility in han-

dling complex, real-world constraints and provides fine-grained control over

the optimization process. We implement and test SA against an HA-based

implementation on real-world student preference datasets, comparing their

accuracy, runtime, and ability to manage enrollment variance—our chosen

real-world constraint. Our results show that SA achieves near-optimal solu-

tions with better scalability and adaptability, making it a strong candidate

for practical deployment in academic scheduling systems.

ii

Contents

1 Introduction 1

1.1 The Student-Course Assignment Problem 2

2 Formalization 6

2.1 Graphs . 6

2.2 Bipartite Graphs . 7

2.3 Weighted Graphs . 8

2.4 Adjacency Matrix . 9

2.4.1 Biadjacency Matrix . 11

2.5 Formalizing SCAP . 11

2.5.1 Weight Matrix . 11

2.5.2 Raw Preference Function 13

3 Background 14

3.1 Optimization . 14

3.2 Time Complexity and Big O 14

3.3 Historical Approaches . 16

3.3.1 Brute Force (Exhaustive Search) 16

3.3.2 Hungarian Algorithm 17

3.4 Simulated Annealing . 18

3.5 Relevant Literature . 19

4 Implementation 22

iii

4.1 Overview . 22

4.2 Constraints . 22

4.2.1 Courses . 22

4.2.2 Spread . 22

4.3 Workflow . 23

4.3.1 Initialization . 23

4.3.2 Objective Function/Score Evaluation 23

4.3.3 Neighborhood Exploration 24

4.3.4 Acceptance Criterion 24

4.3.5 Stopping Criterion . 25

4.4 Data Sourcing . 26

4.4.1 Data Anomalies . 26

5 Results 29

5.1 Objectives . 29

5.2 Computational Environment 29

5.3 Parameter Settings . 29

5.3.1 Initial Acceptance Probability 29

5.3.2 Preference Map . 30

5.3.3 Minimum Iterations and Stopping Criterion 30

5.3.4 Course Capacities . 31

5.3.5 Penalty Weight/Variance 31

5.4 Accuracy . 32

iv

5.5 Plots . 34

5.6 Large Data . 37

5.7 Variance . 37

5.8 Special Cases . 38

6 Discussion 40

6.1 Accuracy . 40

6.2 Runtime . 41

6.3 Variance . 42

6.4 Selection of Preference Maps 43

7 Conclusion 44

7.1 Further Research . 44

v

List of Tables

1 Comparison of common time complexities. 15

2 Dataset sizes . 26

3 Preference map . 30

4 Comparison of SA and HA accuracy across all three datasets . 33

5 Results for scaled versions of the 2014 dataset with default

parameters . 37

6 Results for various penalty weights on the 2022 dataset with

default parameters . 38

7 Comparison of results for special cases 39

vi

List of Figures

1 Simple graph . 6

2 Bipartite graph . 7

3 Not a bipartite graph . 8

4 Graph from Figure 1 with varying edge weights 9

5 Adjacency matrix M for Figure 1 10

6 Graph of the fictional university with varying edge weights . . 12

7 Weight matrix for student-course preferences, based on Figure 6 13

8 Classification of assignment problems [7] 20

9 SA progress for a single trial on the 2018 dataset 34

10 Close-up of iterations since improvement counter 35

11 Close-up of scores early in runtime, iterations 0 to 160,000 . . 36

12 Close-up of scores later in runtime, iterations 550,000 to 950,000 36

1

1 Introduction

Assignment problems are a fundamental class of optimization problems that

arise in many real-world contexts, from workforce scheduling and resource

allocation to transportation logistics and academic course registration. At

their core, these problems involve assigning one set of entities to another in

a way that optimizes a given objective—such as minimizing cost, maximiz-

ing efficiency, or ensuring fairness—while adhering to various constraints. In

some cases, the objective is straightforward, like pairing workers with jobs

based on skill compatibility, while in others, the challenge lies in balancing

competing priorities, distributing limited resources, and other more nuanced

scenarios. One well-known example of a classical assignment problem is

where costs are assigned to agent-task pairings, and the goal is to find an

optimal matching that minimizes total cost. However, real-world applica-

tions often introduce complexities beyond this standard paradigm, requiring

more flexible and dynamic approaches. The student-course assignment

problem is one such case, where student preferences, course capacities, in-

stitutional policies, among many other real-world factors create a non-trivial

optimization landscape. (We will refer to the student-course assignment

problem as SCAP)

In this thesis, we introduce and formalize SCAP and propose a heuristic

solution using a simulated annealing algorithm. As discussed in later chap-

ters, historical approaches to SCAP have several limitations with regard to

2

real-world constraints that arise, and simulated annealing is shown to nav-

igate these challenges due to its flexible and adaptive nature. Finally, we

explore an implementation for this algorithm and assess its efficiency and

accuracy compared to traditional algorithms.

1.1 The Student-Course Assignment Problem

Imagine that you are in charge of a college registration process, where stu-

dents have listed their preferences for the specific courses they want to take.

Their decisions are based on a variety of factors: Some may prioritize gradu-

ation requirements, while others may choose based on interest, time slots, or

the professor teaching the course. Additionally, each course has a capacity

for how many students it can accommodate. Your task is to assign students

to courses, based on their preferences listed, to maximize the overall ‘satis-

faction’ of the student body.

Ideally, each student would be assigned their 1st choice. However, real-

world constraints often make this infeasible and instead introduce difficult

questions: Who gets their 1st choice when there is competition for a class?

Who has to settle for a second or third option? How or will you attempt to

prevent overcrowding or under-enrolling? Furthermore, the challenge quickly

scales in complexity when considering larger numbers of students and courses.

To illustrate this problem, let’s consider a simple example involving a

students from a fictional university. Suppose there are five students—Ana,

Bob, Cat, Dan, and Eva—and four courses—English, History, Math, and

3

Science—with capacities of two, three, two, and one seats, respectively. Their

listed course preferences are as follows:

To which courses will we assign the students? A simple approach is to go

down the list and assign each student to their first preference. We can make

three assignments before reaching a problem: Ana to Math, Bob to Math,

Cat to English. However, Dan’s first preference is Math, but the course is

already filled as it has a capacity of two after we assigned Ana and Bob. So

Dan will be assigned to his second preference. Note that this decision was

somewhat arbitrary—it so happened that Dan appeared later in the list, and

so the course he wanted was unfortunately already filled by the time we had

a chance to assign him. Even more troubling is Eva’s assignment—Science

and Math are already filled—and so we have to assign Eva to history. Our

assignment now looks like:

Ultimately, we were able to satisfy three of the students with their first

preference, one student with their second, and a last student with their third.

But is there a way we could have made Dan and Eva happier? The answer

4

is yes. Consider that instead of assigning Dan to his second preference, we

assigned Ana to her second, English. We do this because we recognize the

trend that these students are STEM-oriented, and Ana is the only one besides

Cat who listed a non-STEM course as their second preference. With this,

our new assignment might look like:

By taking a more “holistic” approach, we were able to achieve a more

optimal solution. However, it’s important to note that while this solution is

optimal in the context of student preference, it is not optimal with regard to

other factors, such as course variety. In this case, History had a capacity for

three students, yet we did not assign anyone. Perhaps in another instance

5

we want to ensure no course is left empty. This added context is important

when considering an algorithmic approach to the problem, especially when

analyzing which constraints are accounted for and which are not.

Although somewhat trivial (real courses have greater capacities and many

more students involved), this example serves to highlight the core of the

student-course assignment problem and some of the complex implications

and nuances that inevitably arise in real-world contexts.

6

2 Formalization

2.1 Graphs

A standard tool in mathematics used to represent distinct nodes and connec-

tions between is a graph. The following formalization is based on notation

outlined in [4]. A graph consists of a set V of vertices and a set E of 2-element

subsets of V called edges. The field of Graph Theory explores these ob-

jects, their properties, and their applications. Pictured below in Figure 1 is

a simple example of a graph. It is important to note that the positional ar-

rangement of vertices in a graph is arbitrary, while the more defining feature

is the set of edges present within the graph.

Figure 1: Simple graph

7

2.2 Bipartite Graphs

To model SCAP, we make use of a bipartite graph, a special type of graph

whose vertices V can be partitioned into two disjoint sets V1 and V2 such

that every edge in E joins a vertex of V1 with a vertex of V2. In other words,

no edges exist between pairs of vertices in the same partite set (partition).

Figures 2 and 3 below are two examples of graphs. Figure 2 is a bipartite

graph, as we can partition the vertices into two disjoint subsets, indicated by

the dashed ellipses. Figure 3 however, is not a bipartite graph, due to the

“problematic” edges indicated in red that connect vertices within the same

set. Therefore, no matter how we rotated or reconfigured the vertices for

the graph in Figure 3, there will never be a way to produce two disjoint sets

satisfying the bipartite definition.

Figure 2: Bipartite graph

Nevertheless, Figures 3 is still a graph. Then why do we require a bipartite

8

Figure 3: Not a bipartite graph

graph to represent SCAP? If we think about the first set of vertices V1 as

students and the complementary set V2 as courses, it then follows that the

edges represent the assignment of students to courses. For example, consider

a student s ∈ V1 and course c ∈ V2, then the edge e = (s, c) ∈ E translates

as “assign student s to course c”. If an edge existed between two students,

i.e. e = (s1, s2), this would mean “assign student s1 to course s2”, which

doesn’t make sense in our context. Clearly, SCAP requires we partition our

set of vertices into distinct student-course groups.

2.3 Weighted Graphs

We now have an understanding of how the graph in Figure 1 can represent

one possible assignment of students to courses. We will from now on refer to

such an assignment as amatching. As we saw in Chapter 1, a set of students

and courses can have many different possible matchings, and some will be

“better” or “worse” than others. Fortunately, Graph Theory provides a

9

higher-level object that allows us to model the concept of student preferences

that we introduced. A weighted graph is a graph G = (V,E,w), where

(V,E) defines the vertex-edge structure as before, and w : E → R is a weight

function that maps edges to real-number values. In traditional assignment

problems these can correspond to costs or capacities, but in our case they

will represent student preferences. Figure 4 depicts the same graph from

Figure 1 with the addition of varying edge weights.

Figure 4: Graph from Figure 1 with varying edge weights

2.4 Adjacency Matrix

Next we introduce the use of matrices, mathematical objects representing

two dimensions of data. Matrices can be applied to Graph Theory if we

think of each dimension of a matrix as the set of all vertices. We then have a

|V |×|V |matrixM , with binary entries (0 or 1) corresponding to the presence

of an edge between any two vertices vi and vj. We call such a matrix the

10

adjacency matrix of a graph. Formally, we have

mij =

1, if vivj ∈ E(G)

0, otherwise

Figure 5 below shows the adjacency matrix M for the graph in Figure 1. The

graph is reproduced for convenience.

0 1 1 1 0
1 0 1 0 1
1 1 0 0 0
1 0 0 0 1
0 1 0 1 0

Figure 5: Adjacency matrix M for Figure 1

To illustrate the connection between this matrix and the graph, consider

that the matrix entry in the second row and third column is 1, i.e. m2,3 = 1.

Then, we expect to find an edge between vertices v2 and v3. In the graph,

e1 is the edge between v1 and v1. Note also that m2,4 = 0. The graph agrees

that there is no edge between vertices v2 and v4.

11

2.4.1 Biadjacency Matrix

A biadjacency matrix is a special type of adjacency matrix for a bipartite

graph, where rows correspond to vertices in V1 and columns correspond to

vertices in V2. Since |V1| ̸= |V2| in general, the biadjacency matrix is not

necessarily square (equal number of rows and columns).

2.5 Formalizing SCAP

Putting all these formalized tools to work, we can now mathematically model

the example scenario of SCAP outlined in our fictional university. The graph

in Figure 6 includes all possible assignments between students and courses

(a complete bipartite graph), including preferences indicated by colored

edges (green: 1st choice, yellow: 2nd choice, red: 3rd choice). The solid-line

edges correspond to one possible matching, while the dashed lines correspond

to all other possible matchings. Course capacities are listed in parantheses.

Finally, we can rename the vertex subsets V1 and V2 to C and S, for students

and courses.

2.5.1 Weight Matrix

It is helpful to introduce a weight matrix W , depicted in Figure 7, an |S|×

|C| matrix that assigns numerical values to student preferences. Specifically,

each entry ws,c corresponds to student s’s preference for course c, where

higher preferences generally correspond to a higher entry. For example, one

12

Figure 6: Graph of the fictional university with varying edge weights

way we can assign weights may look like:

Preference Weight Entry

1st choice 3

2nd choice 2

3rd choice 1

No preference 0

Note that the weights we assign to these preferences is arbitrary, and

doesn’t necessarily have to be linear.

13

2 0 3 1
1 0 3 2
3 0 2 1
0 1 3 2
0 1 2 3

Figure 7: Weight matrix for student-course preferences, based on Figure 6

2.5.2 Raw Preference Function

The overall “value” of a matching is quantified by finding the total weight of

assigned student-course pairs. This is computed as the sum of the products

between the student-course assignment matrix M (a binary matrix) and the

preference weight matrix W . Formally, for a set of students S and courses

C, we define the raw preference function f as

f(M) =
∑
s∈S

∑
c∈C

ms,c · ws,c

wherems,c represents the assignment of student s to course c, and ws,c denotes

the corresponding preference weight. Our goal is to find the matchingM such

that f is largest, which we determine as the solution to the optimization

problem.

14

3 Background

3.1 Optimization

Optimization is the process of finding the best possible solution to a given

problem by maximizing or minimizing an objective function under a set of

constraints. In practice, the problem requires an optimization model, allow-

ing the formulation of the objective function and constraints in a mathemat-

ical framework that can be systematically analyzed and solved. Readers who

have taken a calculus course may be familiar with a common optimization

problem involving identifying the maximum value of a function f , by finding

where its derivative is zero, d
dx
f(x) = 0. In general, locating critical points

of a mathematical model is a common approach to identifying potential op-

timal solutions. With regard to SCAP, our optimization model is based on

the notation described in Chapter 1, with the objective of allocating students

to courses in a way that maximizes overall satisfaction while respecting the

real-world constraints we have imposed.

3.2 Time Complexity and Big O

When solving optimization problems, it is crucial to consider computational

complexity in our approach, which measures how the time or space required

to solve a problem scales with input size. A key tool for analyzing time

complexity is Big O notation, which provides an upper bound on an algo-

rithm’s growth rate as the input size increases. Specifically, Big O notation

15

Complexity Name n = 10 n = 100 n = 1, 000

O(1) Constant 1 1 1
O(log2 n) Logarithmic ∼ 3.3 ∼ 6.6 ∼ 10
O(n) Linear 10 100 1,000

O(n log n) Log-linear ∼ 33 ∼ 660 ∼ 10, 000
O(n2) Quadratic 100 10,000 1,000,000
O(n3) Cubic 1,000 1,000,000 1,000,000,000
O(2n) Exponential 1,024 ∼ 1.27 · 1030 ∼ 1.07 · 10301
O(n!) Factorial 3,638,800 ∼ 9.33 · 10157 ∼ 4.02 · 102,567

Table 1: Comparison of common time complexities.

describes the worst-case scenario in terms of the number of operations an

algorithm needs to perform to find the optimal solution.

Big O notation expresses complexity as a function of input size n, ig-

noring constant factors and lower-order terms. For example, if an algorithm

performs at most 5n2+3n+7 operations, we simplify its complexity to O(n2)

because the n2 term dominates as n grows large.

Big O notation is especially useful when evaluating an algorithm’s feasibil-

ity for large inputs. Below is a table summarizing typical Big O complexities

along with the number of operations required for varying values of input size

n:

Some algorithms do not always perform the same number of operations

for every input; instead, their runtime can vary based on factors like input

order or structure. This is why Big O notation represents the worst-case

complexity. However, algorithms may also have best-case and average-case

complexities. For example, a linear search takes O(n) in the worst case but

16

only O(1) if the target element is found immediately.

3.3 Historical Approaches

Here we look at various historical approaches to problems like SCAP, with

focus on their respective computational complexities.

Also detailed are the trade-offs associated with each—it is often the case

that a more efficient algorithm requires a more stringent model, or makes

assumptions that conflict with imposed constraints.

3.3.1 Brute Force (Exhaustive Search)

A brute force approach to any optimization problem involves generating the

entire set of possible solutions and evaluating each individual solution under

the relevant model to find the most optimal solution. This guarantees an

optimal solution but often comes at a prohibitive computational cost. [15]

To illustrate this trade-off for SCAP, imagine a situation where you have

15 students and 4 courses, and for simplicity also assume that the courses

have no capacity constraints. Then, each student has 4 different possible

assignments, and so the total number of ways we can assign students is 415.

In general, for m students and n courses, the solution space, or set of all

possible solutions, consists of nm total matchings. Under this model, the

steps for a brute-force algorithm would look like:

1. Generate a matching M .

17

2. Evaluate F(M)

3. Repeat steps 1-2 until for the entire solution space.

4. Output M for which F(M) was maximal/minimal.

Overall, given the time complexity of O(nm), this approach would re-

quire 415 possible solutions be checked, for a total of roughly over 1 billion

iterations. For modern computers this small case may be manageable, but

this time complexity quickly becomes a bottleneck as we increase n and m,

not to mention the added complexity that comes with introducing additional

constraints to the evaluation of F.

Further reading on brute force algorithms

3.3.2 Hungarian Algorithm

The Hungarian algorithm (HA) or Kuhn–Munkres assignment al-

gorithm exploits the adjacency matrix of a weighted bipartite graph to

determine the optimal matching. The initial version of the algorithm devel-

oped by Harold Kuhn [11] in 1955 had a time complexity of O(n4), while a

revision by James Munkres [14] in 1957 improved this to O(n3).

HA requires an n × n square matrix to model the assignment problem,

and then follows a series of matrix operations to ultimately find a minimal

or maximal cost assignment. While HA does guarantee an optimal solution,

the need to model the problem as a square adjacency matrix is significantly

limiting when attempting to impose real-world constraints. For example, if

18

we want to handle varied course capacities, fairness in distribution, or soft

constraints such as prioritization of certain students. Finally, the polynomial

time complexity means that HA will quickly reach a bottleneck when met

with large input.

3.4 Simulated Annealing

The pitfalls with HA described above served as motivation to explore al-

ternative heuristic methods such as simulated annealing (SA) to solve

SCAP. SA was formalized in [10] (1983) as a heuristic approach to optimiza-

tion problems, and the name refers to the annealing process in metallurgy,

where a material is first heated and then cooled to achieve a desired state.

As a heuristic technique, it does not guarantee an optimal solution but

can achieve near-optimal results, which may be sufficient in many practical

contexts. With it’s capacity to handle complex constraints and handle larger

input more flexibly, we identified it as a viable approach to SCAP and an

alternative to the traditional HA for general assignment problems.

At a high-level, SA functions by first generating a random initial match-

ing, and then iteratively performing random alterations, or “moves” to the

matching. Moves that improve the matching are accepted, and otherwise

are only accepted based on a probability conditioned on a decreasing tem-

perature. In other words, while the initial temperature is high, less-optimal

matchings are more likely to be accepted, thus enabling a more holistic ex-

ploration of the solution space. As the temperature cools, improvements are

19

prioritized, pushing us towards an extrema.

Described below is a formalization based on notation defined in [7] and

[19].

1. Let s = s0

2. For k = 0 through kmax:

T ← temperature(k)

Pick a random neighbor, snew ← neighbor(s)

If P (E(s), E(snew), T) ≥ random(0, 1):

s← snew

3. Output: the final state s

To handle additional constraints, we introduce a penalty function p that is

applied directly to the preference score f . The flexible nature of the penalty

function means it can be modified and scaled to encourage any intended

behavior. In chapter 4, we discuss how we implemented this functionality

with our desired constraints.

3.5 Relevant Literature

A classification of common assignment problems is covered in [7], and re-

produced in Figure 8. Under this framework, SCAP is considered a general

assignment problem (AP), as it involves a one-to-one, or linear matching of

20

static costs (in our case, student preferences are fixed and no do not evolve

over time). Further, SCAP is not an instance of a quadratic assignment

problem (QAP), as student-course assignments are not dependent on each

other. In theory, SCAP could be extended as a QAP, however, if for example

certain students are friends and want to be in the same class together.

Figure 8: Classification of assignment problems [7]

SA, in general, has been applied to many pre-existing optimization prob-

lems. However, SA for graph optimization is a less popular use-case, as most

applications to optimization problems involve continuous rather than discrete

systems (Graph Theory falls into the latter). Several instances in literature

do highlight the use of SA for assignment problems, including [18], [13], [12],

21

[8], [6], [17], and [16]. [5] explored a niche use-case of SA for a university

enrollment-management software package, utilizing a penalty function with

fine-tuned constraints. Their results suggest the implementation performed

only marginally better than a greedy approach, but noted that being subject

to multiple complex constraints inevitably produced many unresolvable en-

rollment conflicts.

22

4 Implementation

4.1 Overview

In this section, we describe the implementation of our student-course assign-

ment algorithm, which applies SA to optimize course allocations based on

student preferences while handling various practical constraints. The algo-

rithm starts with a random assignment and iteratively refines the solution by

probabilistically accepting beneficial moves while avoiding suboptimal local

minima.

4.2 Constraints

As discussed previously, SCAP is constrained by many real-world limitations,

which we incorporate into our algorithm.

4.2.1 Courses

Each course has a predefined capacity, meaning that at no point can more

students be assigned to a course than its limit. This is enforced in the random

initialization stage and throughout the drop-add move, where any proposed

assignment that would exceed a course’s capacity is rejected.

4.2.2 Spread

To ensure a fair distribution of students across courses, we introduce a spread

metric, calculated as the variance in the number of students assigned to

23

each course. This metric serves as the basis of a penalty function p when

evaluating the score for a matching—solutions with high variance (uneven

course loads) are penalized, making balanced assignments more favorable.

This aligns with the mathematical formulation where we define a fairness

criterion to avoid overcrowding and under-enrollment in courses. This aligns

with broader principles in the study of fairness optimization. [2]

4.3 Workflow

4.3.1 Initialization

The algorithm begins by generating an initial random matching M0 of

students to courses, respecting course capacity constraints.

4.3.2 Objective Function/Score Evaluation

Our raw preference function f and penalty function p are calculated for the

current matching Mi. The ultimate value of the matching is given by the

objective function F:

F(Mi) = f(Mi)− p(Mi)

For simplicity, we will use the term score to refer to the value of F for a

particular matching M .

24

4.3.3 Neighborhood Exploration

At each iteration, we perform one of two moves:

1. Drop-add: Select a student s ∈ S at random assigned to course ci ∈ C.

Reassign them to a new course cj ∈ C, with respect to course capacities.

(s, ci)→ (s, cj) : i ̸= j

2. Swap: Select two unique students si, sj ∈ S assigned to courses ck, cl ∈

C respectively. Assign student si to course cl, and student sj to course

ck.

(si, ck), (sj, cl)→ (si, cl), (sj, ck) : i ̸= j, k ̸= l

We select one of these two possible moves at random, and after performing

it, we obtain a new candidate matching Mi+1.

4.3.4 Acceptance Criterion

We calculate F(Mi+1) and compare it to F(Mi).

If F(Mi+1) > F(Mi), the move has improved the overall score of the

matching, and we accept it as the matching for the next iteration by setting:

Mi = Mi+1

However if F(Mi+1) ≤ F(Mi), the move has not improved the overall

25

score, and so we accept it following our probabilistic approach:

1. Calculate ∆F for our current iteration i:

∆F = F(Mi+1)− F(Mi)

2. Find the acceptance probability given temperature Ti:

P (accept move | Ti) = exp

(
∆F

Ti

)

3. Determine whether to accept P (accept move | Ti) using a pseudo-

random number generator.

4. Scale the temperature based on our cooling rate k:

Ti+1 = Ti · k; 0 < k < 1

4.3.5 Stopping Criterion

Our program terminates after a fixed number of consecutive iterations with-

out an improvement to the score. Other commonly used stopping criterion

include execution time, maximum number of iterations performed, or maxi-

mum number of consecutive iterations without an improvement. [7]

26

Year Students Courses

2014 194 20
2018 279 23
2022 322 22

Table 2: Dataset sizes

4.4 Data Sourcing

We primarily tested on three real-world datasets, composed of anonymized

entries from incoming freshmen at Drew University in the years 2014, 2018,

and 2022. Students were asked to list their top 5 preferences of first-year

seminar classes. The size of the datasets are listed below.

The datasets were provided in .xlsx format, and custom utility scripts in

Python were created to convert the data into a structured .csv format that

our SA implementation could interpret.

4.4.1 Data Anomalies

We feel it is important to mention several fringe cases that were discovered in

the raw data, as it reflects the challenges of working with real-world datasets.

These include formatting errors, typos, or other scenarios where the data

doesn’t conform to an expected schema or logic. Below we list some examples

of these instances in the data we worked with and how they were ultimately

handled.

• Missing preferences: some students were missing an nth choice. For

example, a student may have provided their 1st, 2nd, 4th and 5th

27

choice but not a 3rd choice. A more common case was that the student

only had a 1st choice but no other preferences given. One explanation

for this is that the student’s assignment was already known, and their

entry here was manually inserted or just a formality. Either way, this

doesn’t actually affect the functionality of either algorithm, but it does

introduce an unrealistic scenario as we do assume each student provided

five total preferences.

• Duplicate courses: some students were listed as having the same course

for multiple of their choices. In such a case, we treat the higher choice

with priority. For example, if a student listed course c as both their

2nd and 4th choice, then we would treat course c as their 2nd choice

and they would not have a 4th choice.

• Duplicate preferences: some students had assigned two different courses

the same preference, i.e. having multiple 3rd choices. Thus, the student

had actually provided preferences for more than five courses. Despite

this being an unrealistic scenario, there’s really no “fair” way to handle

it, so we just accept the data as it is since this won’t affect the func-

tionality of either algorithm.

• One student in the 2022 dataset had only listed their 5th choice and no

other preferences given. Because of this, a perfect score wasn’t actually

possible, as this student could only be assigned to that choice, their 5th

choice, by default. This is why the maximum score for HA in Table 7

28

is 100 points short of the theoretical maximum.

29

5 Results

5.1 Objectives

We performed three sets of trials, each assessing a different metric of the

problem:

• Overall accuracy of SA vs. HA in finding an optimal or close-to-optimal

solution.

• Runtime and efficiency for arbitrarily large datasets.

• Ability for SA to balance class satisfaction with course enrollment vari-

ance.

• Special cases involving predetermined course capacities, and SA and

HA handle each.

5.2 Computational Environment

The programs were written in Python3 and run on a Apple M2 CPU with 8

GB of RAM on MacOS operating system.

5.3 Parameter Settings

5.3.1 Initial Acceptance Probability

We set the initial acceptance probability, Pi to be 0.7. We made this choice

based on [7] , that found that a Pi of 0.7 consistently produced more optimal

30

matchings for their SA implementation than other choices such as 0.6, 0.9,

and 0.99.

5.3.2 Preference Map

We use the following preference map:

Listed Preference Weight

1st 100
2nd 30
3rd 10
4th 5
5th 0

Not listed -1000

Table 3: Preference map

Recall the preference map is our way of defining how valuable a students

1st choice is compared to their 2nd, etc. There is, of course, no “correct”

way to assign these values, but the assignments have the potential to greatly

affect the results of the matchings. One conscious choice we made was to

make 1st choices worth 100, which allows the maximum theoretical score to

be simply calculated by multiplying the number of students: 100 · |S|. More

discussion on the preference map can be found in section 6.4.

5.3.3 Minimum Iterations and Stopping Criterion

A minimum iterations parameter is passed to the algorithm, denoting the

minimum number of iterations to perform. After this threshold, the program

31

terminates after a fixed number of iterations without any improvements.

By default, the SA implementation uses a minimum iterations of 100,000

and stopping iterations of 10,000. However for our accuracy comparison, we

choose both parameters to be 1,000 times the size of the dataset (specifically,

the number of students). This ensures SA has enough time to find a near-

optimal solution and can sufficiently explore the problem’s landscape.

5.3.4 Course Capacities

To choose the maximum course capacities for SA, we take a multiple of the

average class size, rounded up. That is,

⌈a · |S|
|C|
⌉, a > 0

For our trials, we use a of 1.5 and 2. This approach ensures that our course

capacities are sufficiently large for the given dataset, and the extra space

allows for some ”play” in the algorithm to test varying course fulfillment.

5.3.5 Penalty Weight/Variance

In order to better compare SA and HA, we do not include any form of penalty

calculation for our trials except for the trials in section 5.7, where we focus

explicitly on the variance penalty and it’s implications, discussed in section

6.3.

32

5.4 Accuracy

In order to assess SA’s accuracy, we ran 10 trials for each dataset, half with

a = 1.5 and the other half with a = 2. Then, to run a subsequent trial of

HA, we used the course enrollment sizes that SA produced for that respec-

tive trial. The maximum theoretical scores are also provided, which is the

(often impossible) case that every student received their 1st choice. Finally,

the average preferences provide an unweighted measure of score—0 meaning

students got their 1st choice on average, 1 meaning they got their 2nd, and

so on. The “worst” value here would be a 5, meaning students got no of their

preferred courses, on average.

33

Dataset a
SA

Score
HA
Score

Max
Theoretical

Score

SA
Average
Preference

HA
Average
Preference

2014

1.5

14480 14565

19400

0.474 0.454
14485 14555 0.490 0.464
14525 14565 0.479 0.454
14505 14540 0.485 0.464
14455 14535 0.485 0.469

2

16630 16650 0.211 0.206
16540 16640 0.222 0.216
16630 16650 0.211 0.206
16630 16650 0.211 0.206
16650 16650 0.206 0.206

2018

1.5

26480 26500

27900

0.075 0.072
26500 26500 0.072 0.072
26500 26500 0.072 0.072
26500 26500 0.072 0.072
26500 26500 0.072 0.072

2

27690 27690 0.011 0.011
27690 27690 0.011 0.011
27690 27690 0.011 0.011
27690 27690 0.011 0.011
27690 27690 0.011 0.011

2022

1.5

26750 26810

32200

0.261 0.252
26805 26850 0.255 0.245
26805 26830 0.255 0.248
26725 26850 0.267 0.245
26750 26790 0.261 0.255

2

29090 29090 0.146 0.146
29090 29090 0.146 0.146
29090 29090 0.146 0.146
29090 29090 0.146 0.146
29090 29090 0.146 0.146

Table 4: Comparison of SA and HA accuracy across all three datasets

34

5.5 Plots

Figure 9: SA progress for a single trial on the 2018 dataset

The plot in Figure 9 shows the evolution of a single trial of SA over

1,186,085 iterations on the 2018 dataset. Each aspect of the plot reflects the

behavior of three core variables in our optimization process:

35

• The score (blue line) fluctuates heavily to explore the landscape while

the temperature (red line) is high, but ultimately approaches a near-

optimal solution as the temperature cools. It also becomes more con-

servative when accepting worse solutions.

• Recall our acceptance logic: at iteration 0, we accept 70% of “bad”

moves, but when we hit the min iterations parameter (for the 2018

dataset, min iterations = 279000) we only accept 10%, after which our

acceptance probability approaches 0%.

• The number of iterations since improvement (green line) increases lin-

early after we reach min iterations, as it is simply a counter of itera-

tions. It only resets to zero at each improvement, resulting in a saw-

tooth pattern (see Figure 10).

Figure 10: Close-up of iterations since improvement counter

36

Figure 11: Close-up of scores early in runtime, iterations 0 to 160,000

Figure 12: Close-up of scores later in runtime, iterations 550,000 to 950,000

37

5.6 Large Data

In the interest of comparing runtime and efficiency of the algorithms, we

manually scaled the data by duplicating the existing rows and columns, en-

abling us to run tests on larger datasets. Literature often notes SA for scaling

more gracefully than exact algorithms in larger spaces. [1] The course capac-

ities that were used for these tests were based on the weighted proportions

method, described in section 5.8b.

Scale factor SA Score HA Score SA Time HA Time
1 16360 16480 12.0s 0.229s
2 32390 32960 24.6s 1.84s
4 63780 65920 49.4s 14.8s
8 127515 131840 160s 122s
16 252185 263680 762s 958s

Table 5: Results for scaled versions of the 2014 dataset with default
parameters

5.7 Variance

While our other trials do not include any affect of the course enrollment

variance penalty, here we examine what implications adjusting the variance

penalty weight has on the resulting assignment. Since the calculation of

variance is dependent on the scale of our preference weights, we pick penalty

weights that are within a reasonable window.

38

Penalty weight Variance Score Average Preference
0 78.9 29000 0.152
1 72.8 29000 0.152
10 72.8 29010 0.167
50 43.6 28410 0.199
100 12.4 26235 0.360
250 3.60 24880 0.478
500 0.686 23875 0.584
750 0.595 23560 0.630
1000 0.322 23200 0.599
10000 0.231 22285 0.677

Table 6: Results for various penalty weights on the 2022 dataset with
default parameters

5.8 Special Cases

The data lends itself to consideration of some particular special cases. Specif-

ically, cases where we can predefine the course capacities based on a measure

of the popularity of each course. We explore two methods of doing so:

(a) Set the capacity for each course to the respective number of students

that listed the course as their 1st choice.

(b) Set the capacity for each course to the sum of all listed preferences for

that specific course divided by the total sum of all preferences across

all courses. For our case, the sum of all preferences across all courses

will be |S| · (5 + 4 + 3 + 2 + 1) = |S| · 15, as we assume each student

listed preferences 1 through 5.

39

Method Dataset SA Score HA Score
Max

Theoretical
Score

SA Average
Preference

HA Average
Preference

a
2014 19400 19400 19400 0 0
2018 27305 27900 27900 0.039 0
2022 31410 32100* 32200 0.062 0

b
2014 15360 16480 19400 0.438 0.237
2018 24415 25800 27900 0.229 0.108
2022 28105 29160 32200 0.208 0.143

Table 7: Comparison of results for special cases

*See section 4.4.1 on data anomalies.

40

6 Discussion

6.1 Accuracy

Across all three datasets, SA scored 12% on average below the maximum

theoretical score, while HA scored 11.88% below. Between both algorithms,

SA scored on average 1.98% below HA across all trials. These disparities are

less explicit in certain datasets, specifically in 2018, where in only one trial

did SA perform worse than HA.

Recall that by the nature of both algorithms, we expect HA to score

the same as SA or greater, since it guarantees an optimal solution. This

fact, along with the results, indicate that SA achieved near-optimal or true

optimal solutions for most of the trials on the 2018 data and 2022 for a = 2.

One explanation for this is due to the composition of the data itself. While

2018 and 2022 presumably presented more favorable optimization landscapes,

2014 may have involved more ”lose-lose” scenarios. For example, courses that

were in heavy demand by a majority of students, and other courses that had

little demand overall.

Another insight is that larger values of a resulted in higher scores. This is

intuitive, as with greater course capacities, more students’ higher preferences

should be accommodated. A large enough a will guarantee the maximum

theoretical score, specifically when all the course capacities, ⌈a · |S|
|C|⌉, are

greater or equal to the greatest number of 1st choices given to any one course.

Our special case in section 5.8 tested exactly this, and resulted in optimal

41

scores for HA and near-optimal scores for SA. In fact, the greedy algorithm

would also succeed under these conditions.

Normally, our SA implementation would not be able to handle a case

where the number of students equals the number of seats, as trying to per-

form a drop/add when all the courses are technically already full would result

in an error. To circumvent this, we ran these tests using only swap opera-

tions. Ultimately, SA performed quite well under these circumstances. While

it did reach the maximum possible solution for the 2014 data, it fell slightly

short in 2018 and 2022. In theory, there are two reasons SA did not achieve

the optimal solution here. First is that it got ”stuck” in another extrema

and was not able to navigate out. This is more likely the case in a more

complex optimization landscape with multiple regions of high scoring poten-

tial. As indicated in our initial trials, 2014 was more limited with regard to

scoring potential, so perhaps there was less chance of SA getting “lost” or

“distracted” with less competing regions. Finally, it could just be that SA

didn’t have enough time to run. Provably, SA will reach a locally optimal

solution given it can perform enough iterations to get there.

6.2 Runtime

Our results on larger datasets highlight a core advantage of SA when the num-

ber of students and courses becomes computationally unfeasible for HA. Re-

call the time complexity for HA is O(n3), and our data agrees: each doubling

of the data increased the runtime of HA by a factor of 23 = 8. Meanwhile, the

42

runtime of SA showed linear growth until 8x data size. We suspect this may

be due to memory limitations, which would create a bottleneck that varies

from system-to-system depending on physical memory constraints. The in-

herent value of a heuristic is also reflected here—SA was able to reach up to

75-90% of it’s ultimate score within as little as 50-60% of it’s total runtime.

This enables more control over the extent of computational resources which

should be dedicated to a problem, when scores past a “good-enough” thresh-

old may be a case of diminishing returns.

6.3 Variance

Our results in Table 6 suggest a trade-off between overall score and enrollment

variance. As we increase the penalty weight, both the score and average

preference of the matching become less favorable, while the variance itself

approaches zero. Due to the number of courses not evenly dividing the

number of students, the minimum possible variance will ultimately be non-

zero and positive, with course enrollments within a small range (±1) of half

the average course size, rounded to the nearest integer:
⌊
S
C

⌉
±1. For example,

for the 2022 dataset that was tested on, high values of the penalty weight

resulted in all courses being fulfilled with sizes of 14 and 15:
⌊
322
22

⌉
± 1 =

⌊∼ 14.6⌉ ± 1 = {14, 15}. Interestingly, the results show a steep inflection for

penalty weights between 10 and 250, indicating this range may produce more

balanced results for this specific dataset and our algorithmic parameters.

43

6.4 Selection of Preference Maps

The question of how much worth should be allotted to some ordinal set of

values, as in the case of ranked preferences, is an interesting field of study

itself [3], but beyond the scope of this research. As previously mentioned in

section 5.3.2, there is no “correct” or “optimal” preference map. It ultimately

is a philosophical choice at the discretion of the implementer. Our decisions

were a result of considering that the difference between 5th, 4th, and 3rd

choice isn’t very significant, but whether a student is given their 1st choice

vs. their 2nd or 3rd should carry more weight. At last, a course that wasn’t

listed by the student should be weighted devastatingly low in comparison.

44

7 Conclusion

This thesis explored the student-course assignment problem (SCAP) through

the lens of bipartite graph optimization, comparing the classical methods of

the Hungarian Algorithm (HA) with the heuristic approach of Simulated An-

nealing (SA). While HA guarantees optimal matchings under tightly defined

conditions, it lacks flexibility in the presence of many real-world constraints

and can be computationally infeasible for large sizes of data that often arise

in practical contexts. SA offers a compelling alternative, through it’s ability

to adapt naturally to complex optimization problems. Our implementation

and results show that SA produces near-optimal matchings while respecting

custom constraints, such as the variance of course enrollment.

7.1 Further Research

The nature of the problem introduces many avenues of expansion. First, with

the flexibility of SA, there are no limits with regard to constraints one may

want to impose, and therefore further study could look at aspects including,

but not limited to:

• Graduation/curriculum requirements

• Scheduling/time conflicts

• Distance, travel time and cost

• Diversity initiatives such as race, gender, personal background, etc.

45

Next, fine-tuning of SA parameters can be explored further. While ex-

isting research sometimes mentioned settings that performed well, variables

such as the preference map, stopping criterion, and acceptance probability

logic introduce more nuanced aspects of the problem that may have a greater

impact on overall accuracy and performance. For example, literature sug-

gests variable or adaptive cooling techniques may improve SA’s exploration

of the solution space. [9]

Finally, future work could explore hybrid approaches, such as using SA to

generate candidate matchings and refining them with HA, steepest descent,

or other exact methods.

Ultimately, SA proves to be a powerful, adaptable framework for SCAP

and similar assignment problems. Its value lies not just in finding “good

enough” solutions, but in offering decision-makers the flexibility, practicality,

and transparency needed to handle complex, real-world constraints.

46

References

[1] Aarts, E. H., & Korst, J. H. (1989). Simulated Annealing and Boltzmann

Machines. John Wiley & Sons.

[2] Bertsimas, D., Farias, V. F., & Trichakis, N. (2011). ”The Price of Fair-

ness.” Operations Research.

[3] Bogomolnaia, A., & Moulin, H. (2001). ”A New Solution to the Random

Assignment Problem.” Journal of Economic Theory.

[4] Chartrand, G., & Zhang, P. (2012). A First Course in Graph Theory.

Dover Publications.

[5] Ciebiera, K., & Mucha, M. (2014). ”Student-class assignment op-

timization using simulated annealing.” EUNIS 2014 Congress. Re-

trieved from https://eunis.org/download/2014/papers/eunis2014_

submission_49.pdf

[6] Connolly, D. T. (1996). ”An improved annealing scheme for the QAP.”

European Journal of Operational Research, 89 (2), 429–438. https://

doi.org/10.1016/S0360-8352(96)00265-3

[7] Dhungel, Y. (2022). Simulated Annealing Heuristics for the Dynamic

Generalized Quadratic Assignment Problem. West Virginia University Re-

search Repository. https://doi.org/10.33915/etd.11162

https://eunis.org/download/2014/papers/eunis2014_submission_49.pdf
https://eunis.org/download/2014/papers/eunis2014_submission_49.pdf
https://doi.org/10.1016/S0360-8352(96)00265-3
https://doi.org/10.1016/S0360-8352(96)00265-3
https://doi.org/10.33915/etd.11162

47

[8] Gallego, J. C., & Briceño, W. (2020). ”School assignment using simulated

annealing to minimize distance.” In Proceedings of the 2020 IEEE Colom-

bian Conference on Applications in Computational Intelligence (Col-

CACI) (pp. 1–5). IEEE. https://doi.org/10.1109/ColCACI49338.

2020.9281242

[9] Karabin, M., & Stuart, S. J. (2020). Simulated annealing with adaptive

cooling rates. The Journal of Chemical Physics, 153(11), 114103. https:

//doi.org/10.1063/5.0018320

[10] Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). ”Optimization

by Simulated Annealing.” Science, 220 (4598), 671–680.

[11] Kuhn, H. W. (1955). ”The Hungarian Method for the Assignment

Problem.” Naval Research Logistics Quarterly, 2 (1–2), 83–97. https:

//doi.org/10.1002/nav.3800020109

[12] Marinov, M., & Marinova, V. (1998). ”Optimization of the allocation

of classrooms to classes using simulated annealing.” In Proceedings of the

20th International Conference on Information Technology Interfaces (pp.

575–580). IEEE. https://doi.org/10.1109/ITI.1998.726655

[13] Matsumura, S. (2018). ”A simulated annealing approach to the student-

project assignment problem.” American Journal of Physics, 86 (9),

701–705. https://doi.org/10.1119/1.5042918

https://doi.org/10.1109/ColCACI49338.2020.9281242
https://doi.org/10.1109/ColCACI49338.2020.9281242
https://doi.org/10.1063/5.0018320
https://doi.org/10.1063/5.0018320
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1109/ITI.1998.726655
https://doi.org/10.1119/1.5042918

48

[14] Munkres, J. (1957). ”Algorithms for the assignment and transportation

problems.” Journal of the Society for Industrial and Applied Mathemat-

ics, 5 (1), 32–38. https://doi.org/10.1137/0105003

[15] Papadimitriou, C. H., & Steiglitz, K. (1982). Combinatorial Optimiza-

tion: Algorithms and Complexity. Dover Publications.

[16] Rao, R. V., & Patel, V. K. (2004). ”Applying simulated annealing to the

multidimensional assignment problem.” In S. Y. Chen (Ed.), Advances

in Metaheuristics for Hard Optimization (pp. 25–41). World Scientific.

https://doi.org/10.1142/9789812796592_0003

[17] Sahu, A., & Tapadar, R. (2007). ”Solving the assignment problem using

genetic algorithm and simulated annealing.” IAENG International Jour-

nal of Applied Mathematics, 36 (1). Retrieved from https://www.iaeng.

org/IJAM/issues_v36/issue_1/IJAM_36_1_7.pdf

[18] Shojaee Ghandeshtani, K., Seyedkashi, S. M. H., Mollai, N.,

& Neshati, M. M. (2010). ”New simulated annealing algorithm

for quadratic assignment problem.” In Proceedings of the Fourth

International Conference on Advanced Engineering Computing

and Applications in Sciences (ADVCOMP 2010). Retrieved from

https://personales.upv.es/thinkmind/dl/conferences/advcomp/

advcomp_2010/advcomp_2010_5_10_20111.pdf

https://doi.org/10.1137/0105003
https://doi.org/10.1142/9789812796592_0003
https://www.iaeng.org/IJAM/issues_v36/issue_1/IJAM_36_1_7.pdf
https://www.iaeng.org/IJAM/issues_v36/issue_1/IJAM_36_1_7.pdf
https://personales.upv.es/thinkmind/dl/conferences/advcomp/advcomp_2010/advcomp_2010_5_10_20111.pdf
https://personales.upv.es/thinkmind/dl/conferences/advcomp/advcomp_2010/advcomp_2010_5_10_20111.pdf

49

[19] Teferra, D. (2019). ”Simulated annealing: Theory and applica-

tions.” ResearchGate. Retrieved from https://www.researchgate.

net/publication/338294434_Simulated_Annealing_Theory_and_

Applications

https://www.researchgate.net/publication/338294434_Simulated_Annealing_Theory_and_Applications
https://www.researchgate.net/publication/338294434_Simulated_Annealing_Theory_and_Applications
https://www.researchgate.net/publication/338294434_Simulated_Annealing_Theory_and_Applications

	Introduction
	The Student-Course Assignment Problem

	Formalization
	Graphs
	Bipartite Graphs
	Weighted Graphs
	Adjacency Matrix
	Biadjacency Matrix

	Formalizing SCAP
	Weight Matrix
	Raw Preference Function

	Background
	Optimization
	Time Complexity and Big O
	Historical Approaches
	Brute Force (Exhaustive Search)
	Hungarian Algorithm

	Simulated Annealing
	Relevant Literature

	Implementation
	Overview
	Constraints
	Courses
	Spread

	Workflow
	Initialization
	Objective Function/Score Evaluation
	Neighborhood Exploration
	Acceptance Criterion
	Stopping Criterion

	Data Sourcing
	Data Anomalies

	Results
	Objectives
	Computational Environment
	Parameter Settings
	Initial Acceptance Probability
	Preference Map
	Minimum Iterations and Stopping Criterion
	Course Capacities
	Penalty Weight/Variance

	Accuracy
	Plots
	Large Data
	Variance
	Special Cases

	Discussion
	Accuracy
	Runtime
	Variance
	Selection of Preference Maps

	Conclusion
	Further Research

