
Abstract

The Evolution of Trust:

Understanding Prosocial Behavior in
Multi-Agent Reinforcement Learning Systems

David Nesterov-Rappoport

2022

This thesis looks into what factors contribute to intelligent agents making the decision to

cooperate with one another in social dilemma-like interactions. Using concepts from

game theory, artificial intelligence, and biology, the work explores what considerations

push interacting agents towards prosocial or antisocial strategies. Cooperative behaviors

form the backbone of social organization, furthermore understanding their governing

mechanics is of the utmost importance. To achieve this, a custom piece of software is

developed to enable experimentation in the domain, a number of advanced machine

learning models are trained, and research from across different disciplines is synthesized

into a single perspective. At the core of the quantitative research lies the stag hunt family

of games, played by reinforcement learning agents which try to maximize their average

number of points earned. By observing their learning behavior in relationship to

configuration parameters, ideas from past research are validated, future avenues for

exploration are identified, and concrete principles about these systems are unearthed. On

the way there, the thesis summarizes the academic foundation for its methods and tools,

explains how they work, and elaborates on how they are to be coupled into a single

consistent system. Lastly, the implications of the research are related to the human

context and framed in concrete terms.

The Evolution of Trust:

Understanding Prosocial Behavior in

Multi-Agent Reinforcement Learning Systems

An Honors Thesis
Submitted in Partial Fulfillment of the Requirements for the

Degree of Bachelor in Arts with Specialized Honors
in Computer Science at Drew University

by
David Nesterov-Rappoport

Thesis Director: Emily Hill

May 2022

Ø

Copyright © 2022 by David Nesterov-Rappoport

All rights reserved.

ii

Acknowledgments

To begin with, I would like to thank the person without which this project, and every-

thing preceding it would not be possible: my grandmother, Natalia Nesterova. Without her

support, I would have never had the educational opportunities I was lucky to have, and I

wish to express my eternal gratitude. My grandmother taught me everything I know about

creativity, hard work, and empathy - and this thesis carries her lessons.

Secondly, the completion of this project could not have been accomplished without the

support of my professors. I want to express my gratitude especially to my thesis advisor,

Dr. Emily Hill, my academic advisors, Dr. Barry Burd and Dr. Seung-Kee Lee, and

members of my thesis committee, Dr. Minjoon Kouh and Dr. Yi Lu.

Lastly, I want to acknowledge the individuals whose encouragement and companion-

ship has provided context to my work and continuously reminded me what truly matters.

My dear friends, for always being there for me when I needed them. My family, for teach-

ing me what it means to be strong when times are tough. And my girlfriend, Danie - who

has been my pillar to lean on thorough this entire process, and created an environment

which made this project possible. My heartfelt thanks to all.

iii

”It is true that certain living creatures, as bees and ants, live sociably one with another...

and therefore some man may perhaps desire to know why mankind cannot do the same.” -

Thomas Hobbes, Leviathan

This paper was conceived of and written in uncertain times. And the times would only

grow more uncertain with every page written. Through this thesis, I was hoping to

understand what was happening around me, and how things came to be this way. I have

always believed in humanity and the love that binds us; but it has been a strange time to

be young. My research reassured me that a better tomorrow is possible, but also made it

clear how long the path to get there is. I hope that in my work the willing reader sees

what I saw also - the hopeful glow of of a far away peak, and the long road leading to it.

Contents

Glossary of Terms 1

1 Introduction 4

1.1 The Problem at Hand . 4

1.2 A Game of Risk and Trust . 5

1.3 Learning Through Reward . 7

1.4 Our Contributions . 8

2 Background 9

2.1 The Stag Hunt . 9

2.1.1 Formal Description . 9

2.1.2 Generalized Stag Hunts . 10

2.1.3 Nash Equilibria . 12

2.1.4 Risk Balancing . 12

2.2 Reinforcement Learning . 13

2.2.1 Formal Description . 13

2.2.2 Agents . 14

2.2.3 Environments . 15

2.2.4 Reward . 15

2.3 Q-Learning . 16

iv

2.3.1 Basic Description . 16

2.3.2 Deep Q-Learning . 18

3 Related Work 20

3.1 Risk And Society . 20

3.2 The Evolution of Social Structure . 22

3.2.1 Location . 22

3.2.2 Signals . 23

3.2.3 Association . 24

3.2.4 Conclusions . 26

3.3 Mutual Aid . 27

3.3.1 Observations from Nature . 28

3.3.2 Rhymes of History . 29

4 Experiments And Implementation 30

4.1 Environment Implementation . 30

4.1.1 Peysakhovich and Lerer’s Environments 31

4.1.2 Our Implementation . 34

4.2 Experiments . 35

4.2.1 Experimental Methodology . 35

4.2.2 Reading the Figures . 36

4.2.3 Agent Structure . 36

4.3 Proof of Concept . 37

4.3.1 Matrix Stag Hunt . 38

4.3.2 Grid Stag Hunt . 39

4.4 Main Learning Experiment . 42

4.4.1 Low Risk Stag Hunt Experiment 42

v

4.4.2 High Risk Stag Hunt Experiment 44

4.4.3 Harvest & Escalation . 45

5 Discussion And Future Work 48

5.1 Discussion . 48

5.1.1 Achievements . 48

5.1.2 Shortcomings . 50

5.2 Future Work . 52

5.2.1 The Leviathan . 52

5.2.2 Genetic Algorithms . 53

5.2.3 Networked Genetic Algorithms 58

6 Conclusion 60

6.1 Summary . 60

6.1.1 Next Steps . 61

6.2 Closing Thoughts . 61

Bibliography 62

A Source Code 66

A.1 src/ . 66

A.1.1 games/ . 69

A.1.2 renderers/ . 84

A.2 envs/ . 90

A.2.1 gym/ . 90

A.2.2 pettingzoo/ . 99

A.3 assets/ . 102

vi

List of Figures

1.1 A 44,000 year old cave painting depicting a group of humans hunting a

large mammal. The problem of the stag hunt is as ancient as human civi-

lization itself.[1] . 6

1.2 In this reinforcement learning scenario, an agent is learning strategies to

solve their environment, in order to receive reward in the form of cheese. . 7

2.1 The general structure of a Reinforcement Learning system. 14

2.2 An illustration of a Q-Table[2] . 18

2.3 A visual demonstrating how a Neural Network is used to approximate Q-

Table functionality in the DQN approach.[3] 19

4.1 Custom environment figures . 33

4.2 Experimental configuration tables . 38

4.3 Convergence ratios in matrix stag hunt games played by basic Q-table agents. 40

4.4 An illustration of a Defect-Defect convergence in the low risk matrix stag

hunt environment between basic q-table agents. 41

4.5 An illustration of a Cooperate-Cooperate convergence in the low risk ma-

trix stag hunt environment between basic q-table agents. 41

4.6 Low risk grid stag hunt proof of concept run. 41

4.7 High risk grid stag hunt proof of concept run. 42

vii

4.8 The low risk DQN stag hunt experiment. 43

4.9 The high risk DQN stag hunt experiment. 44

4.10 The default-settings DQN Harvest experiment. 46

4.11 The low risk DQN Escalation experiment. 46

5.1 The standard structure of a Genetic algorithm. 55

5.2 A hypothetical search space being explored by a single solution algorithm

(yellow) and a genetic algorithm (red). The single-solution agent has a

high chance of getting stuck on a local peak based on its starting point.

Since the GA initially samples the space from different points, this risk is

significantly less pronounced[4]. 56

5.3 An example crossover process in which two children are generated from

two parents by splicing their genes at a random point. Mutation then oc-

curs through the random swap of one of the alleles in the children gene

sequence.[4] . 57

5.4 The population of a standard genetic algorithm (left) and what one would

expect to see in a natural population graph (right). 59

A.1 Game Assets . 103

viii

Glossary of Terms

action Something an agent can do within the rules of the environment. 7, 10, 11, 16, 59

agent The decision-making entity within a reinforcement learning system. Chooses future

actions based on its experience and observations. viii, 7, 11–15, 26, 30, 31, 35, 37,

56, 59

alleles The possible values a gene can take on. 54

artificial intelligence The academic discipline concerned with achieving cognitive be-

havior in artificial systems. 7

chromosome A sequence of genes encoding the genotype of an individual solution in the

run of a genetic algorithm. 54

crossover The part of a genetic algorithm which creates mating pairs when generating the

next generation of the population. 54, 56, 57

emergence When an entity is observed to have properties that its composite parts do not

posses on their own. In other words, emergent properties occur as a consequence of

parts interacting with one another in a greater whole. 25, 58

environment All parts of the reinforcement learning system that are not the agent. This

includes surroundings with which the agent can interact and the rules for how those

interactions happen. 7, 13, 15, 16, 21, 30, 35–37, 59

1

fitness A measure of how well an individual is performing within the context of a genetic

algorithm. Partially decides how much an individual will reproduce when a new

population is being generated. 21, 54–56

game An interactive situation between rational players. 5, 31

game theory An academic discipline concerned with studying strategical interactions be-

tween rational agents from a quantitative standpoint. 5, 9

graph An abstract data type for representing complex, non-linear relationships between

objects. 52

mapping A function; that is, a relation f : A → B such that for all a ∈ A, f(a) corre-

sponds to a unique b ∈ B. 8, 14, 16

model An abstract, information-based, representation of an object, person or system. 4,

9, 35

mutation Random variance in the genetic code of an offspring. 54

neural network A computer system inspired by biological neural networks, mainly used

in the field of artificial intelligence. 18, 58

observation An agent’s ”perception” of an environments state. 16

policy A computing function which returns a valid action given a state of a problem. 10,

11, 14

population A group of candidate solutions generated in the run of a genetic algorithm.

22, 54–58

2

reinforcement learning An area of artificial intelligence which solves problems by con-

tinuously altering agent behaviors and beliefs in response to meaningful signals (re-

ward) emitted by their surroundings. 7, 16, 30, 34

reward An instantaneous measure of how close the agent is to the environment’s goal.

Communicated to the agent at each time step via a reward signal emitted by the

environment. 7, 9, 12–15, 35

social dilemma A class of game-theoretic interactions in which the non-cooperative pay-

off for a player exceeds the cooperative payoff. 20

stochastic Something which is well described by a random probability distribution. 11,

31

3

Chapter 1

Introduction

1.1 The Problem at Hand

We are living through a turbulent age. While economic productivity and technological

potential are at an all-time high, people’s capacity to organize and work together is an

ongoing struggle. Political division, misinformation, and ideological conflict continues

to challenge our social institutions and leaves our future as a civilization uncertain. With

major threats looming over society, such as climate change and global war, it is now as

important as ever to understand how people agree to cooperate and what it takes maintain

a cooperative society once established.

To research the governing dynamics of social cooperation, one requires a model suffi-

ciently complex to capture essential nuance, but simple enough to make large scale com-

putation possible. In an effort to achieve this, we will break up the original modeling

problem into two smaller ones. On one hand, we need a model of the cooperation problem

itself, and on the other, a model for the learning behavior of individuals facing it. Through

this arrangement, we plan to observe the phenomena in an abstract realm, and uncover

principles governing this important subject matter.

4

1.2 A Game of Risk and Trust

Let us imagine two hunters tracking down a stag through the woods together. They have

been on the hunt for most of the day and fatigue is starting to set in. However, leaving

empty handed is not an option for either of them, so the two press on. They set a trap and

hide in the bushes, hopefully awaiting the uncertain arrival of their prey. Hours pass, and

suddenly, a hare emerges from the woods, starting to graze near their hiding spots. The

hare is a much smaller catch, but has enough meat to feed one person, and, unlike the stag,

is immediately within reach. Each hunter now faces a choice — leave their hiding spot

to kill the hare, guaranteeing themselves a meal, or stay faithful to the plan and continue

waiting for the stag. As both hunters are aware, if either of them goes after the lesser prey,

the trap will not succeed. With the critter’s arrival, doubt has been introduced into their

partnership. They have now begun a delicate dance between trust and risk, set to the music

of their thoughts. Do they trust their partner enough to bet on their continued cooperation?

Or do they deem it too risky and opt for the hare, defecting away from their agreement?

These contemplations occupying their minds, the hunters lie in wait, trying to guess what

the other is thinking and whether to take off after the hare or wait for the stag.

The stag hunt, as first told by the french philosopher Jean-Jacques Rousseau, is a story

that became a game [5]. Imagine that the aforementioned hunters may only choose be-

tween hunting hare or hunting stag, and that the chances of catching a hare are independent

of what others do. Additionally, the stag is always worth more than the hare, and one may

not possibly catch a stag alone. In this form, the stag hunt is a well-recognized area of

study for scientific game theory, serving as a medium for researching cooperative decision

making. Sometimes referred to as the assurance game, trust dilemma, or common interest

game, its essential aspect is its expression of the natural conflict between trust and risk.

Despite being simple, it can be used to accurately converse about a number of complicated

5

real life analogues. The original author intended it as a metaphor for the establishment of

society itself — the story describing how individuals give up their autonomy to participate

in the collaborative project of civilization. Similarly, the stag hunt can be used to represent

smaller consensus problems, such as recycling, wearing a mask in a pandemic, or holding

a stock during a short squeeze.

By compressing the complexity of cooperative decision-making to a single mathemat-

ical formula, the stag hunt enables us to study incredibly complicated social interactions

otherwise hidden from empirical analysis. The power of abstraction allows us to safely

research an otherwise inaccessible problem space. Consequently, in the stag hunt we have

found the first of our models - a representation of the problem of cooperation.

Figure 1.1: A 44,000 year old cave painting depicting a group of humans hunting a large
mammal. The problem of the stag hunt is as ancient as human civilization itself.[1]

6

1.3 Learning Through Reward

Having established the game, we now decide on our players. To find them, we turn to

the ripe field of artificial intelligence. Many candidate approaches emerge, but one stands

out amongst the rest as the most promising and intuitively compatible with the game the-

oretic approach of the stag hunt. Called reinforcement learning, it is an area of artificial

intelligence which solves problems by continuously altering A.I. behavior in response to

meaningful signals emitted by their surroundings. We refer to the entity doing the think-

ing as an agent, the signals as reward, and the system making up the surroundings as the

environment, which is illustrated in figure 1.2. Reinforcement learning algorithms attain

desired behavior from agents by using the environment to communicate what actions con-

stitute good and bad performance. The core approach is essentially similar to training

an animal — good actions are encouraged with rewards, such as treats, and bad actions

discouraged through punishment or lack of reward.

Figure 1.2: In this reinforcement learning scenario, an agent is learning strategies to solve
their environment, in order to receive reward in the form of cheese.

7

There is a number of reasons for why reinforcement learning synergizes well with the

stag hunt. First, the stag hunt’s structure naturally lends itself to the reinforcement learning

approach. Many other problems require considerable work to enable agents to accurately

interface with their environment. In contrast, the stag hunt, being fundamentally a mapping

from actions to rewards, is readily usable as an environment with minimal configuration.

Second, reinforcement learning agents trained by playing against one another have been

established to be capable of learning behavior much more complex than the environment

itself [6][7]. This is both promising in terms of results, and intuitively seems to mirror

human learning. Thirdly, reinforcement learning is exciting because of its established

track record of achieving impressive results in game-based problems much like the stag

hunt. Some researchers in the field even argue that reinforcement learning is capable of

one day producing a true general intelligence [8].

With these things in mind, it can be seen how reinforcement learning postures itself as

the appropriate choice for modeling individual behavior in our overall system. Naturally

fitted to the stag hunt and multi-agent contexts, and ripe with exciting research, reinforce-

ment learning is the clear choice for our second model.

1.4 Our Contributions

In summary, through analyzing a strong model of the cooperation problem, we hope to un-

derstand the social reality underlying agent cooperative dynamics. The thesis will engage

with a number of relevant technologies, summarize relevant research in the area, imple-

ment an open-source piece of reinforcement learning software, and conduct experiments

with said software. In these steps, we will be focusing on establishing concrete rules about

the stag hunt, and how agents learn to interact with it.

8

Chapter 2

Background

2.1 The Stag Hunt

2.1.1 Formal Description

We begin with a formal description of the aforementioned stag hunt game. In the frame-

work of game theory, the class of stag hunt games is a well-known model for studying the

trade-off between trust and risk[9]. In stag hunt, two players must independently decide

between two distinct plans of action, also called strategies. The first of these is the risky

option, which yields a high reward, but only when both players have picked it. If only

one player chooses it, they are punished with a bad payoff. Accordingly, this action is

commonly referred to as ”cooperate”, or, following the original story, ”hunt the stag”.

The alternative is the safe, low reward action, the success of which is not dependent on the

action of the opponent, but has significantly smaller returns. Following literature, we will

refer to it as ”defect”1. Thus, the game is expressed by the following payoff matrix, where

rows represent strategy choices for player 1, columns represent strategy choices for player

2, and cells show rewards to each player given a particular choice of strategies.

1Depending on the metaphor being employed, this will sometimes also be referred to as ”hunt the hare”
or ”forage”. To avoid confusion, we will not use such synonyms.

9

Player 2
Hunt Defect

Player 1
Hunt (h, h) (g, c)

Defect (c, g) (m,m)

Definition 2.1.1 (Stag Hunt). A 2 x 2 game is a generalized stag hunt if

h > c ≥ m > g, where:

• h is the reward for a successful cooperative action

• c is the reward for being the sole defector

• m is the reward when both players defect

• g is the punishment for hunting alone

2.1.2 Generalized Stag Hunts

The above description of a stag hunt is an idealized version called the normal form. While

normal form games have guided research on social dilemmas for decades, they do not ac-

curately represent a number of important features of their real-world equivalents[10]. To

begin with, real world cooperation problems are temporally extended. Secondly, coopera-

tion and defection are labels that refer to an agents policy, not individual actions. Lastly,

cooperate and defect are not atomic actions, and decisions must be made with only partial

information about the state of the world[10]. With this in mind, it can be seen why the

normal form stag hunt game has limited modeling capacity, and a more nuanced variant is

needed for our ends.

Definition 2.1.2 (Normal form). A normal-form game is a tuple (N,A, u), where[7]:

• N is a finite set of n players, indexed by i.

10

• A = A1 × · · · × An, where Ai is a set of actions available to player i. Each vector

a = (a1, · · · , An) ∈ A is called an action profile.

• R = (r1, · · · , rn), where ri : A→ R is a real-valued payoff function for player i.

Consequently, our tool set will include sequential stag hunt-like Markov games based

on past research which approached this problem before us[10][11]. For a game to be

rightfully considered stag hunt-like, it does not necessarily have to be played between two

players or be composed of two possible actions. The defining feature of the model is

the payoff difference between prosocial and antisocial strategies. Consequently, a given

game, regardless of how complicated its policy space is, will be considered stag hunt-like

if it preserves the high level properties of the normal form stag hunt[11].

Definition 2.1.3 (Markov Game). A Markov game, also known as a stochastic game, is a

tuple (Q,N,A, P,R), where:

• Q is a finite set of games.

• N is a finite set of n players.

• A = A1 × · · · × An, where Ai is a finite set of actions available to player i.

• P : Q × A × Q → [0, 1] is the transition probability function. P (q, a, q̂) is the

probability of transitioning from state q to state q̂ after action profile a.

• R = r1, ..., rn, where ri : Q× A→ R is a real-valued payoff function for player i.

In this paper, we will be relying on a number of N-strategy 2-player stag hunt-like

games to explore the problem at hand. We model them using the framework of Markov,

also called stochastic, games, which are generally accepted as a standard framework for

modeling multiple adaptive agents with interacting or competing goals[12]. In each of our

games, two agents move in any of the 4 cardinal directions on a N x N grid, with the goals

11

depending on the specific game. Despite being composed of numerous sub-games, these

games are considered stag hunt-like because any 2 x 2 sub-game within them is a stag

hunt[11].

2.1.3 Nash Equilibria

A Nash equilibrium, in game theory lexicon, is a strategy match-up in which neither

player has an incentive to deviate from their chosen strategy given what the other player is

doing[7]. In other words, they are possible points of convergence for a learning process[11].

Now, let us assume A1 and A2 are the action spaces of the two players, and Ri(a1, a2) is

their reward given a particular choice of strategies.

Definition 2.1.4 (Nash equilibria). Nash equilibria are strategy pairs (a∗1, a
∗
2)

such that for any ax1 , where x is the particular choice of strategy, we have

R1(a
∗
1, a
∗
2) ≥ R1(a

x
1 , a
∗
2)

and for any ax2 we have

R2(a
∗
1, a
∗
2) ≥ R2(a

∗
1, a

x
2)

Within the strategy space of stag hunt exist two Nash equilibria. The payoff-dominant

equilibrium is (Hunt,Hunt). It is referred to as payoff-dominant because it has the high-

est reward of all strategy pairs. Since it involves cooperation between the two agents, we

will be referring to it as the prosocial equilibrium. The second equilibrium is (Defect,Defect),

and it is the risk-dominant equilibrium as it involves the least risk of all strategies. To con-

trast it with the alternative, we will refer to it as the antisocial equilibrium.

2.1.4 Risk Balancing

The existence of these two equilibria is what makes stag hunt such a great means of study-

ing the problem at hand. An algorithm attempting to learn how to play this game is bound

12

to discover, and settle on, one of the two strategy pairs. They may judge cooperation to

be too risky and settle on acquiring steady, low returns. Or, alternatively, they develop a

significant amount of trust towards their partner and choose the risky, high reward action.

Neither option is, strictly-speaking, the ”better” one. The quality of the choices varies with

environmental conditions. For example, past research has implied that the risk-dominant

equilibrium is the optimal one in arrangements where the punishment for a failed hunt is

sufficiently high, as the risk of the payoff-dominant strategy passes a certain threshold[13].

Consequently, despite always being the most efficient choice in theory, the prosocial

strategy is not always the most reasonable to pick. Given how problems of cooperation are

frequently complicated by limited information, it stands to reason that risk consideration

is necessary for an intelligently approaching games of cooperation. For this reason, un-

derstanding the underlying competition between trust and risk holds the key to unearthing

the governing dynamics of social dilemmas.

2.2 Reinforcement Learning

2.2.1 Formal Description

Reinforcement learning is an area of machine learning concerned with how intelligent

agents ought to take actions in an environment in order to maximize the notion of cu-

mulative reward. Reinforcement learning systems have to operate continuously within an

uncertain environment based on delayed and frequently limited feedback[14]. An essen-

tial feature of the reinforcement learning protocol is how it decouples the problem into

two sequentially interacting components[8]. The solution is formulated in the form of an

agent - an entity which makes observations about its surroundings and decides on what

actions to take next. The problem is the environment inhabited and acted on by the agent,

13

providing feedback in the form of observations and reward.

Figure 2.1: The general structure of a Reinforcement Learning system.

Furthermore, the central goal of a reinforcement learning application is to learn a what

is called a policy – a mapping from the state of the environment to a choice of action

which yields effective performance over time[14]. Relevant to our ends is the fact that

reinforcement learning agents do not explicitly model the opponent’s strategy – they are

understood to be part of the environment[7].

2.2.2 Agents

An agent is defined as a system receiving at time t an observationOt, providing in response

an action At. More formally, the agent is a system At = α(Ht) that selects an action At at

time t given its experience history Ht = O1, A1, ..., Ot = 1, At−1, Ot [8]. In simple terms,

the agent maintains a memory of its experience and when it receives an observation, selects

the action which seems to be the best one given what the agent experienced in the past.

The decision making process through which the agent decides on the next action is called

the policy. The explicit goal of any reinforcement learning agent is to learn the optimal

policy - a strategy with the highest reward. Given that the reward function is sufficiently

accurate, the optimal policy constitutes a solution to the problem at hand.

14

2.2.3 Environments

An environment is defined as a system receiving at time t an actionAt and responding with

an observation Ot+1 at the next time step. In formal terms, the environment is a system

Ot+1 =∈ (Ht, At, ηt) which determines the next observation Ot+1 given an experience

history Ht, the latest agent action At, and potentially a source of randomness ηt [8]. An

important aspect of the environment-agent distinction is that the agent is exclusively the

entity in charge of decision making. Everything that is outside of it, even if intimately

connected to the agent (such as a physical body in a robotics context), would be considered

a part of the environment. To note, in a multi-agent setting, each individual agent considers

the others to be a part of the overall environment.

2.2.4 Reward

The most essential part of the reinforcement learning approach is the reward. Given how

reinforcement learning represents goals in the form of cumulative reward, an accurate

reward function is essential for the agents to learn the important features of their environ-

ment. We define a reward as a special scalar observation Rt, emitted by the environment

at every time-step t through what is called the reward signal. This reward is meant to

provide an instant measure of the agent’s progress towards the specified goal. Although

simple, this formulation is sufficient to represent a great variety of goals and constitutes a

fundamental strength of the reinforcement learning framework [8].

15

2.3 Q-Learning

2.3.1 Basic Description

Q-learning is a well-known reinforcement learning approach that has pioneered a lot of

now-standard practices and ideas in the field. In essence, it is a simple way for agents to

learn how to act optimally in controlled Markovian domains[15]. Conceptually founded

on ideas of dynamic programming, the approach works by continuously improving its

internal evaluations of how good a particular action is given some observation. Q-learning

is considered to be a form of model-free reinforcement learning, as the agents do not

build an internal model of their environment. Instead, the agents try some action in a

particular state and observe the consequences. Through this, the agents learn a mapping

from actions to reward which enables them to engage with the environment in an intelligent

way. Consequently, Q-learning is a primitive form of learning, with results being achieved

through simply trying all actions in all states[15]. None the less, the approach has been

wildly successful for its high level of expandability and intuitive conceptual foundation.

Definition 2.3.1 (Q-Learning). Q-learning is the following procedure [7]:

Initialize the Q-functions and V values (arbitrarily, for example)

repeat until convergence

1. Observe the current state st.

2. Select action at based on current Q-values and take it.

3. Observe the reward r(st, at) returned from the environment.

4. Update the Q-value for the state-action pair (st, at) using a value iteration update

function which uses the weighted average of the old Q-value and new information.

16

In words, the process revolves around the agent at each time step t, selecting an action

at, taking it, seeing what reward rt and new state st + 1 are returned by the environment,

and updating the Q-value for the action using the information observed. Specifically, the

Q-value is updated using a Bellman equation as a simple value iteration update.

Definition 2.3.2 (Q-Learning Bellman equation).

Qnew(st, at)← Q(st, at)︸ ︷︷ ︸
old value

+ α︸︷︷︸
learning rate

+

temporal difference︷ ︸︸ ︷
rt︸︷︷︸

reward

+ γ︸︷︷︸
discount factor

× max
a
Q(st + 1, a)︸ ︷︷ ︸

estimate of optimal future value︸ ︷︷ ︸
new value (temporal difference target)

−Q(st, at)︸ ︷︷ ︸
old value

where,

• rt is the reward the agent received when moving from the last state st

to the new state st+1.

• α is the algorithm learning rate (0 < α < 1).

The big-picture intuition behind this approach has to do with how it approximates

the unknown transition probability by using the actual distribution of states reached in

the duration of the game[7]. An important note is that while Q-learning guarantees good

learning, it makes no promises on how quickly the desired convergence would occur[7].

The most common implementation of Q-learning is through the use of Q-tables - which

are simply tables where one axis are the possible states, and the other axis are the possi-

ble actions (illustrated in figure 2.2). Each cell contains a Q-value corresponding to the

quality of the action given that state, and the value is updated each time the combination

is experienced using the rules described above.

17

Figure 2.2: An illustration of a Q-Table[2]

2.3.2 Deep Q-Learning

Given how the foundational Q-learning approach is rather simple, it is an inappropriate

tool for learning complicated environments. However, more sophisticated algorithms have

been devised that build on top of the high-level ideas of Q-learning to create efficient ap-

proaches to solving complicated problem spaces. Of particular interest to us is the deep

Q-learning approach, which leverages a convolutional neural network whose input is the

environment state and whose output is a value function estimating future rewards[16]. The

approach essentially translates the core mechanism of Q-learning, which is value iteration,

onto the engine of neural networks. As the agent explores the environment, it updates the

neural network weights according to the principles of Q-learning and gradient descent[16],

as can be seen in figure 2.3. This allows the algorithm to surpass challenges which im-

mobilize competing reinforcement learning methods, while doing so in a conceptually

straight forward fashion. DQN was used to effectively solve stag-hunt like games in past

18

research, which provides additional evidence for our choice[17][10]. For these reasons

and more, this is the algorithm we used in our main line of experimentation.

Figure 2.3: A visual demonstrating how a Neural Network is used to approximate Q-Table
functionality in the DQN approach.[3]

19

Chapter 3

Related Work

3.1 Risk And Society

The beginning point of our research is the recognition of a strong connection between

risk and the likelihood of cooperation in stag hunt type social dilemmas. This has been

investigated and confirmed numerous times by different researchers in varying contexts.

For example, Duguid et al. compared the abilities of chimpanzees and young children to

coordinate with a partner in Stag Hunt interactions[18]. Their observation was that when

the risks were low and information was cheap (the partner could be easily observed), both

species successfully coordinated on the prosocial choice. However, when the risks were

increased and information was less readily available, the chimpanzees failed to cooperate,

while human children were still successful[18]. This is consistent with research on the re-

lationship between risk and the likelihood of cooperation done by Bearden[19]. Increased

risk correlates to a decrease in cooperative choices, but humans overcome this difficulty

by leveraging social behaviors[18][5]. This general trend holds across particular instances,

and establishing rules which govern is of the highest priority.

We know that people in a group will frequently be willing to give more and take less,

which may appear irrational from the individual perspective, but makes sense when one

20

considers the improved fitness of the group as a whole[20]. In an environment where

learning rules are subjects to evolutionary pressure, selfish learning is sub optimal and

will be out competed by prosocial learners. A great deal of evidence for this is presented

in Kropotkin’s Mutual Aid, which details the numerous ways in which inter-species coop-

eration is a necessary principle of evolution[21]. The work posits that ”the fittest are not

the physically strongest, nor the cunningest, but those who learn to combine so as mutu-

ally to support each other, strong and weak alike, for the welfare of the community”[21].

In other words, there is considerable evidence in evolutionary theory which suggests that

stag hunt like interactions are numerous, and absolutely essential to the dynamics of the

biosphere. What is of utmost interest from an academic standpoint is how the behav-

ior dynamic crystallizes on the basis of the underlying interaction pattern, and the social

structure mediating it. Put simply, competition and cooperation are both valid consid-

erations in social dilemmas, and what decides which one dominates has to do with the

collective-level behaviors that have been adopted.

This reality is something usually left out of the archetypal stag hunt story. By ab-

stracting away the fact that the hunters have a relationship before and after the hunt, the

thought experiment fails to model a crucial feature of the social phenomena in question.

Being able to consider the reasoning of other agents is necessary to enable individuals to

cooperate and produce optimal group rewards[20]. Furthermore, it stands to reason that

social modeling is essential for understanding how to create multi-agent systems capable

of stable cooperative behaviors. Such behavior requires social structure of a particular

kind, which is unachievable without modeling persistent relationships between individu-

als through some means. While attempting to model this may be out of the scope of this

work, researching this is essential for long-term progress in the field.

21

3.2 The Evolution of Social Structure

Brian Skyrms is a famous researcher in the fields of cooperation and collective action. His

work, The Stag Hunt and the Evolution of Social Structure, is an enormous source of inspi-

ration for this thesis. In the book, Skyrms posits that successful coordination on the social

choice in stag hunt-like interactions is dependent on the co-evolution of cooperation and

social structure[5]. Specifically, he argues that three factors affect the emergence of social

structure and collective action: location (interactions with neighbors), signals (transmis-

sion of information), and association (the formation of social networks)[5]. In the scope

of our implementation, location and association are achieved through NGA population

graphs, and signals through peer gifting.

A major premise of Skyrms work, which we also accept as true, is that ”rational choice

is not necessary for solving the problem of the social contract”[5]. If the opposite was true,

Skyrms argues, we would not observe phenomena such as eusocial insects or social bacte-

ria like the Myxococcus xanthus[5]. Rather than human-like cognition, social cooperation

seems to require emergent behavior instead. In the words of the author, ”transient phe-

nomena [are] crucial to an understanding of real [social] behavior”[5]. Similar sentiments

are expressed by quantitative research in the area[6][9].

3.2.1 Location

The essence of the location argument is that rational agents behave fundamentally different

when bargaining with neighbors rather than with strangers. Skyrms shows how when who

interacts with whom is decided through some representation of physical location, rather

than through random match-ups, it has major implications on the evolutionary dynamics

of the population as a whole[5]. Known models and past experiments demonstrate how

”interaction with neighbors on one or another spatial structure can allow cooperative strate-

22

gies to persist in the population”, whereas when ”played in a well-mixed large population,

the evolutionary dynamics drives cooperation to extinction”[5]. An important addition is

that local interaction only produces these benefits in large populations. Selfish strategies

are locally optimal, meaning that they will dominate small populations. The dynamics dis-

cussed above seem to be emergent, and therefore need a large set of individual structures

to work with. Additionally, while local interaction making a difference is a ”modest gen-

eral truth”, the actual dynamics underlying it are nuanced and not entirely clear[5]. The

dimension, reproductive dynamics, and the kinds of neighborhoods modeled, all seem to

play an important role in determining the outcome of a simulation[5]. In spite of this, in

the context of the stag hunt, the author posits with confidence how ”local interaction opens

up possibilities of cooperation that do not exist in a more traditional setting”[5].

3.2.2 Signals

It is an observed fact that ”signaling systems are ubiquitous at all levels of biological

organization”[5]. Honeybees have a signaling system for communicating the location and

quality of food sources, birds use signals to warn and woo one another, and perhaps more

remarkably, some bacteria use signaling systems to make decisions at the colony level[5].

A salient illustration of this is the behavior of the aforementioned social bacteria, Myx-

occoccis xanthus. When food is aplenty, the bacteria are free-living individuals. When

the collective senses that starvation is widespread, the bacteria will engage in coordinated

attacks on larger microbial prey, overwhelming them with secreted enzymes[5]. In other

words, these single-celled organisms, incapable of thought, have successfully solved the

problem of the stag hunt. They have done so through the use of Quarum Signaling, which

depends on a signaling molecule that the bacteria emit, diffusing it into the environment[5].

There is thus strong evidence that one does not require complicated communication strate-

gies to solve complicated coordination problems.

23

Skyrms is particularly interested in how speech and language can emerge without pre-

supposing themselves. In other words, how does one arrive at a convention? And how

does this convention remain in force? Reframed in game theoretic language, these are

problems of equilibrium selection and equilibrium maintenance[5]. Skyrms does a num-

ber of experiments looking into the relationship signaling has to evolutionary dynamics.

What he is able to show through his analysis, is that one can ”have an account of the

spontaneous emergence of signaling systems that does not require preexisting common

knowledge, agreement, precedent, or salience”[5]. In other words, there is good reason to

believe that signaling systems can arise naturally from the dynamics of learning itself[5].

3.2.3 Association

The author begins his discussion on association by revisiting the remarkable bacterium

Myxococcus xanthus, which moves by gliding on slime trails. While the mechanism of

it is not entirely known, it is observed that using and following an existing slime trail is

significantly easier than making a new one[5]. Furthermore, bacteria will go out of their

way to follow an existing slime trail. At that point, Thorndike’s laws of learning come into

force. Specifically, the Law of Effect, which states that an action that leads to positive re-

wards becomes more probable, and Law of Practice – that an action that is not successfully

used tends to become less probable[5]. Consequently, trails that are successfully used to

find food end up being reinforced, while trails leading nowhere useful dry up. Important to

our ends is the fact that such biological adaptations, for all intents and purposes, are valid

instances of reinforcement learning. Skyrms thus argues that reinforcement learning has

something to teach us about the dynamics of association and that dynamics of interaction

are a crucial factor in the evolution of collective action[5].

To uncover these lessons, the author conducts a series of experiments in a simple so-

cial reinforcement model, adding new mechanics one by one and observing their effects

24

on the learning process. The original model is a metaphorical version of the Pólya urn

process, where ten strangers find themselves in a new location and each morning, every-

one chooses someone to visit that day. Each individual starts with a numerical weight for

each other participant, visits them with probability proportional to that weight, and updates

the weight positively or negatively depending on how pleasant the interaction is[5]. The

model can be excessively tuned, such as by specifying whether the host, visitor, or both

get the reward, and how large that reward is. Let us summarize what Skyrms learned from

his experimentation.

To begin with, the ”boring” version of the simulation is one where the guests are uni-

formly reinforced for pleasant interactions. In other words, a pleasant interaction yields a

reward of 1 to the guest, but nothing to the host. What is observed from this simulation is

not new, but notably interesting in our context. This friend-making process is guaranteed

to converge, meaning people will at some point only visit their “friends”, but it is com-

pletely random at what set of friendships we end up at. Stated otherwise, from a perfectly

uniform starting point, a particular order will emerge with no specific reason for why that

order emerged over a different one. The emergence of order is assured. The way in which

these interactions crystallize into concrete forms is an essential fact that is ought to be

recognized more by those studying multi-agent systems.

The simulation, however, changes if one considers an arrangement in which visits are

uniformly unpleasant. Same set-up as above, but the interactions are always unpleas-

ant, meaning individuals will be less likely to visit someone after interacting with them.

Whereas positive reinforcement led to the spontaneous emergence of interaction structure,

negative reinforcement wipes it out and leads to uniform random encounters[5]. The con-

clusion is that random encounters help with making enemies, but not with making friends.

What happens if both the guest and the host are reinforced for pleasant interactions? In

this circumstance, reinforcement becomes interactive, as an individual’s weight changes

25

not only based on who they visit, but also who chooses to visit them. In such a set up, struc-

ture still emerges, but a general characterization of that structure is far from evident[5].

Skyrms observes that convergence is slow, and long-lived transient behavior becomes an

important part of the story.

Arguably the most interesting alteration one can make to this simulation is through

adding fading memories. If one adds a moderate rate of memory fade by only preserving

90 percent of past experience, the variety of visiting probabilities outlined earlier disap-

pears, and agent behavior crystallizes into deterministic visiting patterns[5]. The less our

agents forget, the more the simulation behaves like the original case. Skyrms thus posits

that any forgetting at all leads to “a deterministic interaction network crystallizing out of

the flux of interaction probabilities”[5]. We wish to explicitly draw the readers attention to

this observation, as an awareness of the crystallization process is necessary to understand

the big picture which emerges from this research.

Skyrms then alters the simulation so that each visit is a Stag Hunt game, and indi-

viduals are assigned stag or hare hunter at the start. In this circumstance, the population

eventually splits into two mutually exclusive groups based on prey preference, each group

then engaging in a microcosmic version of the greater game. Consequently, stag hunters

will group together and begin achieving far greater rewards than their hare-hunting rivals.

In other words, once this sort of interaction structure has evolved, stag hunters prosper[5].

Choosing partners has an immense effect on the learning dynamic of the collective as a

whole. A fluid interaction structure allows individuals to sort themselves into behavioral

groups, which makes cooperative strategies much more evolutionary competitive.

3.2.4 Conclusions

Skyrms began his analysis by asking: ”How can you get from the non cooperative hare

hunting equilibrium to the cooperative stag hunting equilibrium”[5]. Through his exper-

26

imentation and inquiry, he is able to demonstrate the emergence of some general princi-

ples. The process begins with agents experimenting with stag hunting in small groups.

Eventually, because of associative behavior, the stag hunters come to interact mostly or

solely with one another. This takes time, but is sped up through means of fast interaction

dynamics[5]. Once the stag hunting community is established, they come to dominate the

population through reproductive and imitation dynamics. This process is further facilitated

if the reproduction or imitation neighborhoods are larger than interaction neighborhoods.

As the culture of cooperation spreads, it can maintain viability even in the unfavorable

environment of a large, random-mixing population through the utilization of signaling.

3.3 Mutual Aid

Peter Kropotkin is mainly known as a political writer and avid advocate of anarcho-

communism. His philosophy takes great inspiration from his naturalist background, which

he has acquired during his extensive time in Siberia. Having observed the importance of

cooperative structures in nature, Kropotkin would later use that knowledge to develop his

political and societal views. These observations are described and discussed in his chief

scientific contribution, the book Mutual Aid: A Factor in Evolution. In the text, Kropotkin

argues that the understanding of Darwinian processes as fundamentally based on inter-

species competition is limited, as it is but a part of the whole. To truly comprehend evolu-

tionary dynamics, one has to acknowledge the essential role of inter-species cooperation.

As he puts it, ”sociability is as much a law of nature as mutual struggle”[21].

Kropotkin’s work helps ground the importance of the subject matter. By recogniz-

ing cooperation as a fundamental challenge of biological systems, and incorporating that

reality into our understanding of human collectives, we are enabled to develop a clearer

sense for how cooperative structures can be engineered among us. It is wrong to think that

27

one has to invent new structures - rather, we are ought to observe what has already been

achieved in nature, and translate that onto the human substrate.

3.3.1 Observations from Nature

Kropotkin begins by describing how during his time in Eastern Siberia, he “failed to find

– although [he] was eagerly looking for it – that bitter struggle for the means of existence,

among animals belonging to the same species, which was considered by most Darwinin-

sts...as the dominant characteristic of struggle for life”[21]. On the contrary, he ”saw

Mutual Aid and Mutual Support carried on to an extent which made [him] suspect in it a

feature of the greatest importance for the maintenance of life, and the preservation of each

species, and its further evolution”[21]. The argument is strong because of the powerful

empirical evidence that the author puts forward. The importance of cooperation is over-

whelmingly evidenced by colonies of rodents, the migrations of birds and deer, the pack

behavior of wolves, and numerous more.

Furthermore, when one becomes acquaintanced with nature, the prevalence of stag

hunt like interactions becomes obvious. Organic beings are said to have two essential

needs: that of nutrition, and that of continuing the species[21]. According to Kropotkin,

the former causes inter-species competition, and the latter brings them together and forces

mutual support. Accordingly, competition over resources seems to be much less prevalent

than mainstream evolutionary theory may suggest. For example, numerous birds of prey,

who one would assume to be highly competitive among one another due to their predatory

nature, have developed advanced cooperative practices. In fact, the species which rob

each other are in decay, whereas those which practice mutual aid are thriving[21]. Living

beings which best know how to combine, and to avoid competition, have the best chances

of survival and further progressive development. This is echoed many times over on all

levels of the biosphere - as was previously discussed by Skyrms as well[5]. Consequently,

28

we are left with strong reasons to believe that the stag hunt is an absolutely essential aspect

of evolutionary dynamics, and organic life is in great deal defined by how it approaches

this fundamental challenge.

3.3.2 Rhymes of History

Humans are an undeniably social animal, and it is worthwhile to investigate how humans

have developed social structures and how those structures evolved. Kropotkin spends the

latter half of his book looking into this, and it is where his writing moves from biology

to sociology and politics. At the beginning, Kropotkin diffuses the notion that humanity

originated from a state of constant warfare, and that conflict has been the driving force

behind human progress[21]. Mirroring his earlier line of argumentation, he posits that co-

operative achievements instead take primacy, and the historical narrative focus on conflict

is a dated cultural artifact. He then describes the history of humanity as a gradual increase

in cooperative structures, from the clan organization of our origin species, to the industrial

organization of recent times. The core idea, which remains conceptually sound even in

consideration of potential ideological biases, is that human society-at-large is engaged in

a continuous engineering endeavor of creating social structures which enable more reli-

able and efficient methods of collaboration. While conflict is an undeniable factor in how

civilization evolves, once one moves out of the institutionally mandated historical perspec-

tive, it becomes clear that cooperation and structures which enable it are significantly more

important. Understanding these structures is the key to solving problems of coordination.

29

Chapter 4

Experiments And Implementation

The core inquiry of our thesis is: how do individuals learn to cooperate and set aside their

differences for the sake of the common good? The implementation problem we had to

solve was the question of how this can be studied from the quantitative perspective. Hav-

ing found our answer to that in stag hunt and reinforcement learning, we can reframe our

core inquiry in domain language: what factors contribute to reinforcement learning agents

learning to converge on the prosocial equilibrium? To answer this, we run experiments

where the agent architecture and environment rules are kept constant, and risk configu-

ration is varied, so we can analyze its impact on the speed and efficiency of behavioral

convergences.

4.1 Environment Implementation

Experiments are ran on a custom environment, made compatible with OpenAI Gym and

PettingZoo, developed in-house on the basis of Markov games with Stag Hunt properties

described in the work of Peysakhovich and Lerer[22][23][11]. The environment is made

to be a robust, efficient, and customizable tool for the study of prosocial behavior in multi-

agent reinforcement learning. The code is published on GitHub at

30

https://github.com/NullDefault/Gym-Stag-Hunt

https://github.com/NullDefault/Gym-Stag-Hunt

under the MIT license, making it available to the open source artificial intelligence com-

munity. The repository has already received a fair amount of attention, with multiple

enthusiasts downloading the code to run experiments or add functionality. This serves as

evidence for the usefulness and applicability of the software developed, and we hope that

as we advertise it to the reinforcement learning community, more researchers will make

use of it in their work.

4.1.1 Peysakhovich and Lerer’s Environments

Peysakhovich and Lerer’s work looks into how changing the learning rule of a single agent

can improve its outcomes in Stag Hunts that include other reactive learners[11]. Their

experimentation shows that prosocial preferences applied to even one individual makes

the prosocial equilibrium more desirable overall in stag hunt like interactions. This is

first established in simple matrix form stag hunts, but is validated and confirmed in more

complicated analogues. These analogues are stochastic games that preserve the high level

properties of stag hunt interactions. Each game is modeled using the framework of Markov

games[11][7]. These stag hunt-like games are a medium where analytical solutions are

difficult, hence why they are an interesting means of testing if approaches developed on

the simple stag hunt are applicable in more generalized domains[11].

The Three Games

In each game, a pair of agents move on a 5x5 grid in the 4 cardinal directions and, through

their actions, have a choice between a prosocial and antisocial strategy. There is a total of

three games: Markov Stag Hunt, Harvest and Escalation (Figure 4.1a).

1. In the Markov Stag Hunt, the field is populated with one stag and two plants. Ending

31

https://github.com/NullDefault/Gym-Stag-Hunt

a turn in the same cell as a plant rewards 1 point to the harvester and makes the plant

re-spawn in a different location. Ending a turn in the same cell as the stag punishes

the agent with negative g points, unless the other agent is also in the same spot. If

both agents overlay the stag simultaneously, they each gain g points and the stag re-

spawns elsewhere. The original g is 5. Each time step, the stag will move towards

whichever agent is closest to it, however it can never catch an agent who continues

to move away from it. Similar to the matrix-form stag hunt, there are two equilibria

in this game - the agents either try together to hunt the stag, or opt for the guaranteed

returns of harvesting plants. Lastly, the risk is asymmetric as agents are punished

for hunting alone, while the defectors can always guarantee a small reward.

2. In the Harvest game, plants randomly spawn on the grid at each time step as long as

there are less than k plants on the board. The original k is 4. The plants are spawned

“young”, and can turn into “mature” plants each time step with probability rmature.

Mature plants can die on each time step with probability rdeath. Probabilities should

be selected in a way such that each plant lives for E time steps on average. The

original description has an E of 20. Agents can move over the plants to harvest

them. A young plant yields 1 point to the harvester, but a mature plant rewards both

players with 2 points. The prosocial strategy is thus to wait for the plants to mature

before harvesting them. Much like in the original stag hunt, however, there is risk in

waiting, as the other agent may defect and grab the plant before maturity.

3. In Coordinated Escalation, a marker appears in of the grid cells. If both agents step

on the marker in tandem, they will each receive 1 point, at which point one of the

adjacent cells will become the next marker. If the agents continue the streak by

stepping onto the next marker together, they will again receive a point each. If at

any moment the streak is broken by one of the agents stepping off the path, their

32

partner will receive a penalty calculated by multiplying the punishment multiplier p

by the length of the streak T. The length of the streak is communicated to the agents

as a part of the state observation.

(a) Stochastic Stag Hunt-like games as originally described in ”Prosocial learning agents solve
generalized Stag Hunts better than selfish ones”[11]

(b) Our implementation of the games for OpenAI Gym and PettingZoo.

Figure 4.1: Custom environment figures

33

4.1.2 Our Implementation

The environment is implemented using the OpenAI Gym interface. OpenAI Gym is a

toolkit for reinforcement learning research that includes a growing collection of bench-

mark problems and exposes a common interface for agent interaction[22]. Being the de-

facto standard for creating shareable reinforcement learning environments, OpenAI Gym

is designed with creating new environments in mind. Furthermore, it was the clear choice

for making our environment accessible to the maximum amount of people. However, Gym

is not designed with multi-agent experiments in mind, and thus is not entirely appropriate

for our context. Fortunately, the PettingZoo library was developed essentially as a multi-

agent variant of Gym, sharing the same standard API, allowing for strong compatibility

between the two[23]. Furthermore, our environment is provided in Gym and PettingZoo

variants, allowing the user to select whichever is most appropriate for their context. In our

research, we leverage both.

In the code, rendering is taken care of by the PyGame library, and load-bearing com-

putation is executed using NumPy. The assets and textures were hand-made using Piskel.

Some additional engineering details:

1. The code was written with customization in mind, and each simulation variable is

exposed as a parameter. Rewards and punishments can be freely configured. We

leverage this to run experiments on high and low risk variants of the environments.

2. The matrix-form stag hunt is included as a fourth environment, although it is not

provided in PettingZoo form.

3. It is enforced that each environment maintains high-level stag hunt properties. Sim-

ulations which do not obey the payoff matrix described in Figure 2.1.1 fail to instan-

tiate.

34

https://www.pygame.org/
https://numpy.org/
https://www.piskelapp.com/

4. The environments can be observed in two ways. Either as a 2D pixel array repre-

senting the PyGame render, or a 2D coordinate array representing the location of

each entity. The pixel array can be rendered to the screen through PyGame, and the

coordinate array can be printed to the terminal in a graphical format.

5. The PettingZoo environments are provided in parallel and raw variants to allow for

diverse use cases.

4.2 Experiments

4.2.1 Experimental Methodology

To begin with, all of our experiments are arrangements in which a numerical model, the

agent, learns a strategy by continuously interacting with the environment and altering their

beliefs in response to maximize how much reward they earn on average. While the agents

and environments vary between experiments, this general set-up is common to all of them.

Our primary aim is to observe the learning process, see if the agents learn the coopera-

tive or anti-social strategy, and consider what relationship seems to emerge between the

simulation parameters and the behaviors learned by the players.

Specifically, we are using the risk configuration as the varying factor, to see what

effect varying levels of risk have on what behaviors the agents settle on. Ultimately, we

are paying attention to how the learning process is affected — since that is what is most

relevant for eventually translating this into the human context.

Our experiment begins with a proof of concept stage where we test that our custom en-

vironment is behaving as expected and we are able to attain minimally meaningful results

using simplified approaches. To achieve this, we train a pair of basic Q-table agents on the

matrix and grid stag hunts. As the agent is simple, do not expect it to learn a strong policy

35

in the grid stag hunt, and we are training the agent simply for testing purposes.

Once we confirm that the environment is functioning as expected, we conduct our

main line of experimentation, which is training deep Q-learning models on the grid en-

vironments for a prolonged period of time. These nuanced models will offer a valuable

opportunity to explore the dynamics of learning in the environment, and hopefully yield

interesting results in the process.

4.2.2 Reading the Figures

In each figure, the x-axis corresponds to the number of iterations since the beginning of

the experiment. The y-axis is the average reward for one or both of the players over a

specified period of time. Steep curves mean a rapid change in strategy, and flat curves

correspond to stagnated learning. Additionally, the lines jump up and down locally, as the

agents are constantly experimenting and trying out new strategies which adds turbulence

to the graphs.

4.2.3 Agent Structure

In our experiments, we will be using the basic Q-table set up for our proof of concept

work, and DQN for our main experimentation. The DQN implementation is made possi-

ble with the Ray library — a general-purpose cluster-computing framework that enables

simulation, training, and serving for RL applications[14][24][25]. Ray allows for high

levels of interface flexibility, high throughput, and low latency in the experiments.

Successfully wiring up Ray and our environment together is a strong contribution of its

own, as it enables an immense variety of possible experiments. Once the two are success-

fully wired up, there will be plentiful opportunities to uncover facts about the dynamics of

the environment, as well as set up future research in the area.

36

Ray and RLlib

From a high level, Ray is a library that aims to provide a universal API for distributed com-

puting. Modern AI applications, such as the one we are studying, continuously interact

with their environment and learn from these interactions. This imposes new and demand-

ing system requirements, both in terms of performance and flexibility[14]. To tackle this,

Ray implements a unified interface that can express both task-parallel and actor-based

computations, both being supported by a single dynamic execution engine[14]. On top of

the foundational library, numerous other helpful tools have been built – such as Tune, a

framework for model selection and training that streamlines hyper-parameter tuning dur-

ing experimentation[26]. Most important to our experimentation is Ray RLlib, a library

which provides scalable software primitives for reinforcement learning[24]. The library

offers a collection of reference algorithms, which is where we get our DQN system[24].

When coupled with Tune and additional Ray helpers, RLlib becomes an incredibly pow-

erful tool for running numerous complicated experiments in state-of-the-art speeds.

4.3 Proof of Concept

To begin with, we must confirm that our custom environment behaves as expected, and

that our chosen agent architectures are capable of successfully interacting with it. To do

this, we will have pairs of agents play each other on the matrix and grid stag hunts and

observe the patterns of their interaction over a prolonged period of time. The goal here is

to work bottom-up, beginning with the simple version of our model and then moving on to

its complicated analogue once we have confidence that our set-up is generally functional.

Accordingly, we do not expect consistent or even frequent prosocial convergence — just

the evidence of learning taking place.

37

Parameter Value
Learning Rate .1

Learning Discount .9
Epsilon Start Value .99

Epsilon Decay Value .9999
Epsilon Decay Start 1

Minimum Epsilon Value .05

(a) Basic Q-Table agent learning parameters.
Parameter Low Risk High Risk

Cooperation .45 .45
Defect Alone .43 .40

Defect Together .08 .20

(b) Matrix stag hunt environment configurations[13].
Parameter Low Risk High Risk

Forage Reward 1 1
Stag Reward 5 5

Mauling Punishment -.5 -1

(c) Grid stag hunt environment risk configurations.

Figure 4.2: Experimental configuration tables

4.3.1 Matrix Stag Hunt

The results of the matrix stag hunt experiment, as can be seen in figure 4.3, are to be

expected. In the low risk arrangement, the agents will converge to the cooperative equi-

librium around 15 percent of the time. In the high risk arrangement, the agents fail to

learn enough to converge to the prosocial equilibrium. This can be explained by referenc-

ing the simplicity of the agent architecture, and the low attraction basin of the prosocial

choice in high-risk arrangements. The reason basic Q-table agents have difficulty learn-

ing the prosocial strategy here is because the signal is not salient enough for the learning

algorithm to pick up on it. If the salience is artificially increased by manually making the

prosocial reward significantly better, that can ensure prosocial convergence, at the cost of

making the achievement rather uninteresting.

Given how our observations are consistent with past research, we can be rest assured

38

that the environment is functioning as expected with even the simplest agent architecture

being capable of learning it to a limited extent. With our testing phase complete, we are

able to move on to the grid based environments with confidence that our interfacing is

properly set up and we have access to the subject matter.

4.3.2 Grid Stag Hunt

The grid-based stag hunt is a much more complicated environment than the matrix form

both conceptually and in terms of observations. In the matrix form, the observations are

simply the last opponent action, whereas in the grid games they are the coordinates of

all the game entities. Accordingly, we do not expect the agents to attain any meaningful

results in terms of learning how to hunt the stag. If the set-up is functional, we can expect

the agents to learn how to avoid the mauling punishment.

As can be seen in figures 4.6 and 4.7, our predictions seem to be correct. The basic

Q-table agents did not make serious progress in the limited time allotted to them, but did

begin slowly learning how to avoid being mauled by the stag, as can be seen in the positive

slope of the reward graphs. Another hint towards this is that the slope is steeper in the high-

risk graph, which is likely because the higher negative reinforcement for being mauled

constitutes a stronger incentive to learn how to avoid it. The high amount of turbulence

in the graphs is likely to be a consequence of the simple hyper parameter arrangement,

where the agents explore a lot early on and after a certain point mostly only take actions

already known to them. Furthermore, agents will always sometimes take random moves,

which makes coordination on the prosocial choice significantly more risky since the agent

has a small chance of deviating from the coordinated strategy each time they take a step on

the grid. In our main line of experimentation, Ray takes care of hyper parameter tuning,

meaning that the agents actively explore new avenues for the entirety of the simulation

unlike here.

39

Figure 4.3: Convergence ratios in matrix stag hunt games played by basic Q-table agents.

40

Figure 4.4: An illustration of a Defect-Defect convergence in the low risk matrix stag hunt
environment between basic q-table agents.

Figure 4.5: An illustration of a Cooperate-Cooperate convergence in the low risk matrix
stag hunt environment between basic q-table agents.

Figure 4.6: Low risk grid stag hunt proof of concept run.

41

Figure 4.7: High risk grid stag hunt proof of concept run.

4.4 Main Learning Experiment

4.4.1 Low Risk Stag Hunt Experiment

As can be seen in figure 4.8, in the beginning of the low risk experiment, the agents learn

what seems to be the optimal policy for their circumstance in the first 250 episodes. The

majority of learning takes place in this initial period, and what follows after is a long

period of stagnant exploration. This makes sense, as stumbling over plants is guaranteed

to take place almost immediately, but it is a matter of chance when the agents accidentally

coordinate on the stag and learn of its potential. The rewards stabilize at around 100

average per episode, and 150 max.

As we can observe in the first quarter of the experiment, once the agents settle on a

policy, their innovation halts and the average reward does not change past some expected

natural variance. In terms of actual behavior, this corresponds to the agents (1) learning

how to keep moving to avoid the stag and (2) gathering the plants as they move around.

Additionally, there is no way for the agents to average 1 reward per game step without

interacting with the stag. Since plants yield 1 point, and it takes a few steps to get to

a plant once it spawns, it is not possible to hit the 100 reward average simply through

42

(a) First 1000 episodes. (b) First 2500 episodes.

(c) Full run.

Figure 4.8: The low risk DQN stag hunt experiment.

antisocial means. Therefore, we can conclude that the agents periodically hunt the stag.

However, the agents seemingly do not seek the stag out as a part of the strategy, as the

reward is too low for that to be true. The inference is thus that the agents have a defensive

pact of sorts, pairing up if the stag approaches them while they are gathering, but doing

their own thing otherwise. In terms of learning, this is reasonable as, given how agents

must begin by harvesting plants, and the stag follows them around, they will continue

being mauled until they learn how to avoid the stag. However, full avoidance would yield

a low reward, incentivizing the agent to experiment. From there, it is easy to imagine that,

as the two agents attempt to go for the same plant, and the stag attempts to attack one of

them, they happen to be on the same cell. From that point, they will know that grouping

43

up is a positive thing, but since the signal salience is still not that strong, doubtfully can

infere mechanics behind why that action was successful.

In the full experiment graph, we see how the learning essentially does not progress

after the initial climb. One can, however, notice a small positive incline as the agents

do some minor optimizations. Perhaps, with enough time, the agents would eventually

stumble onto the prosocial strategy, but given the reward arrangement that seems to be

highly improbable.

4.4.2 High Risk Stag Hunt Experiment

(a) First 1000 episodes. (b) First 2500 episodes.

(c) Full run.

Figure 4.9: The high risk DQN stag hunt experiment.

As is observed in figure 4.9, the initial learning climb for the high risk experiment is

44

evidently different from its low risk equivalent. The learning progresses at a much slower

rate in the beginning, but speeds up quickly at around the 200th episode. This is likely due

to the mauling punishment being higher, thus the agents being confused early on as they

figure out how to avoid the stag.

The graph of the first quarter of the high risk experiment is rather similar to its low

risk equivalent. The agents, after settling on the policy they came up with in the first 250

episodes or so, stabilize and stop innovating.

Once we look at the full experiment, however, we see something fascinating. At

the halfway point, the agents seem to have figured something out, as their rewards be-

gin steadily climbing past what was achieved in the low risk experiment. The low risk

agents, and the high risk agents in the first half, stabilize at around 120 average reward per

episode, which corresponds to regular plant harvesting with occasional stag hunts. Fur-

thermore, it seems that in the second half of the high risk run the agents seem to begin

explicitly seeking out the stag! As the maximum reward achieved by the agents is higher

than 200, we can decisively conclude that they are hunting down the stag as an explicit

part of their strategy, since such a reward could not be achieved otherwise. This is in-

teresting, as the risk seems to have made the prosocial equilibrium more desirable in this

circumstance. We will be returning to this point in our discussion.

4.4.3 Harvest & Escalation

Additionally, to support our main line of experimentation, we trained DQN models on

the harvest and escalation environments. The DQN models learned to play the games

relatively well, their final performances being roughly equivalent to what one would expect

from a human player.

In harvest, we observe a slow and steady learning process that gradually gets better at

harvesting plants and, once the benefits stagnate, realizes that their reward increases if they

45

(a) First 10000 episodes. Full 20000 episodes.

Figure 4.10: The default-settings DQN Harvest experiment.

wait before harvesting the plants. As we see in figure 4.10, the average rewards stabilize at

around 80, while the maximum reward goes as high as 140. The steady learning rate makes

sense in the context of opponent-awareness being less important in the harvest game. The

agents can independently learn that waiting yields a higher reward, and therefore the higher

reward does not require explicit coordination to the same extent as the other environments.

(a) First 10000 episodes. Full 20000 episodes.

Figure 4.11: The low risk DQN Escalation experiment.

In escalation, the learning barely makes any progress for the first three quarters of the

experiment. As is seen in figure 4.11, the average rewards do not progress much past the

original point, even as the maximum rewards hit upwards of 30. This, however, changes

46

at around 15000 episode mark, at which point the learning rapidly takes off. Over the

course of the next 5000 episodes, the model climbs to 50 average reward, and achieves the

maximum reward of around 90. This translates to the agents having nearly fully solved

the environment, as an individual episode is 100 game turns, which means the highest

possible streak should be around the same number. Therefore it seems that the agents

routinely maintain the streak for almost the entire episode, and play a game of chicken

between each other at the end to see who gets the punishment.

47

Chapter 5

Discussion And Future Work

5.1 Discussion

5.1.1 Achievements

Environment Implementation

The biggest success of this project is the comprehensive implementation of stochastic stag

hunt games using the OpenAI Gym and PettingZoo interfaces. While the thesis does not

detail it, the development of the environment took a long time and involved numerous

engineering problems that had to be solved. The code had to be (1) performant, to allow

for efficient experimentation, (2) well documented and comprehensible, to make it truly

accessible to the open-source reinforcement learning community, and (3) compatible with

industry standard libraries to make it pragmatically usable by individuals without in-depth

knowledge.

The first of these problems was solved through leveraging data structures and algo-

rithm knowledge to optimize the load-bearing computations. Optimizations were achieved

in part through algorithmic improvements, as well as using NumPy data structures under

48

the hood to avoid the performance bottlenecks of native python. In terms of documen-

tation, special attention was paid to make sure the project is well-commented, and all

user-facing features and customizations are obvious and clearly communicated. Lastly,

many hours were devoted to ensuring that the environment is fully compliant with indus-

try specifications, and can be readily used with popular reinforcement learning libraries.

The environments were checked using the built-in Gym and PettingZoo verification tools,

and various tests were ran to ensure that edge cases do not break the game logic. The en-

vironment ended up interacting successfully with the Ray library in our experiments, and

early explorations with Stable Baselines[27] yielded promising results as well. Further-

more, our environment can be an invaluable resource in conducting future experiments in

the domain. While some of our other ambitions fell out of scope, the custom environment

surpassed our expectations and we look forward to seeing how the repository evolves over

time and what further attention it receives.

Cooperative Models

In terms of our models, we have successfully been able to train advanced reinforcement

learning algorithms to perform well on our custom environments. While the success is

varied, and there is an expected amount of randomness in terms of when and how often

the optimal strategies are arrived at, the agents none the less achieve significant results on

each of the three environments. As expected, the better strategies are those which exhibit

prosocial behavior, much like past research has indicated[11]. The more interesting obser-

vation has to do with the relationship between risk and the likelihood of prosocial behavior

being achieved. Risk was originally understood as the risk of the prosocial choice, the un-

certainty being in whether or not the opponent would coordinate. Our analysis seems to

indicate that it is also worthwhile to consider the risk of the anti-social choice, where the

uncertainty lies in the missed opportunity if the prosocial choice is not sought out.

49

To relate this to our primary exploration of how to achieve stable prosocial behavior in

multi-agent systems, there seems to be promise in explicitly engineering risk to incentivize

the desired behavior. While changing the environment would, of course, be breaking the

rules, playing around with the learning dynamics of the agents is fair game. Specifically,

we would be interesting in exploring how reward signals can be pre-processed to heighten

the risk of anti-social behavior while increasing the attraction basin of prosociality. For

example, ants and bees, some of the most prosocial of animals, have intense punitive

systems in place to eliminate individuals which defect from hive-level agreements[21]. A

particularly promising path towards achieving something similar is that of peer gifting[9],

which offers an intuitive way to achieve what we are looking for and confirms an additional

time that this sort of arrangement would produce a positive effect.

5.1.2 Shortcomings

Social Modeling

Having excessively discussed the importance of modeling the social aspect of the coop-

eration problem, the lack of such in our experimentation is a major shortcoming of our

work that is a consequence of time constraints and circumstances outside of our control.

It is our hope that this work can be a starting point for future research which looks into the

possibility of comprehensive social modeling and the use of said model in improving the

learning process of member agents. Particularly, we are curious to see how social models

can be used as tools for engineering risk structures which intentionally incentivize proso-

cial choices. We believe opportunity lies in the ideas discussed by Brian Skyrms[5], the

concept of networked genetic algorithms[28], and principles conceptually related to peer

gifting[9]. Similarly, having observed the success of neural networks in this context, we

are highly optimistic about future work which researches how dynamic networks can be

50

applied in novel ways to improve the efficiency of artificial intelligence approaches dealing

with multi-agent domains.

Reproducibility

Reproducibility has historically been a significant obstacle to research in the behavioral

sciences, and it is something we need to acknowledge in our work as well. Given how

we study phenomena at least partially random at all levels, it is difficult to draw concrete

causal lines between parameters and outcomes. With chaotic principles lying at the foun-

dation of the systems we are studying, acknowledging this reality and incorporating it

into our research methodology was a necessary step towards making meaningful progress.

Statistical methods were incorporated to make our observations more aware of natural

variance, and our writing reflects this. At the same time, the outcome for all of our ex-

periments is highly dependent on the original arrangement of the system. While specific

experiments can be reproduced using random number generator seeds, this does not get

around the more essential issue of establishing which seeds produce which results. Our

observations and conclusions are still meaningful, but should be approached from a natu-

ralists perspective - we are observing the agents in their natural habitat and writing down

what we see. It is not a guarantee that on the next visit we will be able to observe the

same behaviors, or that particular environmental contexts hold direct causal influence over

said observations. Our primary focus is on the patterns that emerge, and not on making

concrete numerical conclusions.

51

5.2 Future Work

5.2.1 The Leviathan

The model, as currently defined, does not accurately represent a number of essential fea-

tures of human interaction. The first of these is spatiality, which is the reality that social

interactions take place on a network — frequent interactions with acquaintances, and rare

run-ins with strangers. The second is that interactions are remembered, and these mem-

ories have an effect on future decision making — which we will refer to as temporality.

Spatiality and temporality combined constitute ”socio-cultural arrangements” within the

hypothetical model. The implementation of spatiality will manage the social network

inhabited by the agents, therefore shaping who interacts with whom and when. The tem-

poral implementation, on the other hand, will preserve knowledge over time — much like

culture does in human society. These systemic arrangements are of particular interest to

research as, unlike individual behavior and resource competition, these structures can be

realistically changed in real life. Furthermore, let us outline the ways in which we believe

these socio-cultural arrangements could be implemented.

Spatiality in the model can be implemented by using a graph to represent social rela-

tionships between the agents. Graphs are powerful data structures capable of efficiently

representing convoluted social arrangements, which is essential long-term as the simu-

lations are likely to get computationally complex. This structure would record which

agents are related to one-another, as well as the strength of their connection. These con-

nections will be used to establish who plays stag hunt with whom during a given itera-

tion of the simulation. Such structures were used by numerous researchers in the work

surveyed[11][28].A strong connection between agents will make it likely for them to be

matched up, whereas a weak connection will make interactions improbable. One could

52

think of these connections as similar to friendly and familial ties between humans.

In implementing temporality we are not concerned with making individual agents re-

member the past — rather the aim is for the collective to maintain some form of shared

knowledge contributed to by the experience of each individual. In essence, the aim is to

introduce a macro-scale learning process which improves learning at the individual level

using information derived from the behavior of the system as a whole. A potential way

to achieve this is by using a genetic algorithm coupled with peer gifting. These two pro-

cesses would make high rewards more impactful through implicit reward-shaping, there-

fore increasing the advantages of cooperative behavior. The group will maintain shared

knowledge through altering the structure of the social network and by preserving useful

knowledge through reward shaping.

5.2.2 Genetic Algorithms

Based on the work surveyed in this thesis, we believe that next steps in the domain will

have to do with establishing how evolutionary dynamics can be leveraged to improve

agent-level learning. As was described extensively by Skyrms and Kropotkin, evolu-

tionary principles constitute the foundation on which cooperation between individuals is

built[5][21]. Consequently, the seeming lack of focus on population-level learning dy-

namics is a serious oversight of current research. In general, population-level systems are

used to optimize the agent-level learning, but not to do the learning themselves. Conse-

quently, what needs to be achieved is a system in which the population and agent level

learning processes cooperate with one another to emerge a comprehensive meta-level

learning dynamic. Numerous promising attempts at this, or something conceptually sim-

ilar, have been made, but the work is still in its early stages and many avenues are left

unexplored[29][7][30][31][32][33][34][35]. Furthermore, we will briefly overview ge-

netic algorithms, discuss their applicability in the domain, and propose a promising future

53

avenue for create a comprehensive social model of learning.

Formal Description

A genetic algorithm (GA) is a way of solving problems by simulating natural selection

[28]. Unlike standard learning processes that iteratively improve a single solution, a GA

creates a collection of potential solutions, called a population, and uses them to explore

the problem space from different angles[4]. When we speak of learning in a population

of agents, we refer to the change in the constitution and behavior of that population over

a period of time[7]. Within the population, an individual is encoded as a gene sequence,

called a chromosome. A chromosome is composed of a fixed number of genes, with each

gene taking on one the possible values, called alleles[4].

The approach is built around the process of testing individuals to see how well they

fare at the problem and generating a new population by using the genetic material of good

solutions to create offspring [28]. This procedure, by continuously incentivizing good

performance, gradually evolves the population to solve the task at hand.

The two main components of a genetic algorithm are the fitness function and the ge-

netic operators. The fitness function calculates how good a particular specimen is at solv-

ing the task. We call this metric fitness. It is very similar in function to school tests - a

small assessment, the score on which is meant to measure a learners progress. The fit-

ness function is generally the most computationally expensive part of a GA, as a function

which does not accurately represent the problem will prevent the algorithm from achieving

meaningful results. Furthermore, designing a genetic algorithm is essentially synonymous

with designing a fitness function which accurately estimates performance on the problem

being solved.

The genetic operands are two processes - crossover and mutation. Crossover is what

decides who reproduces with whom. The mechanics of this can range from random

54

match ups weighed by fitness, to graph based approaches that emulate real-life popula-

tion dynamics[28]. The only thing strictly required is that the process consistently rewards

individuals with high fitness. Mutation introduces variability to the genetic material, pre-

venting the evolutionary process from stagnating. Genetic alteration during the reproduc-

tive step is the main exploratory mechanism at the algorithms disposal. Without it, the

method would have no means of making progress towards solving the problem.

Figure 5.1: The standard structure of a Genetic algorithm.

Fitness Heuristics

Genetic algorithms belong to the larger class of hill-climbing algorithms. This class of al-

gorithms represents problems as multi-dimensional search spaces. In these spaces, height

corresponds to how “good” a solution is, and the other dimensions identify what that par-

ticular solution is within the full spectrum of possible solutions. When visualized in two

dimensions, this appears as a series of hills. By beginning with some arbitrary solution,

and by making incremental changes, the algorithm “climbs” to higher points.

In the context of GAs, the search space is the fitness landscape, with an individ-

ual’s fitness being represented by their position on said landscape[4]. The goal of any

hill-climbing algorithm is to find the highest peak, formally known as the global max-

imum, while avoiding getting stuck on local maxima. The main advantage of GAs over

single-solution hill-climbing algorithms is how they sample the search space from multiple

55

points, thus minimizing the risk of getting stuck on a local peak.

Figure 5.2: A hypothetical search space being explored by a single solution algorithm
(yellow) and a genetic algorithm (red). The single-solution agent has a high chance of
getting stuck on a local peak based on its starting point. Since the GA initially samples the
space from different points, this risk is significantly less pronounced[4].

Genetic Operators

Within the function of a genetic algorithm, genetic operators are what makes it possible

to search the problem space and eventually arrive at a solution. Amongst the two opera-

tors, crossover is conceptually responsible for ensuring that each consecutive generation

moves up the gradient on the fitness landscape. This is achieved by rewarding high-fitness

individuals with additional reproductive rights when picking mating pairs, and through

the specific mechanics of how parent genetics are combined to produce a child. When

set up correctly, this ensures that the genetic material of well-performing individuals is

propagated through the offspring generation, without the loss of alternative, potentially-

promising, genetics.

Mutation, on the other hand, is responsible for protecting the population from getting

stuck on local peaks on the fitness landscape. By continuously introducing a random ele-

56

Figure 5.3: An example crossover process in which two children are generated from two
parents by splicing their genes at a random point. Mutation then occurs through the ran-
dom swap of one of the alleles in the children gene sequence.[4]

ment into the gene pool, mutation guarantees that the algorithm is always looking for new

ways to approach the problem. Without it, the population will simply settle on whatever

first strategy it discovers and get stuck as it has no means to further explore. Too much mu-

tation is similarly a bad thing, as excessive genetic permutation has the potential to erase

useful genetics from the gene pool and sabotage the work done by crossover. Finding a

middle ground is key to an efficient genetic algorithm.

57

5.2.3 Networked Genetic Algorithms

Motivation

Past research has confirmed that population network structure can be tuned to improve

GA performance, but has not yet explored how this can be done at scale[28]. It is our

view that the answer to this question can be found by looking at the success achieved by

algorithms which leverage emergent properties in similar contexts[6][9][8]. Specifically,

neural networks serve as a shining example of how pragmatically applicable emergence

can be in the context of computing[29]. Furthermore, we see an opportunity to leverage

the emergent properties of population network structure as a means of achieving stable

prosocial behavior in multi-agent environments. The goal is to create a setting in which

prosocial behavior is achieved as a consequence of individual behavior and not the au-

thority of some governing entity handing out orders. This is known to be possible based

on empirical observation and established academic fact, therefore the question is that of

specific implementation[21]. We believe progress in the area will follow a path similar

to that of neural networks, where functionality is gradually achieved through individual

innovations that take the tool from proof of concept to industry-grade applicability.

Theory-Crafting

The standard genetic algorithm does not necessarily contain a spatial aspect, as it assumes

that any two solutions can mate[28]. This, however, does not reflect how ”in nature and so-

cial contexts, social networks can condition the likelihood that two individuals mate”[28].

Furthermore, we will be experimenting with a novel type of genetic algorithms called

Networked Genetic Algorithms (NGA’s) which imbue the population with a network struc-

ture. The population network structure will be represented as a weighed undirected graph,

where the vertexes are individual solutions, edges mean the two solutions can mate, and

58

the weights (how thick the edges are) correspond to how likely the mating is.

Figure 5.4: The population of a standard genetic algorithm (left) and what one would
expect to see in a natural population graph (right).

Initial research has demonstrated that population networks characterised by interme-

diate density and low average shortest path length significantly outperform the standard

complete-network GA [28]. The same research suggests that the population network struc-

ture, like the other GA parameters, could be tuned to improve performance[28]. Conse-

quently, we believe the learning performance of the agents can be improved by letting

them tune their population structure. Specifically, this could be done by giving the agents

additional actions allowing them to (1) form, (2) break, and (3) tune their connections.

Formally, these connections should be understood to be a part of the agents environment.

The motivation behind letting the agents tune their network connections is intuitively

clear. In nature, population networks are highly dynamic structures that are constantly

changing in response to environmental conditions. Humans, animals, and plants all have

unique adaptations which shape their population network. Our hope is that empowering

standard genetic algorithms with an additional learning process in the form of a dynami-

cally restructuring population network, will create a population more likely to discover the

global fitness maxima. If such structures are possible, and can be efficiently leveraged by

large collective of agents, this would have immense implications for multi-agent systems

theory and human organization as a whole.

59

Chapter 6

Conclusion

6.1 Summary

To summarize our work, we pondered the dynamics of cooperative behavior by explor-

ing its abstract representation in the game of stag hunt. To do so, we began by creating

custom game environments to serve as a playground for our experiments. With reinforce-

ment learning as our main tool, we then created agents which learned how to coordinate

in the environments by developing a sense of trust between each other. Not all agents

were successful however, and by relating initial configuration parameters to simulation

outcomes we were able to put forward some explanations for how agents converge to one

equilibrium over the other. As was hinted to us by past research, and confirmed through

our experiments, risk is the essential part of the arrangement. Evidently, when faced with

stag hunt-like interactions, agents will settle on a strategy based on the inherent risk of

coordinating. This risk can pull in both directions - towards the antisocial equilibrium

if coordination is difficult for the reward it achieves, or the prosocial equilibrium if too

much is lost by failing to be social. In light of these observations, we see a promising path

towards achieving stable prosocial behavior through engineering population-level mecha-

nisms which heighten anti-social risk while minimizing the risk of social coordination.

60

6.1.1 Next Steps

In terms of implementing these population-level risk-engineering mechanics, a promising

avenue is seen in genetic algorithms, specifically those which leverage population graphs

and reward propagation. The optimism is fueled by the success of these approaches in

the original papers describing them, as well as the large body of philosophical analysis

conducted in the area. Notably, the works of Skyrms and Kropotkin offered us a strong

conceptual foundation on which to build such an implementation, and detailed numerous

ways in which evolutionary dynamics can be used to guarantee prosocial outcomes. We

conclude on an enthusiastic prediction that multi-agent research is still in its early stages,

and academia at large has not yet fully explored the ways in which population algorithms

can be used to break new grounds in cognitive science. If this new perspective is adopted,

we are confident that major breakthroughs are to follow.

6.2 Closing Thoughts

Cognitive systems are deeply complicated. Our relationship to these systems is profoundly

intimate - everywhere we turn our eyes to, we see thinking things that we must, frequently,

communicate with. People, institutions, corporations, are all agents, striving to achieve

what is best for them while not being taken advantage by another. To create a better world,

society must orchestrate these infinite manifolds of the mind to a single symphony. For us

to make these hopes tangible, we must understand what is required from individuals and

the collective as a whole. And while there is enormous complexity in the specifics of this

implementation, the foundation is rather simple. Do unto others as you would have them

do to you. If we are all to hunt the stag, there are no horns too big to fell.

61

Bibliography

[1] Sulawesi art: Animal painting found in cave is 44,000 years old, Dec 2019. vii, 6

[2] Phi Le Nguyen, Van La, Anh Nguyen, Hùng Nguyen, and Kien Nguyen. An on-
demand charging for connected target coverage in wrsns using fuzzy logic and q-
learning. Sensors, 21:5520, 08 2021. vii, 18

[3] Heunchul Lee, Maksym Girnyk, and Jaeseong Jeong. Deep reinforcement learning
approach to mimo precoding problem: Optimality and robustness. 06 2020. vii, 19

[4] Faustino Gomez and Risto Miikkulainen. Robust non-linear control through neu-
roevolution. 11 2002. viii, 54, 55, 56, 57

[5] Brian Skyrms. The Stag Hunt and the Evolution of Social Structure. Cambridge
University Press, 2003. 5, 20, 22, 23, 24, 25, 26, 27, 28, 50, 53

[6] Trapit Bansal, Jakub Pachocki, Szymon Sidor, Ilya Sutskever, and Igor Mordatch.
Emergent complexity via multi-agent competition. CoRR, abs/1710.03748, 2017. 8,
22, 58

[7] Yoav Shoham and Kevin Leyton-Brown. Multiagent Systems: Algorithmic, Game-
Theoretic, and Logical Foundations. Cambridge University Press, Cambridge, UK,
2009. 8, 10, 12, 14, 16, 17, 31, 53, 54

[8] David Silver, Satinder Singh, Doina Precup, and Richard S. Sutton. Reward is
enough. Artificial Intelligence, 299:103535, 2021. 8, 13, 14, 15, 58

[9] Woodrow Z. Wang, Mark Beliaev, Erdem Biyik, Daniel A. Lazar, Ramtin Pedarsani,
and Dorsa Sadigh. Emergent prosociality in multi-agent games through gifting.
CoRR, abs/2105.06593, 2021. 9, 22, 50, 58

[10] Joel Z. Leibo, Vinı́cius Flores Zambaldi, Marc Lanctot, Janusz Marecki, and Thore
Graepel. Multi-agent reinforcement learning in sequential social dilemmas. CoRR,
abs/1702.03037, 2017. 10, 11, 19

[11] Alexander Peysakhovich and Adam Lerer. Prosocial learning agents solve general-
ized stag hunts better than selfish ones. CoRR, abs/1709.02865, 2017. 11, 12, 30, 31,
33, 49, 52

62

[12] Michael L Littman. Markov games as a framework for multi-agent reinforcement
learning. In Machine learning proceedings 1994, pages 157–163. Elsevier, 1994. 11

[13] Neil Bearden. The evolution of inefficiency in a simulated stag hunt. Behavior
Research Methods, Instruments, Computers, 33:124–129, 05 2001. 13, 38

[14] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw,
Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan, and Ion
Stoica. Ray: A distributed framework for emerging ai applications, 2017. 13, 14, 36,
37

[15] Christopher J. C. H. Watkins and Peter Dayan. Q-learning. In Machine Learning,
pages 279–292, 1992. 16

[16] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep rein-
forcement learning, 2013. 18

[17] Andrei Cristian Nica, Tudor Berariu, Florin Gogianu, and Adina Magda Florea.
Learning to maximize return in a stag hunt collaborative scenario through deep rein-
forcement learning. In 2017 19th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC), pages 188–195, 2017. 19

[18] Shona Duguid, Emily Wyman, Anke Schirmer, Katharina Herfurth-Majstorovic, and
Michael Tomasello. Coordination strategies of chimpanzees and human children in a
stag hunt game. Proceedings. Biological sciences / The Royal Society, 281, 12 2014.
20

[19] Alex McAvoy, Julian Kates-Harbeck, Krishnendu Chatterjee, and Christian Hilbe.
Evolutionary (in)stability of selfish learning in repeated games, 2021. 20

[20] Dung Nguyen, Svetha Venkatesh, Phuoc Nguyen, and Truyen Tran. Theory of
mind with guilt aversion facilitates cooperative reinforcement learning. CoRR,
abs/2009.07445, 2020. 21

[21] Peter Kropotkin. Mutual Aid: A Factor in Evolution. PENGUIN BOOKS, 2022. 21,
27, 28, 29, 50, 53, 58

[22] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. Openai gym, 2016. 30, 34

[23] J. K. Terry, Benjamin Black, Nathaniel Grammel, Mario Jayakumar, Ananth Hari,
Ryan Sullivan, Luis Santos, Rodrigo Perez, Caroline Horsch, Clemens Dieffendahl,
Niall L. Williams, Yashas Lokesh, and Praveen Ravi. Pettingzoo: Gym for multi-
agent reinforcement learning, 2020. 30, 34

63

[24] Eric Liang, Richard Liaw, Philipp Moritz, Robert Nishihara, Roy Fox, Ken Gold-
berg, Joseph E. Gonzalez, Michael I. Jordan, and Ion Stoica. Rllib: Abstractions for
distributed reinforcement learning, 2017. 36, 37

[25] Eric Liang, Zhanghao Wu, Michael Luo, Sven Mika, Joseph E. Gonzalez, and Ion
Stoica. Rllib flow: Distributed reinforcement learning is a dataflow problem, 2020.
36

[26] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E. Gonzalez, and
Ion Stoica. Tune: A research platform for distributed model selection and training,
2018. 37

[27] Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto,
Rene Traore, Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol,
Matthias Plappert, Alec Radford, John Schulman, Szymon Sidor, and Yuhuai Wu.
Stable baselines. https://github.com/hill-a/stable-baselines,
2018. 49

[28] Aymeric Vié. Population network structure impacts genetic algorithm optimisation
performance. CoRR, abs/2104.04254, 2021. 50, 52, 54, 55, 58, 59

[29] Rune Krauss, Marcel Merten, Mirco Bockholt, and Rolf Drechsler. Alf – a fitness-
based artificial life form for evolving large-scale neural networks, 2021. 53, 58

[30] John D. Co-Reyes, Yingjie Miao, Daiyi Peng, Esteban Real, Sergey Levine, Quoc V.
Le, Honglak Lee, and Aleksandra Faust. Evolving reinforcement learning algo-
rithms, 2021. 53

[31] Jörg Stork, Martin Zaefferer, Nils Eisler, Patrick Tichelmann, Thomas Bartz-
Beielstein, and A. E. Eiben. Behavior-based neuroevolutionary training in reinforce-
ment learning. CoRR, abs/2105.07960, 2021. 53

[32] Daan Klijn and A. E. Eiben. A coevolutionary approach to deep multi-agent rein-
forcement learning. CoRR, abs/2104.05610, 2021. 53

[33] Nicholas Guttenberg and Marek Rosa. Bootstrapping of memetic from genetic evo-
lution via inter-agent selection pressures, 2021. 53

[34] Ahmed Hallawa, Anil Yaman, Giovanni Iacca, and Gerd Ascheid. A framework for
knowledge integrated evolutionary algorithms. CoRR, abs/2103.16897, 2021. 53

[35] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution
strategies as a scalable alternative to reinforcement learning, 2017. 53

[36] Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents.
In In Proceedings of the Tenth International Conference on Machine Learning, pages
330–337. Morgan Kaufmann, 1993.

64

https://github.com/hill-a/stable-baselines

[37] Daan Bloembergen, Steven Jong, and Karl Tuyls. Lenient learning in a multiplayer
stag hunt. pages 44–50, 11 2011.

65

Appendix A

Source Code

A.1 src/

Listing A.1: entities.py� �
1 import os
2

3 from pygame import image , Rect , transform
4 from pygame .sprite import DirtySprite
5

6 base_path = os .path .dirname (os .path .dirname (__file__))
7 entity_path = os .path .join (base_path , "assets/entities")
8

9 sprite_dict = {
10 "a_agent" : os .path .join (entity_path , "blue_agent.png") ,
11 "b_agent" : os .path .join (entity_path , "red_agent.png") ,
12 "stag" : os .path .join (entity_path , "stag.png") ,
13 "plant" : os .path .join (entity_path , "plant_fruit.png") ,
14 "plant_young" : os .path .join (entity_path , "plant_no_fruit.png") ,
15 "mark" : os .path .join (entity_path , "mark.png") ,
16 "mark_active" : os .path .join (entity_path , "mark_active.png") ,
17 "game_icon" : os .path .join (base_path , "assets/icon.png") ,
18 }
19

20 TILE_SIZE = 32
21

22

23 def load_img (path) :
24 """

66

25 :param path: Location of the image to load.
26 :return: A loaded sprite with the pixels formatted for performance.
27 """
28 return image .load (path) .convert_alpha ()
29

30

31 def get_gui_window_icon () :
32 """
33 :return: The icon to display in the render window.
34 """
35 return image .load (sprite_dict ["game_icon"])
36

37

38 class Entity (DirtySprite) :
39 def __init__ (self , entity_type , location) :
40 """
41 :param entity_type: String specifying which sprite to load from the sprite

dictionary (sprite_dict)
42 :param location: [X, Y] location of the sprite. We calculate the pixel position

by multiplying it by cell_sizes
43 """
44 DirtySprite .__init__ (self)
45 self ._image = transform .scale (# Load, scale and record the entity sprite
46 load_img (sprite_dict [entity_type]) , (TILE_SIZE , TILE_SIZE)
47)
48 self .update_rect (location) # do the initial rect update
49

50 def update_rect (self , new_loc) :
51 """
52 :param new_loc: New [X, Y] location of the sprite.
53 :return: Nothing, but the sprite updates it’s state so it is rendered in the

right place next iteration.
54 """
55 self .rect = Rect (
56 new_loc [0] * TILE_SIZE , new_loc [1] * TILE_SIZE , TILE_SIZE , TILE_SIZE
57)
58

59 @property
60 def IMAGE (self) :
61 return self ._image
62

63

64 class HarvestPlant (Entity) :
65 def __init__ (self , location) :
66 Entity .__init__ (self , location=location , entity_type="plant")
67 self ._image_young = transform .scale (
68 load_img (sprite_dict ["plant_young"]) , (TILE_SIZE , TILE_SIZE)
69)
70

71 @property
72 def IMAGE_YOUNG (self) :
73 return self ._image_young
74

75

76 class Mark (Entity) :
77 def __init__ (self , location) :
78 Entity .__init__ (self , location=location , entity_type="mark")
79 self ._image_active = transform .scale (
80 load_img (sprite_dict ["mark_active"]) , (TILE_SIZE , TILE_SIZE)
81)
82

83 @property
84 def IMAGE_ACTIVE (self) :
85 return self ._image_active� �

67

Listing A.2: utils.py� �
1 from itertools import product
2 from random import choice
3 from sys import stdout
4

5 from numpy import all , full , zeros , uint8
6

7 symbol_dict = {"hunt" : ("S" , "P") , "harvest" : ("p" , "P") , "escalation" : "M"}
8

9 A_AGENT = 0 # base
10 B_AGENT = 1
11

12 STAG = 2 # hunt
13 PLANT = 3
14

15 Y_PLANT = 2 # harvest
16 M_PLANT = 3
17

18 MARK = 2 # escalation
19

20

21 def print_matrix (obs , game , grid_size) :
22 if game == "escalation" :
23 matrix = full ((grid_size [0] , grid_size [1] , 3) , False , dtype=bool)
24 else :
25 matrix = full ((grid_size [0] , grid_size [1] , 4) , False , dtype=bool)
26

27 if game == "hunt" :
28 a , b , stag = (obs [0] , obs [1]) , (obs [2] , obs [3]) , (obs [4] , obs [5])
29 matrix [a [0]] [a [1]] [A_AGENT] = True
30 matrix [b [0]] [b [1]] [B_AGENT] = True
31 matrix [stag [0]] [stag [1]] [STAG] = True
32 for i in range (6 , len (obs) , 2) :
33 plant = obs [i] , obs [i + 1]
34 matrix [plant [0]] [plant [1]] [PLANT] = True
35

36 elif game == "harvest" :
37 a , b = (obs [0] , obs [1]) , (obs [2] , obs [3])
38 matrix [a [0]] [a [1]] [A_AGENT] = True
39 matrix [b [0]] [b [1]] [B_AGENT] = True
40

41 for i in range (4 , len (obs) , 3) :
42 plant_age = M_PLANT if obs [i + 2] else Y_PLANT
43 matrix [obs [i]] [obs [i + 1]] [plant_age] = True
44

45 elif game == "escalation" :
46 a , b , mark = (obs [0] , obs [1]) , (obs [2] , obs [3]) , (obs [4] , obs [5])
47 matrix [a [0]] [a [1]] [A_AGENT] = True
48 matrix [b [0]] [b [1]] [B_AGENT] = True
49 matrix [mark [0]] [mark [1]] [MARK] = True
50

51 symbols = symbol_dict [game]
52

53 stdout .write ("

\n")
54 for row in matrix :
55 stdout .write (" ")
56 for col in row :
57 cell = []
58 cell .append ("A") if col [0] == 1 else cell .append (" ")
59 cell .append ("B") if col [1] == 1 else cell .append (" ")
60 cell .append (symbols [0]) if col [2] == 1 else cell .append (" ")
61 if game != "escalation" :
62 cell .append (symbols [1]) if col [3] == 1 else cell .append (" ")
63 else :

68

64 cell .append (" ")
65 stdout .write ("" .join (cell) + " ")
66 stdout .write (" ")
67 stdout .write ("\n")
68 stdout .write ("

\n\r")
69 stdout .flush ()
70

71

72 def overlaps_entity (a , b) :
73 """
74 :param a: (X, Y) tuple for entity 1
75 :param b: (X, Y) tuple for entity 2
76 :return: True if they are on the same cell, False otherwise
77 """
78 return (a == b) .all ()
79

80

81 def place_entity_in_unoccupied_cell (used_coordinates , grid_dims) :
82 """
83 Returns a random unused coordinate.
84 :param used_coordinates: a list of already used coordinates
85 :param grid_dims: dimensions of the grid so we know what a valid coordinate is
86 :return: the chosen x, y coordinate
87 """
88 all_coords = list (product (list (range (grid_dims [0])) , list (range (grid_dims [1]))))
89

90 for coord in used_coordinates :
91 for test in all_coords :
92 if all (test == coord) :
93 all_coords .remove (test)
94

95 return choice (all_coords)
96

97

98 def spawn_plants (grid_dims , how_many , used_coordinates) :
99 new_plants = []

100 for x in range (how_many) :
101 new_plant = zeros (2 , dtype=uint8)
102 new_pos = place_entity_in_unoccupied_cell (
103 grid_dims=grid_dims , used_coordinates=new_plants + used_coordinates
104)
105 new_plant [0] , new_plant [1] = new_pos
106 new_plants .append (new_plant)
107 return new_plants
108

109

110 def respawn_plants (plants , tagged_plants , grid_dims , used_coordinates) :
111 for tagged_plant in tagged_plants :
112 new_plant = zeros (2 , dtype=uint8)
113 new_pos = place_entity_in_unoccupied_cell (
114 grid_dims=grid_dims , used_coordinates=plants + used_coordinates
115)
116 new_plant [0] , new_plant [1] = new_pos
117 plants [tagged_plant] = new_plant
118 return plants� �

A.1.1 games/

Listing A.3: abstractgridgame.py� �
1 from abc import ABC

69

2

3 from numpy import zeros , uint8 , array
4 from numpy .random import choice
5

6 # Possible Moves
7 LEFT = 0
8 DOWN = 1
9 RIGHT = 2

10 UP = 3
11 STAND = 4
12

13

14 class AbstractGridGame (ABC) :
15 def __init__ (self , grid_size , screen_size , obs_type , enable_multiagent) :
16 """
17 :param grid_size: A (W, H) tuple corresponding to the grid dimensions. Although W

=H is expected, W!=H works also
18 :param screen_size: A (W, H) tuple corresponding to the pixel dimensions of the

game window
19 :param obs_type: Can be ’image’ for pixel-array based observations, or ’coords’

for just the entity coordinates
20 :param enable_multiagent: Boolean signifying if the env will be used to train

multiple agents or one.
21 """
22 if screen_size [0] * screen_size [1] == 0 :
23 raise AttributeError (
24 "Screen size is too small. Please provide larger screen size."
25)
26

27 # Config
28 self ._renderer = None # placeholder renderer
29 self ._obs_type = obs_type # record type of observation as attribute
30 self ._grid_size = grid_size # record grid dimensions as attribute
31 self ._enable_multiagent = enable_multiagent
32

33 self ._a_pos = zeros (
34 2 , dtype=uint8
35) # create empty coordinate tuples for the agents
36 self ._b_pos = zeros (2 , dtype=uint8)
37

38 """
39 Observations
40 """
41

42 def get_observation (self) :
43 """
44 :return: observation of the current game state
45 """
46 return (
47 self .RENDERER .update ()
48 if self ._obs_type == "image"
49 else self ._coord_observation ()
50)
51

52 def _coord_observation (self) :
53 return array (self .AGENTS)
54

55 def _flip_coord_observation_perspective (self , a_obs) :
56 """
57 Transforms the default observation (which is "from the perspective of agent A" as

it’s coordinates are in the
58 first index) into the "perspective of agent B" (by flipping the positions of the

A and B coordinates in the
59 observation array)
60 :param a_obs: Original observation
61 :return: Original observation, from the perspective of agent B

70

62 """
63 ax , ay = a_obs [0] , a_obs [1]
64 bx , by = a_obs [2] , a_obs [3]
65

66 b_obs = a_obs .copy ()
67 b_obs [0] , b_obs [1] = bx , by
68 b_obs [2] , b_obs [3] = ax , ay
69 return b_obs
70

71 """
72 Movement Methods
73 """
74

75 def _move_dispatcher (self) :
76 """
77 Helper function for streamlining entity movement.
78 """
79 return {
80 LEFT : self ._move_left ,
81 DOWN : self ._move_down ,
82 RIGHT : self ._move_right ,
83 UP : self ._move_up ,
84 STAND : self ._stand ,
85 }
86

87 def _move_entity (self , entity_pos , action) :
88 """
89 Move the specified entity
90 :param entity_pos: starting position
91 :param action: which direction to move
92 :return: new position tuple
93 """
94 return self ._move_dispatcher () [action] (entity_pos)
95

96 def _move_agents (self , agent_moves) :
97 self .A_AGENT = self ._move_entity (self .A_AGENT , agent_moves [0])
98 self .B_AGENT = self ._move_entity (self .B_AGENT , agent_moves [1])
99

100 def _reset_agents (self) :
101 """
102 Place agents in the top left and top right corners.
103 :return:
104 """
105 self .A_AGENT , self .B_AGENT = [0 , 0] , [self .GRID_W - 1 , 0]
106

107 def _random_move (self , pos) :
108 """
109 :return: a random direction
110 """
111 options = [LEFT , RIGHT , UP , DOWN]
112 if pos [0] == 0 :
113 options .remove (LEFT)
114 elif pos [0] == self .GRID_W - 1 :
115 options .remove (RIGHT)
116

117 if pos [1] == 0 :
118 options .remove (UP)
119 elif pos [1] == self .GRID_H - 1 :
120 options .remove (DOWN)
121

122 return choice (options)
123

124 def _seek_entity (self , seeker , target) :
125 """
126 Returns a move which will move the seeker towards the target.
127 :param seeker: entity doing the following

71

128 :param target: entity getting followed
129 :return: up, left, down or up move
130 """
131 seeker = seeker .astype (int)
132 target = target .astype (int)
133 options = []
134

135 if seeker [0] < target [0] :
136 options .append (RIGHT)
137 if seeker [0] > target [0] :
138 options .append (LEFT)
139 if seeker [1] > target [1] :
140 options .append (UP)
141 if seeker [1] < target [1] :
142 options .append (DOWN)
143

144 if not options :
145 options = [STAND]
146 shipback = choice (options)
147

148 return shipback
149

150 def _move_left (self , pos) :
151 """
152 :param pos: starting position
153 :return: new position
154 """
155 new_x = pos [0] - 1
156 if new_x == - 1 :
157 new_x = 0
158 return new_x , pos [1]
159

160 def _move_right (self , pos) :
161 """
162 :param pos: starting position
163 :return: new position
164 """
165 new_x = pos [0] + 1
166 if new_x == self .GRID_W :
167 new_x = self .GRID_W - 1
168 return new_x , pos [1]
169

170 def _move_up (self , pos) :
171 """
172 :param pos: starting position
173 :return: new position
174 """
175 new_y = pos [1] - 1
176 if new_y == - 1 :
177 new_y = 0
178 return pos [0] , new_y
179

180 def _move_down (self , pos) :
181 """
182 :param pos: starting position
183 :return: new position
184 """
185 new_y = pos [1] + 1
186 if new_y == self .GRID_H :
187 new_y = self .GRID_H - 1
188 return pos [0] , new_y
189

190 def _stand (self , pos) :
191 return pos
192

193 """

72

194 Properties
195 """
196

197 @property
198 def GRID_DIMENSIONS (self) :
199 return self .GRID_W , self .GRID_H
200

201 @property
202 def GRID_W (self) :
203 return int (self ._grid_size [0])
204

205 @property
206 def GRID_H (self) :
207 return int (self ._grid_size [1])
208

209 @property
210 def AGENTS (self) :
211 return [self ._a_pos , self ._b_pos]
212

213 @property
214 def A_AGENT (self) :
215 return self ._a_pos
216

217 @A_AGENT .setter
218 def A_AGENT (self , new_pos) :
219 self ._a_pos [0] , self ._a_pos [1] = new_pos [0] , new_pos [1]
220

221 @property
222 def B_AGENT (self) :
223 return self ._b_pos
224

225 @B_AGENT .setter
226 def B_AGENT (self , new_pos) :
227 self ._b_pos [0] , self ._b_pos [1] = new_pos [0] , new_pos [1]
228

229 @property
230 def RENDERER (self) :
231 return self ._renderer
232

233 @property
234 def COORD_OBS (self) :
235 return self ._coord_observation ()� �

Listing A.4: escalationgame.py� �
1 from numpy import zeros , uint8 , array
2 from numpy .random import randint
3

4 from gym_stag_hunt .src .games .abstract_grid_game import AbstractGridGame
5 from gym_stag_hunt .src .utils import overlaps_entity
6

7 """
8 Entity Keys
9 """

10 A_AGENT = 0
11 B_AGENT = 1
12 MARK = 2
13

14

15 class Escalation (AbstractGridGame) :
16 def __init__ (
17 self ,
18 streak_break_punishment_factor ,
19 opponent_policy ,
20 # Super Class Params
21 window_title ,

73

22 grid_size ,
23 screen_size ,
24 obs_type ,
25 load_renderer ,
26 enable_multiagent ,
27) :
28 """
29 :param streak_break_punishment_factor: Negative reinforcement for breaking the

streak
30 """
31

32 super (Escalation , self) .__init__ (
33 grid_size=grid_size ,
34 screen_size=screen_size ,
35 obs_type=obs_type ,
36 enable_multiagent=enable_multiagent ,
37)
38

39 self ._streak_break_punishment_factor = streak_break_punishment_factor
40 self ._opponent_policy = opponent_policy
41 self ._mark = zeros (2 , dtype=uint8)
42 self ._streak_active = False
43 self ._streak = 0
44 self .reset_entities ()
45

46 # If rendering is enabled, we will instantiate the rendering pipeline
47 if obs_type == "image" or load_renderer :
48 # we don’t want to import pygame if we aren’t going to use it, so that’s why

this import is here
49 from gym_stag_hunt .src .renderers .escalation_renderer import (
50 EscalationRenderer ,
51)
52

53 self ._renderer = EscalationRenderer (
54 game=self , window_title=window_title , screen_size=screen_size
55)
56

57 def _calc_reward (self) :
58 """
59 Calculates the reinforcement rewards for the two agents.
60 :return: A tuple R where R[0] is the reinforcement for A_Agent, and R[1] is the

reinforcement for B_Agent
61 """
62 a_on_mark = overlaps_entity (self .A_AGENT , self .MARK)
63 b_on_mark = overlaps_entity (self .B_AGENT , self .MARK)
64

65 punishment = 0 - (self ._streak_break_punishment_factor * self ._streak)
66 if a_on_mark and b_on_mark :
67 rewards = 1 , 1
68 elif a_on_mark :
69 rewards = punishment , 0
70 elif b_on_mark :
71 rewards = 0 , punishment
72 else :
73 rewards = 0 , 0
74

75 if 1 in rewards :
76 if not self ._streak_active :
77 self ._streak_active = True
78 self ._streak = self ._streak + 1
79 self .MARK = self ._move_entity (self .MARK , self ._random_move (self .MARK))
80 else :
81 self ._streak = 0
82 self ._streak_active = False
83

84 return float (rewards [0]) , float (rewards [1])

74

85

86 def update (self , agent_moves) :
87 """
88 Takes in agent actions and calculates next game state.
89 :param agent_moves: List of actions for the two agents. If nothing is passed for

the second agent, it does a
90 a random action.
91 :return: observation, rewards, is the game done
92 """
93 if self ._enable_multiagent :
94 self ._move_agents (agent_moves=agent_moves)
95 else :
96 if self ._opponent_policy == "random" :
97 self ._move_agents (
98 agent_moves=[agent_moves , self ._random_move (self .B_AGENT)]
99)

100 elif self ._opponent_policy == "pursuit" :
101 self ._move_agents (
102 agent_moves=[
103 agent_moves ,
104 self ._seek_entity (self .B_AGENT , self .MARK) ,
105]
106)
107

108 iteration_rewards = self ._calc_reward ()
109 obs = self .get_observation ()
110 info = {}
111 done = False
112

113 if self ._enable_multiagent :
114 if self ._obs_type == "coords" :
115 return (
116 (obs , self ._flip_coord_observation_perspective (obs)) ,
117 iteration_rewards ,
118 done ,
119 info ,
120)
121 else :
122 return (obs , obs) , iteration_rewards , done , info
123 else :
124 return obs , iteration_rewards [0] , done , info
125

126 def _coord_observation (self) :
127 """
128 :return: list of all the entity coordinates
129 """
130 return array ([self .A_AGENT , self .B_AGENT , self .MARK]) .flatten ()
131

132 def reset_entities (self) :
133 """
134 Reset all entity positions.
135 :return:
136 """
137 self ._reset_agents ()
138 self .MARK = [randint (0 , self .GRID_W - 1) , randint (0 , self .GRID_H - 1)]
139

140 """
141 Properties
142 """
143

144 @property
145 def MARK (self) :
146 return self ._mark
147

148 @MARK .setter
149 def MARK (self , new_pos) :

75

150 self ._mark [0] , self ._mark [1] = new_pos [0] , new_pos [1]
151

152 @property
153 def STREAK_ACTIVE (self) :
154 return self ._streak_active
155

156 @property
157 def STREAK (self) :
158 return self ._streak
159

160 @property
161 def ENTITY_POSITIONS (self) :
162 return {
163 "a_agent" : self .A_AGENT ,
164 "b_agent" : self .B_AGENT ,
165 "mark" : self .MARK ,
166 "streak_active" : self .STREAK_ACTIVE ,
167 }� �

Listing A.5: harvestgame.py� �
1 from numpy import array
2 from numpy .random import uniform
3

4 from gym_stag_hunt .src .games .abstract_grid_game import AbstractGridGame
5 from gym_stag_hunt .src .utils import overlaps_entity , spawn_plants , respawn_plants
6

7 # Entity Keys
8 A_AGENT = 0
9 B_AGENT = 1

10 Y_PLANT = 2
11 M_PLANT = 3
12

13

14 class Harvest (AbstractGridGame) :
15 def __init__ (
16 self ,
17 max_plants ,
18 chance_to_mature ,
19 chance_to_die ,
20 young_reward ,
21 mature_reward ,
22 # Super Class Params
23 window_title ,
24 grid_size ,
25 screen_size ,
26 obs_type ,
27 load_renderer ,
28 enable_multiagent ,
29) :
30 """
31 :param max_plants: What is the maximum number of plants that can be on the board.
32 :param chance_to_mature: What chance does a young plant have to mature each time

step.
33 :param chance_to_die: What chance does a mature plant have to die each time step.
34 :param young_reward: Reward for harvesting a young plant (awarded to the

harvester)
35 :param mature_reward: Reward for harvesting a mature plant (awarded to both

agents)
36 """
37

38 super (Harvest , self) .__init__ (
39 grid_size=grid_size ,
40 screen_size=screen_size ,
41 obs_type=obs_type ,
42 enable_multiagent=enable_multiagent ,

76

43)
44

45 # Game Config
46 self ._max_plants = max_plants
47 self ._chance_to_mature = chance_to_mature
48 self ._chance_to_die = chance_to_die
49 self ._tagged_plants = [] # harvested plants that need to be re-spawned
50

51 # Reinforcement variables
52 self ._young_reward = young_reward
53 self ._mature_reward = mature_reward
54

55 # Entity Positions
56 self ._plants = []
57 self ._maturity_flags = [False] * max_plants
58 self .reset_entities () # place the entities on the grid
59

60 # If rendering is enabled, we will instantiate the rendering pipeline
61 if obs_type == "image" or load_renderer :
62 # we don’t want to import pygame if we aren’t going to use it, so that’s why

this import is here
63 from gym_stag_hunt .src .renderers .harvest_renderer import HarvestRenderer
64

65 self ._renderer = HarvestRenderer (
66 game=self , window_title=window_title , screen_size=screen_size
67)
68

69 """
70 Collision Logic
71 """
72

73 def _overlaps_plants (self , a , plants) :
74 """
75 :param a: (X, Y) tuple for entity 1
76 :param plants: Array of (X, Y) tuples corresponding to plant positions
77 :return: True if a overlaps any of the plants, False otherwise
78 """
79 for x in range (0 , len (plants)) :
80 pos = plants [x]
81 if overlaps_entity (a , pos) :
82 is_mature = self ._maturity_flags [x]
83 if x not in self ._tagged_plants :
84 self ._tagged_plants .append (x)
85 return True , is_mature
86 return False , False
87

88 """
89 State Updating Methods
90 """
91

92 def _calc_reward (self) :
93 """
94 Calculates the reinforcement rewards for the two agents.
95 :return: A tuple R where R[0] is the reinforcement for A_Agent, and R[1] is the

reinforcement for B_Agent
96 """
97 a_collision , a_with_mature = self ._overlaps_plants (self .A_AGENT , self .PLANTS)
98 b_collision , b_with_mature = self ._overlaps_plants (self .B_AGENT , self .PLANTS)
99

100 a_reward , b_reward = 0 , 0
101

102 if a_collision :
103 if a_with_mature :
104 a_reward += self ._mature_reward
105 b_reward += self ._mature_reward
106 else :

77

107 a_reward += self ._young_reward
108

109 if b_collision :
110 if b_with_mature :
111 a_reward += self ._mature_reward
112 b_reward += self ._mature_reward
113 else :
114 b_reward += self ._young_reward
115

116 return float (a_reward) , float (b_reward)
117

118 def update (self , agent_moves) :
119 """
120 Takes in agent actions and calculates next game state.
121 :param agent_moves: List of actions for the two agents. If nothing is passed for

the second agent, it does a
122 a random action.
123 :return: observation, rewards, is the game done
124 """
125 if self ._enable_multiagent :
126 self ._move_agents (agent_moves=agent_moves)
127 else :
128 self ._move_agents (
129 agent_moves=[agent_moves , self ._random_move (self .B_AGENT)]
130)
131

132 for idx , plant in enumerate (self ._plants) :
133 is_mature = self ._maturity_flags [idx]
134 if is_mature :
135 if uniform (0 , 1) <= self ._chance_to_die :
136 self ._maturity_flags [idx] = False
137 self ._tagged_plants .append (idx)
138 else :
139 if uniform (0 , 1) <= self ._chance_to_mature :
140 self ._maturity_flags [idx] = True
141

142 # Get Rewards
143 iteration_rewards = self ._calc_reward ()
144

145 if len (self ._tagged_plants) > 0 :
146 self ._plants = respawn_plants (
147 plants=self .PLANTS ,
148 tagged_plants=self ._tagged_plants ,
149 grid_dims=self .GRID_DIMENSIONS ,
150 used_coordinates=self .AGENTS ,
151)
152 self ._tagged_plants = []
153

154 obs = self .get_observation ()
155 done = False
156 info = {}
157

158 if self ._enable_multiagent :
159 if self ._obs_type == "coords" :
160 return (
161 (obs , self ._flip_coord_observation_perspective (obs)) ,
162 iteration_rewards ,
163 done ,
164 info ,
165)
166 else :
167 return (obs , obs) , iteration_rewards , done , info
168 else :
169 return obs , iteration_rewards [0] , done , info
170

171 def _coord_observation (self) :

78

172 """
173 :return: tuple of all the entity coordinates
174 """
175 a , b = self .AGENTS
176 shipback = [a [0] , a [1] , b [0] , b [1]]
177 maturity_flags = self .MATURITY_FLAGS
178 for idx , element in enumerate (self .PLANTS) :
179 new_entry = [0 , 0 , 0]
180 new_entry [0] , new_entry [1] , new_entry [2] = (
181 element [0] ,
182 element [1] ,
183 int (maturity_flags [idx]) ,
184)
185 shipback = shipback + new_entry
186

187 return array (shipback) .flatten ()
188

189 def reset_entities (self) :
190 """
191 Reset all entity positions.
192 :return:
193 """
194 self ._reset_agents ()
195 self ._plants = spawn_plants (
196 grid_dims=self .GRID_DIMENSIONS ,
197 how_many=self ._max_plants ,
198 used_coordinates=self .AGENTS ,
199)
200 self ._maturity_flags = [False] * self ._max_plants
201

202 """
203 Properties
204 """
205

206 @property
207 def PLANTS (self) :
208 return self ._plants
209

210 @property
211 def MATURITY_FLAGS (self) :
212 return self ._maturity_flags
213

214 @property
215 def ENTITY_POSITIONS (self) :
216 return {
217 "a_agent" : self .A_AGENT ,
218 "b_agent" : self .B_AGENT ,
219 "plant_coords" : self .PLANTS ,
220 "maturity_flags" : self .MATURITY_FLAGS ,
221 }� �

Listing A.6: staghuntgame.py� �
1 from numpy import zeros , uint8 , array , hypot
2

3 from gym_stag_hunt .src .games .abstract_grid_game import AbstractGridGame
4

5 from gym_stag_hunt .src .utils import (
6 overlaps_entity ,
7 place_entity_in_unoccupied_cell ,
8 spawn_plants ,
9 respawn_plants ,

10)
11

12 # Entity Keys
13 A_AGENT = 0

79

14 B_AGENT = 1
15 STAG = 2
16 PLANT = 3
17

18

19 class StagHunt (AbstractGridGame) :
20 def __init__ (
21 self ,
22 stag_reward ,
23 stag_follows ,
24 run_away_after_maul ,
25 opponent_policy ,
26 forage_quantity ,
27 forage_reward ,
28 mauling_punishment ,
29 # Super Class Params
30 window_title ,
31 grid_size ,
32 screen_size ,
33 obs_type ,
34 load_renderer ,
35 enable_multiagent ,
36) :
37 """
38 :param stag_reward: How much reinforcement the agents get for catching the stag
39 :param stag_follows: Should the stag seek out the nearest agent (true) or take a

random move (false)
40 :param run_away_after_maul: Does the stag stay on the same cell after mauling an

agent (true) or respawn (false)
41 :param forage_quantity: How many plants will be placed on the board.
42 :param forage_reward: How much reinforcement the agents get for harvesting a

plant
43 :param mauling_punishment: How much reinforcement the agents get for trying to

catch a stag alone (MUST be neg.)
44 """
45

46 super (StagHunt , self) .__init__ (
47 grid_size=grid_size ,
48 screen_size=screen_size ,
49 obs_type=obs_type ,
50 enable_multiagent=enable_multiagent ,
51)
52

53 # Config
54 self ._stag_follows = stag_follows
55 self ._run_away_after_maul = run_away_after_maul
56 self ._opponent_policy = opponent_policy
57

58 # Reinforcement Variables
59 self ._stag_reward = stag_reward # record RL values as attributes
60 self ._forage_quantity = forage_quantity
61 self ._forage_reward = forage_reward
62 self ._mauling_punishment = mauling_punishment
63

64 # State Variables
65 self ._tagged_plants = [] # harvested plants that need to be re-spawned
66

67 # Entity Positions
68 self ._stag_pos = zeros (2 , dtype=uint8)
69 self ._plants_pos = []
70 self .reset_entities () # place the entities on the grid
71

72 # If rendering is enabled, we will instantiate the rendering pipeline
73 if obs_type == "image" or load_renderer :
74 # we don’t want to import pygame if we aren’t going to use it, so that’s why

this import is here

80

75 from gym_stag_hunt .src .renderers .hunt_renderer import HuntRenderer
76

77 self ._renderer = HuntRenderer (
78 game=self , window_title=window_title , screen_size=screen_size
79)
80

81 """
82 Collision Logic
83 """
84

85 def _overlaps_plants (self , a , plants) :
86 """
87 :param a: (X, Y) tuple for entity 1
88 :param plants: Array of (X, Y) tuples corresponding to plant positions
89 :return: True if a overlaps any of the plants, False otherwise
90 """
91 for x in range (0 , len (plants)) :
92 pos = plants [x]
93 if a [0] == pos [0] and a [1] == pos [1] :
94 self ._tagged_plants .append (x)
95 return True
96 return False
97

98 """
99 State Updating Methods

100 """
101

102 def _calc_reward (self) :
103 """
104 Calculates the reinforcement rewards for the two agents.
105 :return: A tuple R where R[0] is the reinforcement for A_Agent, and R[1] is the

reinforcement for B_Agent
106 """
107

108 if overlaps_entity (self .A_AGENT , self .STAG) :
109 if overlaps_entity (self .B_AGENT , self .STAG) :
110 rewards = self ._stag_reward , self ._stag_reward # Successful stag hunt
111 else :
112 if self ._overlaps_plants (self .B_AGENT , self .PLANTS) :
113 rewards = (
114 self ._mauling_punishment ,
115 self ._forage_reward ,
116) # A is mauled, B foraged
117 else :
118 rewards = (
119 self ._mauling_punishment ,
120 0 ,
121) # A is mauled, B did not forage
122

123 elif overlaps_entity (self .B_AGENT , self .STAG) :
124 """
125 we already covered the case where a and b are both on the stag,
126 so we can skip that check here
127 """
128 if self ._overlaps_plants (self .A_AGENT , self .PLANTS) :
129 rewards = (
130 self ._forage_reward ,
131 self ._mauling_punishment ,
132) # A foraged, B is mauled
133 else :
134 rewards = 0 , self ._mauling_punishment # A did not forage, B is mauled
135

136 elif self ._overlaps_plants (self .A_AGENT , self .PLANTS) :
137 if self ._overlaps_plants (self .B_AGENT , self .PLANTS) :
138 rewards = (
139 self ._forage_reward ,

81

140 self ._forage_reward ,
141) # Both agents foraged
142 else :
143 rewards = self ._forage_reward , 0 # Only A foraged
144

145 else :
146 if self ._overlaps_plants (self .B_AGENT , self .PLANTS) :
147 rewards = 0 , self ._forage_reward # Only B foraged
148 else :
149 rewards = 0 , 0 # No one got anything
150

151 return float (rewards [0]) , float (rewards [1])
152

153 def update (self , agent_moves) :
154 """
155 Takes in agent actions and calculates next game state.
156 :param agent_moves: If multi-agent, a tuple of actions. Otherwise a single action

and the opponent takes an
157 action according to its established policy.
158 :return: observation, rewards, is the game done
159 """
160 # Move Entities
161 self ._move_stag ()
162 if self ._enable_multiagent :
163 self ._move_agents (agent_moves=agent_moves)
164 else :
165 if self ._opponent_policy == "random" :
166 self ._move_agents (
167 agent_moves=[agent_moves , self ._random_move (self .B_AGENT)]
168)
169 elif self ._opponent_policy == "pursuit" :
170 self ._move_agents (
171 agent_moves=[
172 agent_moves ,
173 self ._seek_entity (self .B_AGENT , self .STAG) ,
174]
175)
176

177 # Get Rewards
178 iteration_rewards = self ._calc_reward ()
179

180 # Reset prey if it was caught
181 if iteration_rewards == (self ._stag_reward , self ._stag_reward) :
182 self .STAG = place_entity_in_unoccupied_cell (
183 grid_dims=self .GRID_DIMENSIONS ,
184 used_coordinates=self .PLANTS + self .AGENTS + [self .STAG] ,
185)
186 elif (
187 self ._run_away_after_maul and self ._mauling_punishment in iteration_rewards
188) :
189 self .STAG = place_entity_in_unoccupied_cell (
190 grid_dims=self .GRID_DIMENSIONS ,
191 used_coordinates=self .PLANTS + self .AGENTS + [self .STAG] ,
192)
193 elif self ._forage_reward in iteration_rewards :
194 new_plants = respawn_plants (
195 plants=self .PLANTS ,
196 tagged_plants=self ._tagged_plants ,
197 grid_dims=self .GRID_DIMENSIONS ,
198 used_coordinates=self .AGENTS + [self .STAG] ,
199)
200 self ._tagged_plants = []
201 self .PLANTS = new_plants
202

203 obs = self .get_observation ()
204 info = {}

82

205

206 if self ._enable_multiagent :
207 if self ._obs_type == "coords" :
208 return (
209 (obs , self ._flip_coord_observation_perspective (obs)) ,
210 iteration_rewards ,
211 False ,
212 info ,
213)
214 else :
215 return (obs , obs) , iteration_rewards , False , info
216 else :
217 return obs , iteration_rewards [0] , False , info
218

219 def _coord_observation (self) :
220 """
221 :return: list of all the entity coordinates
222 """
223 shipback = [self .A_AGENT , self .B_AGENT , self .STAG]
224 shipback = shipback + self .PLANTS
225 return array (shipback) .flatten ()
226

227 """
228 Movement Methods
229 """
230

231 def _seek_agent (self , agent_to_seek) :
232 """
233 Moves the stag towards the specified agent
234 :param agent_to_seek: agent to pursue
235 :return: new position tuple for the stag
236 """
237 agent = self .A_AGENT
238 if agent_to_seek == "b" :
239 agent = self .B_AGENT
240

241 move = self ._seek_entity (self .STAG , agent)
242

243 return self ._move_entity (self .STAG , move)
244

245 def _move_stag (self) :
246 """
247 Moves the stag towards the nearest agent.
248 :return:
249 """
250 if self ._stag_follows :
251 stag , agents = self .STAG , self .AGENTS
252 a_dist = hypot (
253 int (agents [0] [0]) - int (stag [0]) , int (agents [0] [1]) - int (stag [1])
254)
255 b_dist = hypot (
256 int (agents [1] [0]) - int (stag [0]) , int (agents [1] [1]) - int (stag [1])
257)
258

259 if a_dist < b_dist :
260 agent_to_seek = "a"
261 else :
262 agent_to_seek = "b"
263

264 self .STAG = self ._seek_agent (agent_to_seek)
265 else :
266 self .STAG = self ._move_entity (self .STAG , self ._random_move (self .STAG))
267

268 def reset_entities (self) :
269 """
270 Reset all entity positions.

83

271 :return:
272 """
273 self ._reset_agents ()
274 self .STAG = [self .GRID_W / / 2 , self .GRID_H / / 2]
275 self .PLANTS = spawn_plants (
276 grid_dims=self .GRID_DIMENSIONS ,
277 how_many=self ._forage_quantity ,
278 used_coordinates=self .AGENTS + [self .STAG] ,
279)
280

281 """
282 Properties
283 """
284

285 @property
286 def STAG (self) :
287 return self ._stag_pos
288

289 @STAG .setter
290 def STAG (self , new_pos) :
291 self ._stag_pos [0] , self ._stag_pos [1] = new_pos [0] , new_pos [1]
292

293 @property
294 def PLANTS (self) :
295 return self ._plants_pos
296

297 @PLANTS .setter
298 def PLANTS (self , new_pos) :
299 self ._plants_pos = new_pos
300

301 @property
302 def ENTITY_POSITIONS (self) :
303 return {
304 "a_agent" : self .A_AGENT ,
305 "b_agent" : self .B_AGENT ,
306 "stag" : self .STAG ,
307 "plants" : self .PLANTS ,
308 }� �

A.1.2 renderers/

Listing A.7: abstractrenderer.py� �
1 import pygame as pg
2 from numpy import rot90 , flipud
3

4 from gym_stag_hunt .src .entities import Entity , get_gui_window_icon
5

6 """
7 Constants
8 """
9 BACKGROUND_COLOR = (2 5 5 , 185 , 137)

10 GRID_LINE_COLOR = (2 0 0 , 150 , 100 , 200)
11 CLEAR = (0 , 0 , 0 , 0)
12 TILE_SIZE = 32
13

14

15 class AbstractRenderer :
16 def __init__ (self , game , window_title , screen_size) :
17 """
18 :param game: Class-based representation of the game state. Feeds all the

information necessary to the renderer
19 :param window_title: What we set as the window caption

84

20 :param screen_size: The size of the virtual display on which we will be rendering
stuff on

21 """
22 pg .init () # initialize pygame
23 pg .display .set_caption (window_title) # set the window caption
24 pg .display .set_icon (get_gui_window_icon ()) # set the window icon
25 pg .display .set_mode (
26 (1 , 1) , pg .NOFRAME
27) # set video mode without creating display
28 self ._clock = pg .time .Clock () # create clock object
29 self ._screen = None # temp screen attribute
30 self ._screen_size = screen_size # record screen size as an attribute
31 self ._game = game # record game as an attribute
32

33 grid_size = game .GRID_DIMENSIONS
34 game_surface_size = TILE_SIZE * grid_size [0] , TILE_SIZE * grid_size [1]
35

36 # Create a background
37 self ._background = pg .Surface (
38 game_surface_size
39) .convert () # here we create and fill all the surfaces
40 self ._background .fill (BACKGROUND_COLOR)
41 # Create a layer for the grid
42 self ._grid_layer = pg .Surface (game_surface_size) .convert_alpha ()
43 self ._grid_layer .fill (CLEAR)
44 # Create a layer for entities
45 self ._entity_layer = pg .Surface (game_surface_size) .convert_alpha ()
46 self ._entity_layer .fill (CLEAR)
47

48 # Load sprites for the game objects
49 entity_positions = self ._game .ENTITY_POSITIONS
50

51 self ._a_sprite = Entity (
52 entity_type="a_agent" , location=entity_positions ["a_agent"]
53)
54 self ._b_sprite = Entity (
55 entity_type="b_agent" , location=entity_positions ["b_agent"]
56)
57

58 """
59 Controller Methods
60 """
61

62 def _init_display (self) :
63 self ._screen = pg .display .set_mode (
64 self ._screen_size
65) # instantiate virtual display
66

67 def update (self) :
68 """
69 :return: A pixel array corresponding to the new game state.
70 """
71 try :
72 img_output = self ._update_render ()
73 for event in pg .event .get () :
74 if event .type == pg .QUIT :
75 self .quit ()
76 except Exception as e :
77 self .quit ()
78 raise e
79 else :
80 return img_output
81

82 def quit (self) :
83 """
84 Clears rendering resources.

85

85 :return:
86 """
87 try :
88 pg .display .quit ()
89 pg .quit ()
90 quit ()
91 except Exception as e :
92 raise e
93

94 """
95 Drawing Methods
96 """
97

98 def _update_render (self , return_observation=True) :
99 """

100 Executes the logic side of rendering without actually drawing it to the screen.
In other words, new pixel

101 values are calculated for each layer/surface without them actually being redrawn.
102 :param return_observation: boolean saying if we are to (create and) return a

numpy pixel array. The operation
103 is expensive so we don’t want to do it needlessly.
104 :return: A numpy array corresponding to the pixel state of the display after the

render update.
105 Note: The returned array is smaller than screen_size - the dimensions

are 32 * grid_size
106 """
107 self ._update_rects (self ._game .ENTITY_POSITIONS)
108 self ._background .fill (BACKGROUND_COLOR)
109 self ._entity_layer .fill (CLEAR)
110 self ._draw_entities ()
111 # blit the surfaces to the main surface
112 self ._background .blit (self ._grid_layer , (0 , 0))
113 self ._background .blit (self ._entity_layer , (0 , 0))
114

115 if return_observation :
116 return flipud (rot90 (pg .surfarray .array3d (self ._background)))
117

118 def render_on_display (self) :
119 """
120 Renders the current frame on the virtual display.
121 :return:
122 """
123 surf = pg .transform .scale (self ._background , self ._screen_size)
124 if self ._screen is None :
125 self ._init_display ()
126 self ._screen .blit (surf , (0 , 0))
127 pg .display .flip ()
128

129 def _draw_grid (self) :
130 """
131 Draws the grid lines to the grid layer surface.
132 :return:
133 """
134

135 # drawing the horizontal lines
136 for y in range (self .GRID_H + 1) :
137 pg .draw .line (
138 self ._grid_layer ,
139 GRID_LINE_COLOR ,
140 (0 , y * TILE_SIZE) ,
141 (self .SCREEN_W , y * TILE_SIZE) ,
142)
143

144 # drawing the vertical lines
145 for x in range (self .GRID_W + 1) :
146 pg .draw .line (

86

147 self ._grid_layer ,
148 GRID_LINE_COLOR ,
149 (x * TILE_SIZE , 0) ,
150 (x * TILE_SIZE , self .SCREEN_H) ,
151)
152

153 def _draw_entities (self) :
154 # Agents
155 self ._entity_layer .blit (
156 self ._a_sprite .IMAGE , (self ._a_sprite .rect .left , self ._a_sprite .rect .top)
157)
158 self ._entity_layer .blit (
159 self ._b_sprite .IMAGE , (self ._b_sprite .rect .left , self ._b_sprite .rect .top)
160)
161

162 def _update_rects (self , entity_positions) :
163 """
164 Update all the entity rectangles with their new positions.
165 :param entity_positions: A dictionary containing positions for all the entities.
166 :return:
167 """
168 self ._a_sprite .update_rect (entity_positions ["a_agent"])
169 self ._b_sprite .update_rect (entity_positions ["b_agent"])
170

171 """
172 Properties
173 """
174

175 @property
176 def SCREEN_SIZE (self) :
177 return tuple (self ._screen_size)
178

179 @property
180 def SCREEN_W (self) :
181 return int (self ._screen_size [0])
182

183 @property
184 def SCREEN_H (self) :
185 return int (self ._screen_size [1])
186

187 @property
188 def GRID_W (self) :
189 return self ._game .GRID_W
190

191 @property
192 def GRID_H (self) :
193 return self ._game .GRID_H
194

195 @property
196 def CELL_W (self) :
197 return float (self .SCREEN_W) / float (self .GRID_W)
198

199 @property
200 def CELL_H (self) :
201 return float (self .SCREEN_H) / float (self .GRID_H)
202

203 @property
204 def CELL_SIZE (self) :
205 return self .CELL_W , self .CELL_H� �

Listing A.8: escalationrenderer.py� �
1 from gym_stag_hunt .src .entities import Mark
2 from gym_stag_hunt .src .renderers .abstract_renderer import AbstractRenderer
3

4

87

5 class EscalationRenderer (AbstractRenderer) :
6 def __init__ (self , game , window_title , screen_size) :
7 super (EscalationRenderer , self) .__init__ (
8 game=game , window_title=window_title , screen_size=screen_size
9)

10

11 self ._mark_sprite = Mark (location=self ._game .ENTITY_POSITIONS ["mark"])
12

13 self .cell_sizes = self .CELL_SIZE
14 self ._draw_grid ()
15

16 """
17 Misc
18 """
19

20 def _draw_entities (self) :
21 """
22 Draws the entity sprites to the entity layer surface.
23 :return:
24 """
25 if self ._game .ENTITY_POSITIONS ["streak_active"] :
26 self ._entity_layer .blit (
27 self ._mark_sprite .IMAGE_ACTIVE ,
28 (self ._mark_sprite .rect .left , self ._mark_sprite .rect .top) ,
29)
30 else :
31 self ._entity_layer .blit (
32 self ._mark_sprite .IMAGE ,
33 (self ._mark_sprite .rect .left , self ._mark_sprite .rect .top) ,
34)
35

36 # Agents
37 self ._entity_layer .blit (
38 self ._a_sprite .IMAGE , (self ._a_sprite .rect .left , self ._a_sprite .rect .top)
39)
40 self ._entity_layer .blit (
41 self ._b_sprite .IMAGE , (self ._b_sprite .rect .left , self ._b_sprite .rect .top)
42)
43

44 def _update_rects (self , entity_positions) :
45 """
46 Update all the entity rectangles with their new positions.
47 :param entity_positions: A dictionary containing positions for all the entities.
48 :return:
49 """
50 self ._a_sprite .update_rect (entity_positions ["a_agent"])
51 self ._b_sprite .update_rect (entity_positions ["b_agent"])
52 self ._mark_sprite .update_rect (entity_positions ["mark"])� �

Listing A.9: harvestrenderer.py� �
1 from gym_stag_hunt .src .entities import HarvestPlant
2 from gym_stag_hunt .src .renderers .abstract_renderer import AbstractRenderer
3

4

5 class HarvestRenderer (AbstractRenderer) :
6 def __init__ (self , game , window_title , screen_size) :
7 super (HarvestRenderer , self) .__init__ (
8 game=game , window_title=window_title , screen_size=screen_size
9)

10

11 self .cell_sizes = self .CELL_SIZE
12 entity_positions = self ._game .ENTITY_POSITIONS
13

14 self .plant_sprites = self ._make_plant_entities (entity_positions ["plant_coords"])
15

88

16 self ._draw_grid ()
17

18 """
19 Misc
20 """
21

22 def _make_plant_entities (self , locations) :
23 """
24 :param locations: locations for the new plants
25 :return: an array of plant entities ready to be rendered.
26 """
27 plants = []
28 for loc in locations :
29 plants .append (HarvestPlant (location=loc))
30 return plants
31

32 def _draw_entities (self) :
33 """
34 Draws the entity sprites to the entity layer surface.
35 :return:
36 """
37

38 maturity_flags = self ._game .ENTITY_POSITIONS ["maturity_flags"]
39

40 for idx , plant in enumerate (self .plant_sprites) :
41 if maturity_flags [idx] :
42 self ._entity_layer .blit (plant .IMAGE , (plant .rect .left , plant .rect .top))
43 else :
44 self ._entity_layer .blit (
45 plant .IMAGE_YOUNG , (plant .rect .left , plant .rect .top)
46)
47

48 # Agents
49 self ._entity_layer .blit (
50 self ._a_sprite .IMAGE , (self ._a_sprite .rect .left , self ._a_sprite .rect .top)
51)
52 self ._entity_layer .blit (
53 self ._b_sprite .IMAGE , (self ._b_sprite .rect .left , self ._b_sprite .rect .top)
54)
55

56 def _update_rects (self , entity_positions) :
57 """
58 Update all the entity rectangles with their new positions.
59 :param entity_positions: A dictionary containing positions for all the entities.
60 :return:
61 """
62 self ._a_sprite .update_rect (entity_positions ["a_agent"])
63 self ._b_sprite .update_rect (entity_positions ["b_agent"])
64

65 for idx , plant in enumerate (self .plant_sprites) :
66 plant .update_rect (entity_positions ["plant_coords"] [idx])� �

Listing A.10: huntrenderer.py� �
1 from gym_stag_hunt .src .entities import Entity
2 from gym_stag_hunt .src .renderers .abstract_renderer import AbstractRenderer
3

4

5 class HuntRenderer (AbstractRenderer) :
6 def __init__ (self , game , window_title , screen_size) :
7 super (HuntRenderer , self) .__init__ (
8 game=game , window_title=window_title , screen_size=screen_size
9)

10

11 entity_positions = self ._game .ENTITY_POSITIONS
12

89

13 self ._stag_sprite = Entity (
14 entity_type="stag" , location=entity_positions ["stag"]
15)
16 self ._plant_sprites = self ._make_plant_entities (entity_positions ["plants"])
17

18 self ._draw_grid ()
19

20 """
21 Misc
22 """
23

24 def _make_plant_entities (self , locations) :
25 """
26 :param locations: locations for the new plants
27 :return: an array of plant entities ready to be rendered.
28 """
29 plants = []
30 for loc in locations :
31 plants .append (Entity (entity_type="plant" , location=loc))
32 return plants
33

34 def _draw_entities (self) :
35 """
36 Draws the entity sprites to the entity layer surface.
37 :return:
38 """
39 self ._entity_layer .blit (
40 self ._stag_sprite .IMAGE ,
41 (self ._stag_sprite .rect .left , self ._stag_sprite .rect .top) ,
42)
43 for plant in self ._plant_sprites :
44 self ._entity_layer .blit (plant .IMAGE , (plant .rect .left , plant .rect .top))
45 # Agents
46 self ._entity_layer .blit (
47 self ._a_sprite .IMAGE , (self ._a_sprite .rect .left , self ._a_sprite .rect .top)
48)
49 self ._entity_layer .blit (
50 self ._b_sprite .IMAGE , (self ._b_sprite .rect .left , self ._b_sprite .rect .top)
51)
52

53 def _update_rects (self , entity_positions) :
54 """
55 Update all the entity rectangles with their new positions.
56 :param entity_positions: A dictionary containing positions for all the entities.
57 :return:
58 """
59 self ._a_sprite .update_rect (entity_positions ["a_agent"])
60 self ._b_sprite .update_rect (entity_positions ["b_agent"])
61 self ._stag_sprite .update_rect (entity_positions ["stag"])
62 plants_pos = entity_positions ["plants"]
63 idx = 0
64 for plant in self ._plant_sprites :
65 plant .update_rect (plants_pos [idx])
66 idx = idx + 1� �

A.2 envs/

A.2.1 gym/

Listing A.11: abstractmarkovstaghunt.py� �
90

1 from abc import ABC
2

3 from gym import Env
4

5 from gym_stag_hunt .src .utils import print_matrix
6

7

8 class AbstractMarkovStagHuntEnv (Env , ABC) :
9 metadata = {"render.modes" : ["human" , "array"] , "obs.types" : ["image" , "coords"]}

10

11 def __init__ (self , grid_size=(5 , 5) , obs_type="image" , enable_multiagent=False) :
12 """
13 :param grid_size: A (W, H) tuple corresponding to the grid dimensions. Although W

=H is expected, W!=H works also
14 :param obs_type: Can be ’image’ for pixel-array based observations, or ’coords’

for just the entity coordinates
15 """
16

17 total_cells = grid_size [0] * grid_size [1]
18 if total_cells < 3 :
19 raise AttributeError (
20 "Grid is too small. Please specify a larger grid size."
21)
22 if obs_type not in self .metadata ["obs.types"] :
23 raise AttributeError (
24 ’Invalid observation type provided. Please specify "image" or "coords"’
25)
26 if grid_size [0] >= 255 or grid_size [1] >= 255 :
27 raise AttributeError (
28 "Grid is too large. Please specify a smaller grid size."
29)
30

31 super (AbstractMarkovStagHuntEnv , self) .__init__ ()
32

33 self .obs_type = obs_type
34 self .done = False
35 self .enable_multiagent = enable_multiagent
36

37 def step (self , actions) :
38 """
39 Run one timestep of the environment’s dynamics.
40 :param actions: ints signifying actions for the agents. You can pass one, in

which case the second agent does a
41 random move, or two, in which case each agent takes the specified

action.
42 :return: observation, rewards, is the game done, additional info
43 """
44 return self .game .update (actions)
45

46 def reset (self) :
47 """
48 Reset the game state
49 :return: initial observation
50 """
51 self .game .reset_entities ()
52 self .done = False
53 return self .game .get_observation ()
54

55 def render (self , mode="human" , obs=None) :
56 """
57 :param obs: observation data (passed for coord observations so we dont have to

run the function twice)
58 :param mode: rendering mode
59 :return:
60 """
61 if mode == "human" :

91

62 if self .obs_type == "image" :
63 self .game .RENDERER .render_on_display ()
64 else :
65 if self .game .RENDERER :
66 self .game .RENDERER .update ()
67 self .game .RENDERER .render_on_display ()
68 else :
69 if obs is not None :
70 print_matrix (obs , self .game_title , self .game .GRID_DIMENSIONS)
71 else :
72 print_matrix (
73 self .game .get_observation () ,
74 self .game_title ,
75 self .game .GRID_DIMENSIONS ,
76)
77 elif mode == "array" :
78 print_matrix (
79 self .game ._coord_observation () ,
80 self .game_title ,
81 self .game .GRID_DIMENSIONS ,
82)
83

84 def close (self) :
85 """
86 Closes all needed resources
87 :return:
88 """
89 if self .game .RENDERER :
90 self .game .RENDERER .quit ()� �

Listing A.12: escalation.py� �
1 from gym .spaces import Discrete , Box
2 from numpy import Inf , uint8
3

4 from gym_stag_hunt .envs .gym .abstract_markov_staghunt import AbstractMarkovStagHuntEnv
5 from gym_stag_hunt .src .entities import TILE_SIZE
6 from gym_stag_hunt .src .games .escalation_game import Escalation
7

8

9 class EscalationEnv (AbstractMarkovStagHuntEnv) :
10 def __init__ (
11 self ,
12 grid_size= (5 , 5) ,
13 screen_size=(600 , 600) ,
14 obs_type="image" ,
15 enable_multiagent=False ,
16 opponent_policy="pursuit" ,
17 load_renderer=False ,
18 streak_break_punishment_factor= 0 . 5 ,
19) :
20 """
21 :param grid_size: A (W, H) tuple corresponding to the grid dimensions. Although W

=H is expected, W!=H works also
22 :param screen_size: A (W, H) tuple corresponding to the pixel dimensions of the

game window
23 :param obs_type: Can be ’image’ for pixel-array based observations, or ’coords’

for just the entity coordinates
24 """
25 total_cells = grid_size [0] * grid_size [1]
26 if total_cells < 3 :
27 raise AttributeError (
28 "Grid is too small. Please specify a larger grid size."
29)
30

31 super (EscalationEnv , self) .__init__ (

92

32 grid_size=grid_size , obs_type=obs_type , enable_multiagent=enable_multiagent
33)
34

35 # Rendering and State Variables
36 self .game_title = "escalation"
37 self .streak_break_punishment_factor = streak_break_punishment_factor
38 window_title = (
39 "OpenAI Gym - Escalation (%d x %d)" % grid_size
40) # create game representation
41 self .game = Escalation (
42 window_title=window_title ,
43 grid_size=grid_size ,
44 screen_size=screen_size ,
45 obs_type=obs_type ,
46 enable_multiagent=enable_multiagent ,
47 load_renderer=load_renderer ,
48 streak_break_punishment_factor=streak_break_punishment_factor ,
49 opponent_policy=opponent_policy ,
50)
51

52 # Environment Config
53 self .action_space = Discrete (5) # up, down, left, right or stand
54 if obs_type == "image" : # Observation is the rgb pixel array
55 self .observation_space = Box (
56 0 ,
57 255 ,
58 shape=(grid_size [0] * TILE_SIZE , grid_size [1] * TILE_SIZE , 3) ,
59 dtype=uint8 ,
60)
61 elif obs_type == "coords" :
62 self .observation_space = Box (0 , max (grid_size) , shape= (6 ,) , dtype=uint8)
63

64 self .reward_range = (
65 -Inf ,
66 Inf ,
67) # There is technically no limit on how high or low the reinforcement can be� �

Listing A.13: harvest.py� �
1 from gym .spaces import Discrete , Box
2 from numpy import uint8
3

4 from gym_stag_hunt .envs .gym .abstract_markov_staghunt import AbstractMarkovStagHuntEnv
5 from gym_stag_hunt .src .entities import TILE_SIZE
6 from gym_stag_hunt .src .games .harvest_game import Harvest
7

8

9 class HarvestEnv (AbstractMarkovStagHuntEnv) :
10 def __init__ (
11 self ,
12 grid_size= (5 , 5) ,
13 screen_size=(600 , 600) ,
14 obs_type="image" ,
15 enable_multiagent=False ,
16 load_renderer=False ,
17 max_plants=4 ,
18 chance_to_mature= 0 . 1 ,
19 chance_to_die= 0 . 1 ,
20 young_reward=1 ,
21 mature_reward=2 ,
22) :
23 """
24 :param grid_size: A (W, H) tuple corresponding to the grid dimensions. Although W

=H is expected, W!=H works also
25 :param screen_size: A (W, H) tuple corresponding to the pixel dimensions of the

game window

93

26 :param obs_type: Can be ’image’ for pixel-array based observations, or ’coords’
for just the entity coordinates

27 """
28 if young_reward > mature_reward :
29 raise AttributeError (
30 "The game does not qualify as a Stag Hunt, please change parameters so

that "
31 "young_reward > mature_reward"
32)
33 total_cells = grid_size [0] * grid_size [1]
34 if max_plants >= total_cells - 2 : # -2 is for the cells occupied by the agents
35 raise AttributeError (
36 "Plant quantity is too high. The plants will not fit on the grid."
37)
38 if total_cells < 3 :
39 raise AttributeError (
40 "Grid is too small. Please specify a larger grid size."
41)
42

43 super (HarvestEnv , self) .__init__ (
44 grid_size=grid_size , obs_type=obs_type , enable_multiagent=enable_multiagent
45)
46

47 self .game_title = "harvest"
48 self .max_plants = max_plants
49 self .chance_to_mature = chance_to_mature
50 self .chance_to_die = chance_to_die
51 self .young_reward = young_reward
52 self .mature_reward = mature_reward
53 self .reward_range = (0 , mature_reward)
54

55 window_title = (
56 "OpenAI Gym - Harvest (%d x %d)" % grid_size
57) # create game representation
58 self .game = Harvest (
59 window_title=window_title ,
60 grid_size=grid_size ,
61 screen_size=screen_size ,
62 obs_type=obs_type ,
63 enable_multiagent=enable_multiagent ,
64 load_renderer=load_renderer ,
65 max_plants=max_plants ,
66 chance_to_mature=chance_to_mature ,
67 chance_to_die=chance_to_die ,
68 young_reward=young_reward ,
69 mature_reward=mature_reward ,
70)
71

72 self .action_space = Discrete (5) # up, down, left, right or stand
73

74 if obs_type == "image" :
75 self .observation_space = Box (
76 0 ,
77 255 ,
78 shape=(grid_size [0] * TILE_SIZE , grid_size [1] * TILE_SIZE , 3) ,
79 dtype=uint8 ,
80)
81 elif obs_type == "coords" :
82 self .observation_space = Box (
83 0 , max (grid_size) , shape=(4 + max_plants * 3 ,) , dtype=uint8
84)� �

Listing A.14: hunt.py� �
1 from gym .spaces import Discrete , Box
2 from numpy import uint8

94

3

4 from gym_stag_hunt .envs .gym .abstract_markov_staghunt import AbstractMarkovStagHuntEnv
5 from gym_stag_hunt .src .entities import TILE_SIZE
6 from gym_stag_hunt .src .games .staghunt_game import StagHunt
7

8

9 class HuntEnv (AbstractMarkovStagHuntEnv) :
10 def __init__ (
11 self ,
12 grid_size= (5 , 5) ,
13 screen_size=(600 , 600) ,
14 obs_type="image" ,
15 enable_multiagent=False ,
16 opponent_policy="random" ,
17 load_renderer=False ,
18 stag_follows=True ,
19 run_away_after_maul=False ,
20 forage_quantity=2 ,
21 stag_reward=5 ,
22 forage_reward=1 ,
23 mauling_punishment= - 5 ,
24) :
25 """
26 :param grid_size: A (W, H) tuple corresponding to the grid dimensions. Although W

=H is expected, W!=H works also
27 :param screen_size: A (W, H) tuple corresponding to the pixel dimensions of the

game window
28 :param obs_type: Can be ’image’ for pixel-array based observations, or ’coords’

for just the entity coordinates
29 :param stag_follows: Should the stag seek out the nearest agent (true) or take a

random move (false)
30 :param run_away_after_maul: Does the stag stay on the same cell after mauling an

agent (true) or respawn (false)
31 :param forage_quantity: How many plants will be placed on the board.
32 :param stag_reward: How much reinforcement the agents get for catching the stag
33 :param forage_reward: How much reinforcement the agents get for harvesting a

plant
34 :param mauling_punishment: How much reinforcement the agents get for trying to

catch a stag alone (MUST be neg.)
35 """
36 if not (stag_reward > forage_reward >= 0 > mauling_punishment) :
37 raise AttributeError (
38 "The game does not qualify as a Stag Hunt, please change parameters so

that "
39 "stag_reward > forage_reward >= 0 > mauling_punishment"
40)
41 if mauling_punishment == forage_reward :
42 raise AttributeError (
43 "Mauling punishment and forage reward are equal."
44 " Game logic will not function properly."
45)
46 total_cells = grid_size [0] * grid_size [1]
47 if (
48 forage_quantity >= total_cells - 3
49) : # -3 is for the cells occupied by the agents and stag
50 raise AttributeError (
51 "Forage quantity is too high. The plants will not fit on the grid."
52)
53 if total_cells < 3 :
54 raise AttributeError (
55 "Grid is too small. Please specify a larger grid size."
56)
57

58 super (HuntEnv , self) .__init__ (
59 grid_size=grid_size , obs_type=obs_type , enable_multiagent=enable_multiagent
60)

95

61

62 self .game_title = "hunt"
63 self .stag_reward = stag_reward
64 self .forage_reward = forage_reward
65 self .mauling_punishment = mauling_punishment
66 self .reward_range = (mauling_punishment , stag_reward)
67

68 window_title = (
69 "OpenAI Gym - Stag Hunt (%d x %d)" % grid_size
70) # create game representation
71 self .game = StagHunt (
72 window_title=window_title ,
73 grid_size=grid_size ,
74 screen_size=screen_size ,
75 obs_type=obs_type ,
76 enable_multiagent=enable_multiagent ,
77 load_renderer=load_renderer ,
78 stag_reward=stag_reward ,
79 stag_follows=stag_follows ,
80 run_away_after_maul=run_away_after_maul ,
81 forage_quantity=forage_quantity ,
82 forage_reward=forage_reward ,
83 mauling_punishment=mauling_punishment ,
84 opponent_policy=opponent_policy ,
85)
86

87 self .action_space = Discrete (5) # up, down, left, right or stand
88

89 if obs_type == "image" :
90 self .observation_space = Box (
91 0 ,
92 255 ,
93 shape=(grid_size [0] * TILE_SIZE , grid_size [1] * TILE_SIZE , 3) ,
94 dtype=uint8 ,
95)
96 elif obs_type == "coords" :
97 self .observation_space = Box (
98 0 , max (grid_size) , shape=(6 + forage_quantity * 2 ,) , dtype=uint8
99)� �

Listing A.15: simple.py� �
1 from sys import stdout
2

3 from gym import Env
4 from gym .spaces import Discrete , Box
5 from numpy .random import randint
6

7 COOPERATE = 0
8 DEFECT = 1
9

10

11 class SimpleEnv (Env) :
12 def __init__ (
13 self ,
14 cooperation_reward=5 ,
15 defect_alone_reward=1 ,
16 defect_together_reward=1 ,
17 failed_cooperation_punishment= - 5 ,
18 eps_per_game=1 ,
19) :
20 """
21 :param cooperation_reward: How much reinforcement the agents get for catching the

stag
22 :param defect_alone_reward: How much reinforcement an agent gets for defecting if

the other one doesn’t

96

23 :param defect_together_reward: How much reinforcement an agent gets for defecting
if the other one does also

24 :param failed_cooperation_punishment: How much reinforcement the agents get for
trying to catch a stag alone

25 :param eps_per_game: How many games happen before the internal done flag is set
to True. Only included for

26 the sake of convenience.
27 """
28

29 if not (
30 cooperation_reward
31 > defect_alone_reward
32 >= defect_together_reward
33 > failed_cooperation_punishment
34) :
35 raise AttributeError (
36 "The game does not qualify as a Stag Hunt, please change parameters so

that "
37 "stag_reward > forage_reward_single >= forage_reward_both >

mauling_punishment"
38)
39

40 super (SimpleEnv , self) .__init__ ()
41

42 # Reinforcement Variables
43 self .cooperation_reward = cooperation_reward
44 self .defect_alone_reward = defect_alone_reward
45 self .defect_together_reward = defect_together_reward
46 self .failed_cooperation_punishment = failed_cooperation_punishment
47

48 # State Variables
49 self .done = False
50 self .ep = 0
51 self .final_ep = eps_per_game
52 self .seed ()
53

54 # Environment Config
55 self .action_space = Discrete (2) # cooperate or defect
56 self .observation_space = Box (
57 low=0 , high=1 , shape= (2 ,) , dtype=int
58) # last agent actions
59 self .reward_range = (failed_cooperation_punishment , cooperation_reward)
60

61 def step (self , actions) :
62 """
63 Play one stag hunt game.
64 :param actions: ints signifying actions for the agents. You can pass one, in

which case the second agent does a
65 random move, or two, in which case each agent takes the specified

action.
66 :return: observation, rewards, is the game done, additional info
67 """
68 self .ep = self .ep + 1
69 if self .ep >= self .final_ep :
70 done = True
71 self .ep = 0
72 else :
73 done = False
74

75 if isinstance (actions , list) :
76 a_action = actions [0]
77 if len (actions) > 1 :
78 b_action = actions [1]
79 else :
80 b_action = randint (0 , 1)
81 else :

97

82 a_action = actions
83 b_action = randint (0 , 1)
84

85 b_cooperated = b_action == COOPERATE
86

87 if a_action == COOPERATE :
88 reward = (
89 (self .cooperation_reward , self .cooperation_reward)
90 if b_cooperated
91 else (self .failed_cooperation_punishment , self .defect_alone_reward)
92)
93 else :
94 reward = (
95 (self .defect_alone_reward , self .failed_cooperation_punishment)
96 if b_cooperated
97 else (self .defect_together_reward , self .defect_together_reward)
98)
99

100 obs = (a_action , b_action)
101

102 return obs , reward , done , {}
103

104 def reset (self) :
105 """
106 Reset the game state
107 """
108 self .done = False
109 self .ep = 0
110

111 def render (self , mode="human" , rewards=None) :
112 """
113 :return:
114 """
115 if rewards is None :
116 print ("Please supply rewards to render.")
117 pass
118 else :
119 top_right = " "
120 top_left = " "
121 bot_left = " "
122 bot_right = " "
123

124 if rewards == (self .cooperation_reward , self .cooperation_reward) :
125 top_left = "AB"
126 elif rewards == (
127 self .defect_alone_reward ,
128 self .failed_cooperation_punishment ,
129) :
130 bot_left = "A "
131 top_right = " B"
132 elif rewards == (
133 self .failed_cooperation_punishment ,
134 self .defect_alone_reward ,
135) :
136 top_left = "A "
137 top_right = " B"
138 elif rewards == (self .defect_together_reward , self .defect_together_reward) :
139 bot_right = "AB"
140

141 stdout .write ("\n\n\n")
142 stdout .write (" B \n")
143 stdout .write (" C D \n")
144 stdout .write (" \n")
145 stdout .write (" C " + top_left + " " + top_right + " \n")
146 stdout .write (" \n")
147 stdout .write ("A \n")

98

148 stdout .write (" \n")
149 stdout .write (" D " + bot_left + " " + bot_right + " \n")
150 stdout .write (" \n\r")
151 stdout .flush ()
152

153 def close (self) :
154 quit ()� �

A.2.2 pettingzoo/

Listing A.16: escalation.py� �
1 from gym_stag_hunt .envs .gym .escalation import EscalationEnv
2 from gym_stag_hunt .envs .pettingzoo .shared import PettingZooEnv
3 from pettingzoo .utils import parallel_to_aec
4

5

6 def env (**kwargs) :
7 return ZooEscalationEnvironment (**kwargs)
8

9

10 def raw_env (**kwargs) :
11 return parallel_to_aec (env (**kwargs))
12

13

14 class ZooEscalationEnvironment (PettingZooEnv) :
15 metadata = {"render_modes" : ["human" , "array"] , "name" : "escalation_pz"}
16

17 def __init__ (
18 self ,
19 grid_size= (5 , 5) ,
20 screen_size=(600 , 600) ,
21 obs_type="image" ,
22 enable_multiagent=False ,
23 opponent_policy="pursuit" ,
24 load_renderer=False ,
25 streak_break_punishment_factor= 0 . 5 ,
26) :
27 escalation_env = EscalationEnv (
28 grid_size ,
29 screen_size ,
30 obs_type ,
31 enable_multiagent ,
32 opponent_policy ,
33 load_renderer ,
34 streak_break_punishment_factor ,
35)
36 super () .__init__ (og_env=escalation_env)� �

Listing A.17: harvest.py� �
1 from gym_stag_hunt .envs .gym .harvest import HarvestEnv
2 from gym_stag_hunt .envs .pettingzoo .shared import PettingZooEnv
3 from pettingzoo .utils import parallel_to_aec
4

5

6 def env (**kwargs) :
7 return ZooHarvestEnvironment (**kwargs)
8

9

10 def raw_env (**kwargs) :
11 return parallel_to_aec (env (**kwargs))

99

12

13

14 class ZooHarvestEnvironment (PettingZooEnv) :
15 metadata = {"render_modes" : ["human" , "array"] , "name" : "harvest_pz"}
16

17 def __init__ (
18 self ,
19 grid_size= (5 , 5) ,
20 screen_size=(600 , 600) ,
21 obs_type="image" ,
22 enable_multiagent=False ,
23 load_renderer=False ,
24 max_plants=4 ,
25 chance_to_mature= 0 . 1 ,
26 chance_to_die= 0 . 1 ,
27 young_reward=1 ,
28 mature_reward=2 ,
29) :
30 harvest_env = HarvestEnv (
31 grid_size ,
32 screen_size ,
33 obs_type ,
34 enable_multiagent ,
35 load_renderer ,
36 max_plants ,
37 chance_to_mature ,
38 chance_to_die ,
39 young_reward ,
40 mature_reward ,
41)
42 super () .__init__ (og_env=harvest_env)� �

Listing A.18: hunt.py� �
1 from gym_stag_hunt .envs .gym .hunt import HuntEnv
2 from gym_stag_hunt .envs .pettingzoo .shared import PettingZooEnv
3 from pettingzoo .utils import parallel_to_aec
4

5

6 def env (**kwargs) :
7 return ZooHuntEnvironment (**kwargs)
8

9

10 def raw_env (**kwargs) :
11 return parallel_to_aec (env (**kwargs))
12

13

14 class ZooHuntEnvironment (PettingZooEnv) :
15 metadata = {"render_modes" : ["human" , "array"] , "name" : "hunt_pz"}
16

17 def __init__ (
18 self ,
19 grid_size= (5 , 5) ,
20 screen_size=(600 , 600) ,
21 obs_type="image" ,
22 enable_multiagent=False ,
23 opponent_policy="random" ,
24 load_renderer=False ,
25 stag_follows=True ,
26 run_away_after_maul=False ,
27 forage_quantity=2 ,
28 stag_reward=5 ,
29 forage_reward=1 ,
30 mauling_punishment= - 5 ,
31) :
32 hunt_env = HuntEnv (

100

33 grid_size ,
34 screen_size ,
35 obs_type ,
36 enable_multiagent ,
37 opponent_policy ,
38 load_renderer ,
39 stag_follows ,
40 run_away_after_maul ,
41 forage_quantity ,
42 stag_reward ,
43 forage_reward ,
44 mauling_punishment ,
45)
46 super () .__init__ (og_env=hunt_env)� �

Listing A.19: shared.py� �
1 from pettingzoo .utils import wrappers
2 from pettingzoo import ParallelEnv
3 from pettingzoo .utils import agent_selector
4 import functools
5

6

7 def default_wrappers (env_init) :
8 """
9 The env function wraps the environment in 3 wrappers by default. These

10 wrappers contain logic that is common to many pettingzoo environments.
11 We recommend you use at least the OrderEnforcingWrapper on your own environment
12 to provide sane error messages. You can find full documentation for these methods
13 elsewhere in the developer documentation.
14 """
15 env_init = wrappers .CaptureStdoutWrapper (env_init)
16 env_init = wrappers .AssertOutOfBoundsWrapper (env_init)
17 env_init = wrappers .OrderEnforcingWrapper (env_init)
18 return env_init
19

20

21 class PettingZooEnv (ParallelEnv) :
22 def __init__ (self , og_env) :
23 super () .__init__ ()
24

25 self .env = og_env
26

27 self .possible_agents = ["player_" + str (n) for n in range (2)]
28 self .agents = self .possible_agents [:]
29

30 self .agent_name_mapping = dict (
31 zip (self .possible_agents , list (range (len (self .possible_agents))))
32)
33 self .agent_selection = None
34 self ._agent_selector = agent_selector (self .agents)
35

36 self ._action_spaces = {
37 agent : self .env .action_space for agent in self .possible_agents
38 }
39 self ._observation_spaces = {
40 agent : self .env .observation_space for agent in self .possible_agents
41 }
42

43 self .dones = dict (zip (self .agents , [False for _ in self .agents]))
44 self .rewards = dict (zip (self .agents , [0 . 0 for _ in self .agents]))
45 self ._cumulative_rewards = dict (zip (self .agents , [0 . 0 for _ in self .agents]))
46 self .infos = dict (zip (self .agents , [{} for _ in self .agents]))
47 self .accumulated_actions = []
48 self .current_observations = {
49 agent : self .env .observation_space .sample () for agent in self .agents

101

50 }
51 self .t = 0
52 self .last_rewards = [0 . 0 , 0 . 0]
53

54 # this cache ensures that same space object is returned for the same agent
55 # allows action space seeding to work as expected
56 @functools .lru_cache (maxsize=None)
57 def observation_space (self , agent) :
58 return self .env .observation_space
59

60 @functools .lru_cache (maxsize=None)
61 def action_space (self , agent) :
62 return self .env .action_space
63

64 def render (self , mode="human") :
65 self .env .render (mode)
66

67 def close (self) :
68 self .env .close ()
69

70 def reset (self) :
71 self .agents = self .possible_agents [:]
72 self ._agent_selector .reinit (self .agents)
73 self .agent_selection = self ._agent_selector .next ()
74 self .rewards = dict (zip (self .agents , [0 . 0 for _ in self .agents]))
75 self ._cumulative_rewards = dict (zip (self .agents , [0 . 0 for _ in self .agents]))
76 self .infos = dict (zip (self .agents , [{} for _ in self .agents]))
77 self .dones = dict (zip (self .agents , [False for _ in self .agents]))
78 obs = self .env .reset ()
79 self .accumulated_actions = []
80 self .current_observations = {agent : obs for agent in self .agents}
81 self .t = 0
82

83 return self .current_observations
84

85 def step (self , actions) :
86 observations , rewards , env_done , info = self .env .step (list (actions .values ()))
87

88 obs = {self .agents [0] : observations [0] , self .agents [1] : observations [1]}
89 rewards = {self .agents [0] : rewards [0] , self .agents [1] : rewards [1]}
90 dones = {agent : env_done for agent in self .agents}
91 infos = {agent : {} for agent in self .agents}
92

93 return obs , rewards , dones , infos
94

95 def observe (self , agent) :
96 return self .current_observations [agent]
97

98 def state (self) :
99 pass� �

A.3 assets/

102

(a) Blue Agent (b) Red Agent

(c) Plant With No Fruit (d) Plant Fruit

(e) Inactive Mark (f) Active Mark

(g) Stag

Figure A.1: Game Assets

103

	Glossary of Terms
	Introduction
	The Problem at Hand
	A Game of Risk and Trust
	Learning Through Reward
	Our Contributions

	Background
	The Stag Hunt
	Formal Description
	Generalized Stag Hunts
	Nash Equilibria
	Risk Balancing

	Reinforcement Learning
	Formal Description
	Agents
	Environments
	Reward

	Q-Learning
	Basic Description
	Deep Q-Learning

	Related Work
	Risk And Society
	The Evolution of Social Structure
	Location
	Signals
	Association
	Conclusions

	Mutual Aid
	Observations from Nature
	Rhymes of History

	Experiments And Implementation
	Environment Implementation
	Peysakhovich and Lerer’s Environments
	Our Implementation

	Experiments
	Experimental Methodology
	Reading the Figures
	Agent Structure

	Proof of Concept
	Matrix Stag Hunt
	Grid Stag Hunt

	Main Learning Experiment
	Low Risk Stag Hunt Experiment
	High Risk Stag Hunt Experiment
	Harvest & Escalation

	Discussion And Future Work
	Discussion
	Achievements
	Shortcomings

	Future Work
	The Leviathan
	Genetic Algorithms
	Networked Genetic Algorithms

	Conclusion
	Summary
	Next Steps

	Closing Thoughts

	Bibliography
	Source Code
	src/
	games/
	renderers/

	envs/
	gym/
	pettingzoo/

	assets/

