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Abstract

This study investigates current controversies surrounding the use of p-values in statistics

and related fields. The definition of statistical terms, such as statistical significance, are

investigated through their contributions to p-hacking, publication bias, and misconceptions in

statistics education. Past datasets are utilized to analyze the effectiveness and correctness of

p-values and other statistical analysis methods. Further, a series of statistical studies are

conducted to conclude that p-values have a few limitations when compared to alternative

statistical measures, such as Bayesian statistics, through the use of statistical modeling. These

studies prompt the discussion that the understanding around p-values requires clarification and

modification for some. Thus, I clarify specific cautions on the use of p-values and discuss

alternate methods of analysis.

Introduced as an alternative means of analysis, Bayesian statistics involves a distinct

school of thought that is not solely based on the data itself. For this reason, I pursue both classic

non-Bayesian and Bayesian methods further to gauge their respective strengths and weaknesses

through the implementation of a simple statistical task of estimating the probability of a

potentially biased coin. Modeling and simulation results yield Bayesian statistics as the more

adaptable analysis method due to its probabilistic reasoning and incorporation of prior

knowledge. The advantage of the Bayesian model over the usage of p-values is further discussed

using modern day applications with severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2).
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1. Introduction

The current controversies surrounding the use of p-values is a prevalent topic in both

mathematics and fields that require statistical research methods, as some claim the probability

value is insufficient for analysis (Halsey, 2019). Notably, p-value is a commonly used statistic in

many analyses, often incorporated to determine statistical significance of a hypothesis. While

this is an element taught in many courses and widely employed by statisticians, its use is a

debated topic (Lytsy, 2022). Fuel for the debate, however, lies in occasional misuses of the

statistic, rather than its weaknesses (Lakens, 2021). Specifically, I support three main facts

regarding p-values to enhance their use and promote more valid conclusions: p-values should be

augmented with an understanding of power, p-values should be paired with effect size, and

p-values should not be dichotomized into statistical significance and non-statistical significance.

To substantiate these aforementioned ideas, I first explore the definition of p-values and their

associated statistics, then examine each argument further. Moreover, I discuss the use of

Bayesian models as an alternative framework to make statistical inference. This framework is

compared to the traditional use of p-values, and I argue that both methods should be

implemented with their respective advantages and limitations in mind.

1.1. Overview of the Thesis

Throughout this thesis, I seek to clarify the use of and promote understanding about

p-values alongside specific methodology. The rest of the thesis is organized as follows. I first

provide some brief introduction and historical remarks of both the classic, non-Bayesian

hypothesis testing and the alternative Bayesian method (sections 1.2 and 1.3). I then investigate
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the specific act of dichotomization and its contribution to publication bias and p-hacking with

respect to the former head of the Cornell Food and Brand Lab, Dr. Brian Wansink (section 2.1).

To both connect and contrast modes of analysis, I discuss the specific statistical task of

estimating the probability of heads for a potentially biased coin (section 3). Specifically,

hypothesis testing based on p-values are compared to a Bayesian beta-binomial model via a

series of simulations. Lastly, I survey modern-day real world applications of the beta-binomial

model to further demonstrate the limitations of p-values and the strength of the Bayesian method

(section 4).

1.2. Historical remarks on p-values

In introductory statistics courses and research, p-values are an integral factor (Cobb,

2015). Defined as the probability of selecting a sample with a statistic that is at least as extreme

as the observed statistic in the direction of the alternative hypothesis, assuming the null

hypothesis is true (Carucci, n.d.); it is often used to determine statistical significance (Nahm,

2017). The format for a statistical analysis involves stating the null (H0) and alternative (Ha)

hypotheses, then formulating a conclusion based on the obtained p-value. For example, a

common one-sample z-test of proportions is used for testing the following hypotheses:

H0: the proportion of the population (p) = a number (p0);

Ha: the proportion of the population (p) ≠ a number (p0).

Similarly, a common one-sample t-test of means is used for testing:

H0: the mean of the population (μ) = a number (μ0);
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Ha: the mean of the population (μ) ≠ a number (μ0).

For p-values less than 0.05, one is advised to conclude the results are statistically significant and

reject the null hypothesis in favor of the alternative; for p-values greater than or equal to 0.05,

one is advised to conclude the results are not statistically significant and fail to reject the null

hypothesis. These steps are the main elements of an NHST.

Hypothesis tests are built from Thomas Bayes’s essay, “An Essay towards solving a

Problem in the Doctrine of Chances” (1763). To primarily analyze the chances of an event

occurring, he highlights, “After having observed for some time the course of events it would be

found that the operations of nature are in general regular, and that the powers and laws which

prevail in it are stable and permanent” (p. 410). Significantly, Bayes formulated a theorem which

influenced a matter of forming and accepting hypotheses regarding these events.

Extending Bayes’s theorems, Ronald Fisher introduces p-values in “On the Mathematical

Foundations of Theoretical Statistics.” He cites the later-coined NHST’s involve a “hypothetical

infinite population” with a limited number of parameters, representative of the data to determine

the “probability of a certain object fulfilling a certain condition [and] all such objects to be

divided into two classes, according as they do or do not fulfil the condition” (1922). Shortly after

Fisher identified the importance of utilizing the population measurement as a parameter, and

formulating null and alternative hypotheses, two other statisticians sought further development.

In the 1933 article, “On the problem of the most efficient tests of statistical hypotheses,” Jerzy

Neyman and Egon Pearson warn, “We may accept or we may reject a hypothesis with varying

degrees of confidence; or we may decide to remain in doubt…. From the point of view of

mathematical theory all that we can do is to show how the risk of the errors may be controlled
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and minimised.” That being said, the concept of an analysis is clarified to be an estimate, rather

than a true reflection of a population. Neyman and Pearson further extend Fisher’s ideas to

include power analysis and discussions of Type I and Type II errors. The three aforementioned

statisticians are credited with building the foundations of today’s frequentist hypothesis testing

theory, thus inspiring the whole of frequentist, or classic, statistics.

1.3. Introduction to Bayesian Analysis

Graduating from the three aforementioned concepts to better augment p-values, I seek to

introduce another approach in conducting analyses. Bayesian statistics, a vast field under

statistics and statistical theory, is built upon Bayes’s Theorem and conditional probability. The

latter defines the probability of one event, A, occurring, given that another event, B, has already

occurred, defined as , where is the probability of both events A and𝑃(𝐴|𝐵) = 𝑃(𝐴∩𝐵)
𝑃(𝐵) 𝑃(𝐴 ∩ 𝐵)

B occurring, and is the probability of only B occurring. Bayes’s Theorem is employed𝑃(𝐵)

when the probability of B conditioned on A is either simpler than the probability of A

conditioned on B, or provided. The probability of A conditioned on B can be written

mathematically as . Connecting Bayes’s theorem and hypothesis testing,𝑃(𝐴|𝐵) = 𝑃(𝐴)*𝑃(𝐵|𝐴)
𝑃(𝐵)

we can identify the hypothesis as an event (H), and data as an event (D). Plugging into Bayes’s

formula: . P(H|D), also known as the posterior probability, is the𝑃(𝐻|𝐷) = 𝑃(𝐻)*𝑃(𝐷|𝐻)
𝑃(𝐷)

probability of the hypothesis occurring, with influence of the data; P(H), also known as the prior

probability, is the probability of the hypothesis occurring without influence of the data; P(D|H),

also known as the likelihood, is the probability of the data based on the hypothesis; P(D) is the
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probability of the data with respect to any hypothesis. More generally, to make inference on a

parameter p, the goal in Bayesian analysis is to derive the posterior distribution of p,

conditioning on data.
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2. Cautions on the use of p-values

In modern day, statisticians are seemingly divided: some claim frequentist statistics and

its methods, such as the NHST, are outdated (Szucs & Ioannidis, 2017); others believe the faults

of classic methods lie majorly in misinterpretations (Lakens, 2021). I seek to provide guidelines

to promote better understanding and augmentation of p-values and hypothesis testing, while

comparing other methods of statistical inference, such as Bayesian statistics. In doing so, I

caution against the dichotomization of p-values in terms of significance and employing them

without consideration of power and effect size.

While a mere cluster of statisticians have misconceptions regarding the definition of a

p-value (Lytsy, 2022), this should be cautioned. To counter this association, Stanford University

professor John Ioannidis suggests there to be further analysis and less reliance on the p-value

itself: his definition of the statistic leads to the association of a significant or nonsignificant

p-value with more analysis or observation (Dusheck, 2016). Furthering this approach, Ronald

Wasserstein urges statisticians to rely more on statistical thinking and less on statistical

significance: “While it concerns an observation regarding statistical significance, many believe it

answers the question regarding practical importance” (Gelman & Stern, 2006). That being said, it

is integral to understand statistical significance with respect to the statistic within the context of

the problem. Thus, statisticians are urged to move away from focusing exclusively on a p-value’s

statistical significance, and instead pursue additional information (Wasserstein, 2019). Overall, it

must be remembered that practical and statistical significance are not equivalent; statistical and

non-statistical significance are not to be fixed concepts with an unchangeable threshold.
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Equally important, it is essential to understand p-value in the context of effect and sample

size. When dealing with real-world samples and populations, it is important to focus on

analyzing a p-value thoroughly. As mentioned before, computing and reporting a p-value alone

does not guarantee significance or lack thereof, it instead motivates further analysis and

calculation. One reason for this extension of analysis is the existence of Type I and Type II errors

in a study: the probability of rejecting a true null hypothesis (α) or failing to reject a false null

hypothesis (β), respectively. To overcome the likelihood of these errors, one can utilize statistical

power, which is defined as the probability of not making a Type II error (Weiss, 2012, p. 416).

Mathematically, power is equivalent to (1- β). Although not universally employed, it is a

necessary add-on to null hypothesis testing to correctly and further analyze p-value in connection

to the hypotheses and in context of the sample (Weiss, 2012, p. 417).

Notably, statistical power takes into consideration sample size, effect size, number of

tails, and the alpha level of the test. When analyzing p-values it is important to note the sample

and effect sizes as they can alter results: “Smaller p-values do not necessarily imply the presence

of larger or more important effects, and larger p-values do not imply a lack of importance or even

lack of effect” (Wasserstein, 2016). Furthermore, according to Gail Sullivan and Richard Feinn,

effect size should always be reported with the p-value for readers to understand its context in the

study (2012). Conforming with the aforementioned statisticians, statistical power helps correctly

gauge p-values with respect to sample sizes and effect sizes. Therefore, incorporating power

simulations with null hypothesis tests can be a more suitable approach in many applications.
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To demonstrate statistical power in the context of statistical analyses, I performed a series

of simulations1, focusing specifically on independent samples t-tests. See an example of power

analysis in Tables 1, 2 and Figure 1 of the Appendix. Upon randomizing scores based on a mean

difference of 5 and standard deviation of 10 among two groups, I conduct t-tests for sample sizes

of 30 and 100 in SPSS, an IBM statistical tool. With the randomization command, I obtained a

variety of effect sizes in terms of Cohen’s d, and failed to notice any odd combinations, such as

the pairing of p < 0.05 and d < 0.2. I then conducted the same randomization among two groups

with sample sizes exclusively of 100, a mean difference of 2, and standard deviation of 10, to

decrease the value of Cohen’s d. Three simulations were carried out under this setup, resulting in

different conclusions. The first simulation led to a p-value greater than 0.05 and strong effect

size; the second simulation led to a p-value less than 0.05 and weak effect size. Both of these

conclusions align with the idea that greater sample sizes lead to a correlation between p-values

and Cohen’s d: typically, significant p-values tend to be associated with greater effect sizes, and

vice versa. However, the third simulation produced a very significant p-value and weak Cohen’s

d, disrupting the predicted trend. This idea further complicates p-value itself by invalidating the

idea of dichotomized significance. In this case, with a sample size of 100, the test does not have

enough power to consistently detect a mean difference of 2, and conclusions drawn by p-values

alone can be misleading. Results motivate a need to tackle these complications through a

thorough analysis of power-influenced simulations for The Euro Problem.

2.1. Cautionary Examples

1Appendix: Tables 1, 2; Figure 1
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Notably, the publication crisis, the idea that if results are not statistically significant, the

study will not get published in prominent journals (Dickerson and Min, 1993), enforces biased

and corrupt practices such as p-hacking, the process of manipulating data to obtain a misleading

p-value. This leads to a lack of diversity in published results and prevents studies associated with

less practical significance from being shared with the public frequently (ASA, 2021). Some

observe that due to a moderate reliance on statistical significance in journals, researchers can be

motivated to take part in data manipulation (Franco et al., 2014), exhibited through Wansink. The

controversial researcher was found to have committed misconduct in several of his studies,

concluding several inaccuracies (Servick, 2018). Specifically, he conducted a study claiming that

advertising popular cartoons on apples would influence children to select fruit instead of cookies

at lunchtime (Wansink, 2012). Despite obtaining a p-value greater than 0.05, Wansink urged a

student to falsely manipulate the data to obtain significant results (Lee, 2018)2. See evidence of

this in Figure 2 of the Appendix. Despite knowingly contributing to the spread of

misinformation, the reproducibility crisis also plays a hand in influencing Wansink’s mentality

associated with the heavy reliance on statistical significance.

Another tale of p-hacking is the infamous study delineating that chocolate promotes

weight loss. Conducted with the intention of exhibiting the dangers of falsified or misleading

studies surrounding diet culture in a documentary film, Dr. Johannes Bohannon and his team ran

a clinical trial concluding accelerated weight loss in a group of individuals who had consumed a

daily bar of dark chocolate. What news outlets, such as Shape, Men’s Health, Shape, and Times

2Appendix: Figure 2
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of India, failed to realize was the crucially small sample size. Bohannon, a science journalist,

purposely planned the experiment to output a significant result:

Here’s a dirty little science secret: If you measure a large number of things about a small

number of people, you are almost guaranteed to get a “statistically significant” result. Our

study included 18 different measurements—weight, cholesterol, sodium, blood protein

levels, sleep quality, well-being, etc.—from 15 people. (One subject was dropped.) That

study design is a recipe for false positives (2015).

The intentional fraudulent study exhibited both the ease of data dredging and simplicity of

spreading misinformation. Although several publications accepted the results, Bohannon

compared an analysis of their results to the concept of reading tea leaves to determine the future.

While manipulators are to blame for the proliferation of the situation, it is also essential

to combat the crisis by graduating from the dichotomization of p-values. To further demonstrate

its impact, C. Glenn Begley and Lee M. Ellis urged publications to include nonsignificant studies

to increase credibility, public awareness, and create more successful outreach. Regarding

preclinical cancer studies, “There must be more opportunities to present negative data….Funding

agencies, reviewers and journal editors must agree that negative data can be just as informative

as positive data” (2012). Claiming trials and experiments are not reaching the radars of drug

companies and other field scientists, Begley and Ellis propose more flexible guidelines for

publication, specifically regarding replicable, valid data.

Acknowledging that p-hacking is a focal point of the publication crisis, data

manipulation, however, extends to other disciplines and spans many transgressions. For one,

financial motivations are a leading contributor to the spread of misinformation (Colomina,
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Sanchez, & Youngs, 2021, p. 8), often occurring when a researcher is paid-off to ensure the data

tells a one-sided story. Andrew Wakefield, a former physician with considerable influence on the

public, published a study falsely evidencing the measles, mumps, and rubella (MMR) vaccine’s

connection with Autism Spectrum Disorder. The authors claimed to find a link between

gastrointestinal disease and developmental regression in “a group of previously normal

children,” whose parents associated the MMR vaccine with behavioral symptoms indicative of

autism (Wakefield, et al., 1998). Despite the authors releasing a statement defending the scope of

the study and consequently retracting the article (Murch, et al., 2004), Wakefield and his cohort

of authors were charged with ethical violations, scientific misrepresentation, fraud (Rao &

Andrade, 2011), and guilty of financial deception. The study, which promoted vaccine skepticism

(Motta & Stecula, 2021) and falsified data, was motivated by more than a £400,000 pay-out by

lawyers seeking to show the vaccine was detrimental to society (Deer, 2006).
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3. The Euro Problem

When conducting probability experiments with a coin, a typical hypothesis claims the

coin is fair, and it is of interest to test if the probability of landing on heads is equivalent to that

of tails. If the coin were not assumed to be fair, however, it is advisable to then make inference

on the value of p, defined as the probability of success (or obtaining heads for a coin). Take, for

example, The Euro Problem, concisely introduced by David MacKay in “Think Bayes 2e:”

A statistical statement appeared in The Guardian on Friday January 4, 2002: When spun

on edge 250 times, a Belgian one-euro coin came up heads 140 times and tails 110. ‘It

looks very suspicious to me’, said Barry Blight, a statistics lecturer at the London School

of Economics. ‘If the coin were unbiased the chance of getting a result as extreme as that

would be less than 7%’. But do these data give evidence that the coin is biased rather than

fair? (2003)

In the following sections, we seek to answer the euro coin question from a non-Bayesian

perspective, utilizing a standard normal distribution hypothesis test, and from a Bayesian

perspective, utilizing a Beta-binomial model. In this case, data is the number of heads out of n =

250 tosses and the parameter is p, the probability of heads. For both approaches, we model the

number of heads with a binomial distribution, which describes the probability of getting k

successes out of n trials with the probability mass function, given by .𝑃(𝑘) = 𝑛
𝑘( ) 𝑝𝑘(1 − 𝑝)𝑛−𝑘

For a numeric example, if we take the success probability to be 0.5, assuming it is a fair coin, we

obtain . This function can be utilized to calculate the probability of,250
𝑘( ) * 0. 5𝑘(1 − 0. 5)250−𝑘

for example, obtaining exactly 150 heads out of 250 tosses, by substituting k = 150. There are
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two assumptions to the binomial model: trials must be independent and the probability of success

p must be constant from trial to trial. Since one coin flip does not influence another, we can

assume each toss is independent from each other; since we are using the same coin, each toss has

the same probability of getting heads, so probability of success is constant. Thus, the euro

problem is robust to any violations of the two assumptions.

3.1. Non-Bayesian Approach

In The Euro Problem, the goal is to estimate p based on the provided data. A natural point

estimate for p, denoted p̂, is the sample proportion of heads (i.e., p̂ = ). See an example𝑥
𝑛

distribution of p̂ in Figure 1 of the Appendix. In the case of the euro coin problem, p̂ is 0.56,

calculated by p̂ . To evaluate if the coin is biased, we conduct a hypothesis test on the null= 140
250

hypothesis (the true probability of heads is equal to 0.5), against a two-sided alternative (the true

probability of heads is not equal to 0.5). Conforming to the notation style, H0: p = 0.5 and H1: p ≠

0.5. The test is based on the point estimate p̂, with the test statistic z follows the formula:

, such that p is the null hypothesis value (0.5 in this case). In the context of the euro𝑧 = 𝑝̂ − 𝑝
𝑝(1−𝑝)

𝑛

problem, the test statistic is equivalent to 1.897, calculated by Under the null𝑧 = (0.56) − (0.5)
0.5*(1−0.5)

250

.

hypothesis, the test statistic follows a standard normal distribution, called a reference

distribution, as a result of the Central Limit Theorem.

The p-value is then obtained by doubling the value obtained from the corresponding

value derived from a z-score table (Frost, 2022). In this case, p-value is 0.067 (with continuity
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correction). Thus, we conclude, at the 0.05 level, that we do not have enough evidence to reject

the null hypothesis. A notable drawback of the p-value is that it is not intuitive: a common

misconception is to make a seemingly equivalent conclusion that we have “accepted” the null

hypothesis and have “proved” it is a fair coin, but this is simply not true. The purpose of a

hypothesis test for a non-statistically significant result is to conclude a lack of enough evidence

for the alternative hypothesis; one cannot prove, with certainty, which hypothesis is true based on

the p-value.

In addition to the hypothesis test, we can provide a confidence interval, expressed as a

proportion, for p. In a similar manner, the confidence interval is based on the normal distribution

of the point estimate p̂, and is given by , where is the critical value of 𝑝 ± 𝑍
( α

2 )
𝑝*(1−𝑝)

𝑛( ) 𝑍
( α

2 )

a standard normal distribution such that the probability to the right of is (“One Sample𝑍
( α

2 )
α
2

Proportion,” n.d.).

The confidence interval provides a range of values to accept if we were to conduct a

hypothesis test. In this case, the 95% confidence interval is

. Relating to the hypothesis test, since a value(0. 498 , 0. 622 ) =  0. 56 ± 1. 960 0.56*0.44
250( )

of 0.5 is in the confidence interval, we do not have enough evidence to reject this value. Thus,

the approach of a NHST provides a concise, clear-cut means of analysis in determining if the

coin is fair.

3.2. Bayesian Approach
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In the Euro problem, the key difference of a Bayesian approach is to regard the parameter

p as a random variable, rather than a fixed, unknown constant. The first step is then to assign a

probability distribution that describes the randomness in p, identified as the prior distribution in

Bayesian analysis. See an example of prior distributions in Figure 2 of the Appendix.We then

make inference by updating the prior distribution according to the collected data, which leads to

the posterior distribution. Frequently, the beta distribution is used to represent the prior

distribution of p, and has a range of (0,1). The shape of the distribution is determined by its two

parameters, α and β (α > 0, β > 0). Its expected value is given by , with varianceµ =  α
α+β

given by . A special case of the beta distribution is the uniform distributionσ2 = α*β

(α+β)2*(α+β+1)

(Figure 1), in which α = β = 1. See further examples of beta distributions in Figures 3,4, and 5 of

the Appendix.

Figure 1: Examples of Beta distributions

The uniform distribution indicates the probability of heads can be any value between 0 and 1,

with equal probability.
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There are three main benefits of using a beta prior for the parameter p. Primarily, the

shape of the distribution is flexible, depending entirely on the two aforementioned parameters;

the range of positive values (0,1) is suitable to model probabilities. Second, when a beta prior is

used, the posterior is also a beta distribution, and its derivation is mathematically simple: if the

prior is beta(α, β), then the posterior is beta(α + x, β + (n-x)) (recall that x is the number of

successes, or heads, and n-x is the number of failures, or tails). Lastly, it incorporates prior bias

concerns. Simplistically, the choice of the prior distribution represents a prior belief on the

skewness of the coin, chosen subjectively. It is typical to select smaller integers as parameters of

the prior beta distribution, as larger parameter values correspond to strong prior beliefs that tend

to not be affected much by data.
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A prior distribution of beta(1000000, 1000000) is displayed in Figure 2, indicating a

strong belief that the value of p is concentrated around 0.5. The posterior distribution is

beta(1000140, 1000110), and does not differ much from the prior distribution. Due to the prior

distribution’s parameters being so large, it has a dominance over data, influencing the posterior

mean to not largely differ from 0.5. We note that, when conducting Bayesian analysis, it is

usually important to conduct sensitivity analysis to study the effect on different prior choices.

Figure 2: Updated posterior distribution with large prior parameters

The prior distribution centers around 0.5, indicating it is not a biased coin.

3.3. Simulations
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To further contrast NHST’s and Bayesian analyses, I conducted a series of simulations for

The Euro Problem, utilizing two sets of data values: the first set with x = 140 and n = 250 (from

the Euro coin example), and the second with x = 150 and n = 250. P-values and confidence

intervals are provided in Table 1 and Table 2. We note the second set of data only increases the

number of heads by 10, but causes a drastic difference in the p-value and resulting conclusions.

This data was chosen to exhibit another limitation of p-values: minor alterations of data can have

a significant effect on the hypothesis testing conclusions because the p-value is typically

compared to a strict, artificial cutoff. We compare the p-value conclusions to the results of

Bayesian analysis based on a series of different prior choices. For each choice of the prior

distribution, we calculate 95% credible intervals and determine whether the results of the

Bayesian method indicated a fair coin: the conclusion is based on whether 0.5 was an element of

the 95% credible interval. Results are shown in Table 1 and Table 2.

Table 1

Bayesian analysis of the euro problem with x = 140 and n = 250
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Table 2

Bayesian analysis of the modified euro problem with x = 150 and n = 250
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The results in Table 1 show limited discrepancies between Bayesian analysis and the

NHST. The latter method indicates a lack of evidence to reject the null hypothesis: t(249) =

1.897, p = 0.067, 95% CI = [0.496,0.622]. In Row 2, the prior distribution beta(4, 2) leads to a

posterior probability P(p>0.5) = 0.978, with a 95% credible interval of (0.501, 0.623). Since the

result of the credible interval did not contain p = 0.5, there is enough reason to conclude the coin

is heads-biased, directly contrasting the conclusion obtained from the p-value. It is worth noting

that rows that are not consistent with the results of the NHST correspond to biased prior

distributions.

The results of Table 2 convey a different message: most of the results of the Bayesian

analysis are consistent with that of the NHST. The original hypothesis test indicates enough

evidence to reject the null hypothesis and conclude the coin is not fair (t(149) = 1.897, p =
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0.002). In Row 4, a weak prior distribution of beta(4, 4), which reflects a symmetric and

unimodal distribution, results in a 95% posterior credible interval of (0.5387454, 0.6582353),

thus concluding the coin is likely to be head-biased. In both trials, we obtain the posterior

probability of the coin being Heads-biased (P(p>0.5)). In Table 1, the second row outputs a

probability of the true sample proportion being greater than 0.5 as 0.978, which is a relatively

high chance. However, as concluded based on the p-value, we do not have enough evidence to

conclude it is not a fair coin. This highlights a discrepancy between the p-value and posterior

probability. In the second row of Table 2, we see the probability of p being greater than 0.5 is

0.999. Significantly, the credible intervals and posterior probabilities in both cases suggest the

coin is likely to be biased. This conclusion highlights that, unlike NHST’s, Bayesian analysis

neither relies on fixed cut-offs nor provides unambiguous answers regarding the fairness of the

coin.

In summary, in the Bayesian setting, researchers do not seek to make a dichotomous

decision (i.e., reject or fail to reject the null hypothesis); rather, the Bayesian analysis views p as

a continuous random variable and, thus, not constant. This is associated with a new way of

thinking that can provide some uncertainty assessment in the distribution of p. While Bayesian

analysis can associate probabilities for specific statements, such as the probability that p is

greater than 0.5, Hypothesis testing and p-values, conversely, do not follow the same

methodology. While p-values are commonly mistaken for an associated probability, they instead

only analyze the strength of a conclusion. In addition, when comparing the results of the NHST’s

in Tables 1 and 2, we see that increasing the number of heads caused a dramatic effect on the

p-value. While it is a seemingly insignificant change of data, it drastically alters the significance
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of the NHST. The lack of prior distribution in NHST implies that its conclusion is solely based

on the data. In comparison, the Bayesian method adds another layer of information in the form of

the prior distribution.
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4. Application

While the euro coin problem is a simple application of the beta binomial model, it can be

implemented to a plethora of real-world topics, such as COVID-19 analyses. In “A primer on

Bayesian estimation of prevalence of COVID-19 patient outcomes” (Gao and Dong, 2020), the

parameter p is the probability of COVID-19 death in Iceland (instead of the probability of heads

in the coin example); the number of deaths (y) replaced the number of heads (x); the total

number of infected (N) replaced the total number of rolls. A uniform prior was used and the

following conclusions were obtained: there is a 95% probability that the true infection fatality for

those younger than 70 years lie within (0.04%–0.29%), given the evidence provided by the

observed data, the true infection fatality for those between 70 and 80 years lie within

(0.85%–6.65%), and the true estimate of infection fatality for those older than 80 years lie within

(4.30%–24.22%). In another application, the parameter p is the percentage of the asymptomatic

children in the United States and data is the the number of asymptomatic children out of the total

amount of infected children. Similarly, a uniform prior was used and 95% posterior credible

intervals were reported to be (0.66%-0.94%) for the Western region, (0.56%-1.04%) for the

Midwest region, (0.44-0.78) for the Southern region, and (0.73%-1.33%) for the Northeast

region.

Gao and Dong (2020) also examined two COVID-19 studies that utilized Bayesian

analysis on two previously published studies to provide a different perspective on the data. The

first cited article, “Humoral Immune Response to SARS-CoV-2 in Iceland” (Gudbjartsson et al.,

2020) focuses on the risk of infection fatality measured through antibodies in individuals

diagnosed with, exposed to, and not exposed to SARS-CoV-2. Generalizing to the population of
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Iceland, research sought to assess SARS-CoV-2 seroprevalence –– the proportion of individuals

with antibodies against SARS-CoV-2 in a given population –– within four months of infection.

Notably, the sample seems to be representative, as samples are weighted by specific

demographics and have adequate sample sizes. The second cited article, “Prevalence of

SARS-CoV-2 Infection in Children Without Symptoms of Coronavirus Disease 2019” (Sola et

al., 2020) analyzes the rate of positive cases for asymptomatic children treated in hospitals for

conditions other than SARS-CoV-2. Deriving the data from Johns Hopkins University’s

database, the researchers obtained the amount of asymptomatic individuals under 18 who tested

positive at hospitals, and calculated prevalence proportions based on individual hospitals and

their corresponding regions. Results indicated that 0.7% of asymptomatic children were infected

with SARS-CoV-2 during the time period, with low prevalence. The total pooled prevalence

percentage was 0.65%, associated with a 95% confidence interval (0.47%, 0.83%).

Throughout the article, Gao and Dong caution on the use of point estimates, uncertainty,

and confidence intervals in non-Bayesian methods. Point estimation is warned to increase the

uncertainty of specific inferred values. Instead, authors suggest employing a probability

distribution to look at a series of probabilities, rather than one value. Their next point references

the misconception that p-values and confidence intervals are associated with the probability of a

specific event occurring, which is incorrect. As mentioned earlier, one cannot prove, with

certainty, which hypothesis is true. Lastly, the authors discuss the importance of prior knowledge

to influence more honest estimations. Overall, they “advocate the use of Bayesian methods for

researchers who work in this important field for COVID-19 research, as it enables them to

overcome the above limitations by deriving a probability for every possible value of the
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unknown parameter of interest.” Thus, while p-values and other non-Bayesian methods used in

biostatistical analysis are not incorrect, there are advantages in incorporating probabilistic

Bayesian inference.

The use of Bayesian methods extend beyond the aforementioned studies to many other

applications. In “Multiplicity Eludes Peer Review: The Case of COVID-19 Research,” Oliver

Gutiérrez-Hernández and Luis Ventura García (2021) conducted an investigation into popular

COVID-19 observational studies to analyze different statistical analyses and their associated

prevalence. The main focus of the study was to target multiplicity, and the dangers of

false-discoveries. The former is the increased risk of a type I error, previously defined as the

probability of rejecting a true null hypothesis (α), due to a large amount of simultaneous

inferences or tests. To reduce the spread of misinformation and risks of multiplicity, the authors

suggest amendments to investigated studies utilizing p-values without the acknowledgment of

potential errors or limitations. From their sample size of 100 peer-reviewed articles, the authors

discovered that 99 articles citing multiple p-values in the main text failed to conduct any method

of controlling for potential type I errors, concluding a potential prevalence of apocryphal

findings.
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5. Conclusion

This research intends to capture the misunderstandings surrounding NHST’s and

p-values, and compare these methods to the alternative Bayesian methods. Inspired by the debate

between subjectivism and frequentism (Benhamini et al., 2021), I seek to detail the benefits of

Bayesian analysis with the limitations and cautions regarding p-values in mind.

On one hand, Bayesian analysis provides an arguably more intuitive and probabilistic

analysis of the hypothesis, promoting an alternative way to measure the strength of data.

Conversely, p-values rely on a fixed threshold to make a conclusion, usually without offering

more information. Moreover, lack of a prior distribution in NHST’s indicates the conclusion is

solely based on the data and can be very sensitive to minor changes in the data. P-values and

confidence intervals provide valid reasonings for tests of proportions –– the statistic provides a

preliminary analysis for significance for one- and two-tailed tests, and confidence intervals yield

a range of values to accept upon conducting a hypothesis test (du Prel et al., 2009). In

comparison, Bayesian analysis takes a different approach with the use of probabilistic inference,

holding influence on uncertainty, and based on probability theory (Chater & Oaksford, 2012).

Bayesian statistics treats the parameter as random and studies its posterior distribution by

considering both the prior belief and the data.

Despite justifying my inclination to practice Bayesian methods, I argue the choice of

approach lies in the researcher, especially when conducting both analyses adequately. This is

achieved, when using p-values, by avoiding dichotomization and implementing an understanding

of power and effect size, and, when using Bayesian methods, by discussing the sensitivity of

prior choices. A. Blasco, a professor in the Department of Animal Science at Valencia
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Polytechnic University, discusses the choice of technique both in theoretical and practical

approaches. Concluding his argument, he writes:

Both Bayesian and frequentist schools of inference are well established…. To choose one

school or the other should be related to whether there are solutions in one school that the

other does not offer, to how easily the problems are solved, and to how comfortable the

scientist feels with the particular way of expressing the results. Both schools present

formal problems and paradoxes, although problems and paradoxes with methods of

greater familiarity are often better tolerated (2001).

Interpreting Blasco’s thoughts in the context of modern day statistics colloquies, the choice of

method relies on one’s comfort level. Both approaches have their benefits and drawbacks, and

whichever method is more understood by the researcher and exhaustive in its analysis, is

suitable. Through my examples, simulations, and applications, I have deemed Bayesian statistics

to be more beneficial. Nevertheless, much like the branch of statistics, the incorporation of one’s

opinion is both integral and welcomed.
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7. Appendix

Table 1

Distribution of p-value and Cohen’s d with mean difference of 5

Table 2

Distribution of p-value and Cohen’s d with mean difference of 2
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Figure 1

Power Analysis demonstrating there is only a 76.686% chance that p is less than 0.05, assuming

the alternative hypothesis is true.
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Figure 2

Email from Brian Wansink, provided by Buzzfeed News

Figure 1

Probability distribution for p̂
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Figure 2

Prior distributions simulated from alpha and beta values with ranges [1,4]
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Figure 3

Uniform prior distribution and its corresponding posterior distribution

Figure 4

Prior distribution of beta(4, 2) and its corresponding posterior distribution
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Figure 5

Prior distribution of beta(1000000, 1000000) and its corresponding posterior distribution


