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Abstract 
 

Anthropogenic climate change poses a major threat to our current way of life. 

Without understanding how earth systems will react to growing anthropogenic CO2 

emissions, it is impossible to properly plan. Reconstructions of CO2 levels (paleo-CO2) 

and other important environmental parameters from the geologic past give a long-term 

record of earth system changes which are invaluable for understanding just how sensitive 

earth systems are. While there are several methods of reconstructing paleo-CO2, more are 

needed to corroborate existing reconstructions and to fill in important gaps in time. The 

Paleocene-Eocene Thermal Maximum (PETM) was a transient warm peak about 56 

million years ago and is the best analog of future climate change. Paleo-CO2 

reconstructions are lacking during this important event, preventing an understanding of 

how much atmospheric CO2 gave rise to the 5-8°C temperature increase of the PETM. 

Ginkgo has been used widely to reconstruct CO2 levels in the geological past because 

living Ginkgo biloba closely resembles common Mesozoic and Paleogene fossils of the 

genus. Many Ginkgo fossils from around the time of the PETM have been collected, and 

would be useful for paleo-CO2 reconstructions. Atmospheric CO2 levels in the geological 

past have been inferred from the δ13C of plant fossils following experimental evidence in 

Arabidopsis and Raphanus, where leaf-level discrimination against 13C (∆13C, or 

difference between δ13C of atmosphere and leaf) was found to increase with 

pCO2. Higher pCO2 leads to higher CO2 within the leaf (Ci), allowing RuBisCO to more 

strongly discriminate against 13C. Ginkgo has been used widely to reconstruct CO2 levels 

in the geological past because living Ginkgo biloba closely resembles common Mesozoic 

and Paleogene fossils of the genus. We therefore constructed an experiment to test if 
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∆13C in Ginkgo was positively correlated with pCO2. For four years (2016-2019) we 

grew Ginkgo biloba trees outdoors in open-topped chambers under ambient light and 

temperature fluctuations but with CO2 levels of ~400, ~600, ~800, and ~1000 ppm (three 

trees at each CO2 level). Data from the 2018 and 2019 growing season gave an 

unexpected relationship between pCO2 and ∆13C where ∆13C has a slightly negative 

relationship with pCO2. Our work shows that the relationship between ∆13C and pCO2 is 

not the same in Ginkgo as in Arabidopsis and Raphanus. A compilation of studies of 

∆13C in a variety of species shows no consistent relationship to be used as a paleo-CO2 

proxy. If the relationship of ∆13C to pCO2 varies among taxa, caution should be taken in 

reconstructing ancient CO2 concentrations from ∆13C of mixed fossil organic matter or 

molecular fossils. Further work with physiological data from this experiment may show 

that stomatal regulation prevents Ci from increasing with increasing pCO2, which would 

prevent ∆13C from increasing with increasing pCO2.  
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Introduction 

Case Study – The Paleocene-Eocene Thermal Maximum 

During the late Paleocene, 56 million years ago, a large but unquantified amount of 

carbon was released into the earth’s atmosphere. Before this quick change (less than 

20,000 years), the present-day Bighorn Basin in Wyoming was covered by a diverse 

forest ecosystem, rich with flora and fauna. This changed dramatically with a sharp 

increase in atmospheric carbon dioxide (Figure 1) and temperature increase of 5-8°C 

[McInerney and Wing 2011]. The forest of the Bighorn Basin turned to an arid shrubland, 

and mammal species in the area changed as heat-intolerant species migrated north and 

others moved in. After ~100,000 years of this thermal maximum, the ecosystem 

recovered to pre-event rainfall, flora, and fauna over a period of ~100,000 years. This 

rapid environmental change is known as the Paleocene Eocene Thermal Maximum, or 

PETM. It is the closest analog of climate change and carbon input for the current changes 

we are seeing in our environment. The rapidity with which the PETM occurred is 

unmatched in geologic history; other warm periods like the Early Eocene Climatic 

Optimum (or EECO) lasted over 4.1 million years [Westerhold et al. 2018]. The study of 

the PETM is of great importance for understanding how earth reacts to sudden increases 

in atmospheric carbon and recovers over time. 

The actual amount of carbon added to the atmosphere during the PETM is 

unfortunately poorly constrained. In sediments, both marine and terrestrial, the PETM is 

demarcated by a carbon isotope excursion (CIE), meaning that less 13C was found relative 

to 12C in carbonate rocks, microfossil shells, and fossil teeth [McInerney and Wing 2011]. 

This global decrease resulted from release of 12C enriched carbon at the onset of the 
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PETM, which then circulated through the atmosphere and ocean. There are several 

theories for where this light carbon came from: methane clathrates, wildfires, 

thermogenic methane, drying seaways, and permafrost thawing, or more likely some 

combination. Each of these potential sources has a known isotopic signature. Mass 

balance calculations have been used to model the amount of carbon coming from each 

source that would be required to give the PETM CIE. The relative amounts of carbon 

from each source must combine to create the same isotopic value as the observed CIE. 

Unfortunately, mass balance calculations for the amount of carbon released do not agree 

with other models of PETM carbon release [Zeebe et al. 2009; Panchuk et al. 2008], so 

estimates of pCO2 for the PETM range from 700 to 25,000 ppm CO2, an enormous 

spread [McInerney and Wing 2011]. Without well-constrained estimates of pCO2 for the 

PETM, matching extreme environmental change with atmospheric pCO2 is fraught with 

assumptions and error. With reliable estimates of pCO2 for the PETM, climate sensitivity 

for this period can be calculated and the source(s) of carbon input for the onset of the 

PETM will be better constrained.  

Aside from models and mass-balance calculations that attempt to estimate pCO2, 

information stored in the geologic record  can give estimates. Current geologic pCO2 data 

are few and far between, lacking the resolution to see the transient PETM and evaluate 

the height of pCO2. Better resolution of this data and/or new methods of using this data 

are needed to aid the study of the PETM.  
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Figure 1. Reconstruction of the Bighorn Basin, Wyoming before, during, and after 
the PETM. Before the PETM, this area had a warm and wet climate, with conifers and 
water-tolerant species. During the body of the PETM, the area became warmer and dry, 

losing much of the species present before. After the PETM, vegetation was similar to the 
pre-PETM. Art by Aldo Chiappe, for National Geographic. 

 

Section One: Current Climate Change and the Need for Paleoclimate Reconstructions 

In this section, modern global climate change and the greenhouse effect are 

briefly described. The need for paleoclimate reconstructions and better-constrained 

paleoclimate proxies are explained, as they inform our understanding of how climate will 

continue to change. 

 

Global climate change has taken more of the world stage as we begin to see real 

change happening and threatening the comfortable, carefree manner in which we 

consume. Extreme heat, variable rainfall, and ease of spreading infection are on the rise. 

World Health Organization (WHO) estimates that between 2030 and 2050, an additional 

250,000 deaths per year will be a result of climate change, and the cost of damage to 

health will be between 2 and 4 billion dollars [IPCC 2014]. Climate change is something 

we all must take seriously, and not just for the distant future, but for the very near future 
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and even the present. Having a complete understanding of climate is important for being 

able to predict future changes and prepare accordingly.  

While climate changes naturally, the culprit for these modern global changes is 

largely anthropogenic gases released into the atmosphere, the most common of which are 

CO2, CH4, and N2O [IPCC 2014]. When solar radiation hits the earth’s surface (as UV 

and visible light which travels easily through the atmosphere) it is absorbed. This is then 

re-emitted as infrared radiation and exits the atmosphere, if it is not trapped before 

escaping by gases like CO2 and CH4. Infrared radiation causes the C-O and C-H bonds in 

these gases to vibrate, increasing their kinetic energy and turning infrared radiation into 

heat. This is what is called the “Greenhouse Effect”. As the concentration of these 

greenhouse gases (GHG’s) increases in the atmosphere, more infrared radiation is 

converted to heat, and global temperatures continue to rise.  

Before industrialization (~1850), global carbon dioxide levels were at 280 ppm. 

In May of 2019, the observatory at Mauna Loa recorded a concentration of 414.7 ppm, a 

whopping 3.5 ppm higher than May just the year before [NOAA] (Figure 2). If emissions 

continue at the current rate, pCO2 could reach >1000 ppm by 2100 [IPCC 2018]. A level 

of >1000 ppm would be unprecedented, considering that for the last 650,000 years, pCO2 

fluctuated between 180 to 300 ppm (Figure 3) through glacial (cold) and interglacial 

(warm) periods [IPCC 2013].  
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Figure 2. The record of pCO2 recorded at Hawaii’s Mauna Loa Observatory. This 
observatory has been recording atmospheric pCO2 since 1958. The red line shows the 

monthly average pCO2, and the cyclic nature is due to seasonal CO2 changes. The black 
line is corrected for those changes using a 7-pt moving average [NOAA].  
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Figure 3. Figure 2 in Lüthi et al. 2008. pCO2 and temperature record through the last 
800,00 years from Antarctic ice cores. Colors represent different cores. T with subscript 

represents the end of glacial periods, and numbers represent Marine Isotope Stages 
(MIS).  

 

The most recent IPCC special report stated that current warming from anthropogenic 

emissions has reached 1°C. In order to limit global warming to 1.5°C, greenhouse 

emissions would have to be net zero by 2055 at the latest [IPCC 2018]. These estimates 

are dependent upon our understanding of climate sensitivity, or how affected the earth is 

by changes in pCO2. High climate sensitivity would mean that the earth would warm a lot 

from a small change in pCO2, while low climate sensitivity would give a small change in 

temperature with a small change in pCO2.  

It is hard to understand climate sensitivity on short timescales like pre-

industrialization to now. This modern period has the advantage of being well-

documented, but we are unable to know if there are lags in certain earth processes that 

will manifest in the next 100 or more years as a result of increasing pCO2. Studying the 

earth in this limited window of time simply does not give enough data. If we reduce 

emissions to net zero by 2055 (as is needed to stay under 1.5°C increase in global 

temperature), we cannot be sure how long it will take for the earth to recover back to pre-

industrial temperatures or CO2 levels. Climate data on longer timescales are necessary to 

project how our climate will change in the future.  

To aid in this understanding of longer processes, the study of past environmental 

and climatic changes in earth (geologic) history are necessary. Paleoclimatology relies on 

material and information being recorded in the geologic record that can be accessed today 

using the tools of geology, chemistry, physics, and biology. When these data are used to 



Scher 
 

12 

infer environmental conditions, it is called a paleoclimate proxy. A proxy is the 

geologically preserved material used to reconstruct environmental conditions, and the 

relationship between this material and variables in the environment/climate. Proxies can 

be applied to the geologic record to reconstruct precipitation, temperature, pCO2, ocean 

pH, magnetic reversals, trophic level, and weathering, to name some. Using proxies, 

climate can be reconstructed over geologic history: 10s or 100s of millions of years. 

These longer time slices enable paleoclimatologists to look at climate sensitivity on long 

scales with differing pCO2 levels and track how temperature, sea levels, and other 

variables change with pCO2.  

These paleoclimate reconstructions provide information for climate models. 

Climate models are built with knowledge about how the earth functions today and how 

we know that it has functioned in the past from paleoclimate reconstructions and studies. 

Additionally, paleoclimate reconstructions act as test data sets for these models. From 

reconstructions, scientists know what happened before and after a certain time in the 

geologic record (so long as the proxy data is well understood). Modelers can use the 

“before” data as inputs for their climate model, and compare the outputs of the model to 

what is known about the “after” from paleoclimate reconstructions. If the models are in 

good agreement with the paleoclimate data, then the model is working. If the model and 

the paleoclimate data are not in good agreement, then the model needs to be revised.  

With the rapid changes that people are causing to the planet, it is of utmost 

importance to continue studying our earth in the geologic record. While much is known 

about past changes, many reconstructions are poorly constrained. pCO2 reconstructions 
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are unfortunately especially fraught and require much more work to get estimates with 

much less error. These problems will be discussed in the next section.  

 

Paleoclimate Proxies 

In section one, the need for paleoclimate reconstructions and proxies was 

explained. In section two, a variety of proxies will be briefly described, and several pCO2 

proxies will be described more in depth.   

Some proxies are more direct than others. Ice cores are an example of a fairly 

direct proxy for CO2. These cores contain bubbles of air from when ice formed, giving 

nearly direct measurements of CO2 levels (when snow accumulation rate, diffusion, and 

other factors are accounted for). Less direct proxies are more numerous and give 

information that is calibrated to phenomena (temperature, pCO2, rainfall, etc.) in the 

climate, requiring additional studies to connect the proxy to the phenomena of interest 

through proxy development and calibration. Proxy methods rely on an understanding of 

biological, chemical, geological, and physical processes and an assumption that these 

processes have not changed over time. The types of proxies are sometimes broken up into 

three categories: biological, physical, and chemical proxies.  

Biological proxies depend on the preservation of biological material, in the form 

of fossils or organic matter. Aside from chemical studies that can be performed on fossils, 

a number of climate reconstructions can be created from morphology and assemblages. In 

assemblage studies, plant macrofossils are used to characterize the environment of a 

period by the types of plant fossils that are found in a certain area during a certain time. 
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Assemblages of plant fossils have been collected and studied before, during, and after the 

PETM in the Bighorn Basin. Wing and Currano [2013] found extreme floral changes 

surrounding the PETM. Water-tolerant species and conifers were common both before 

and after the PETM, but within the PETM were almost completely absent. During the 

body of the PETM, drought-tolerant species like legumes became dominant. The drastic 

change in plant assemblages shows that before and after the PETM, the Bighorn Basin 

region was cooler and wetter as compared to the hot and dry body of the PETM. This 

change had to be drastic enough to lead to the extirpation of 88% of species present 

during the late Paleocene [Wing and Currano, 2013].  

Physical proxies utilize properties of deposited sediments, like grain size, color, 

texture, or magnetic alignment to say something about the environment. The size of 

particles deposited during a certain period in a certain location tells you about the energy 

of the water moving through the area: high-energy water will deposit large rocks and 

sediments, and low-energy water may only deposit silt. The color of paleosols, or 

geologically preserved soils, can tell a great deal about paleoenvironments. The color is 

indicative of the minerals formed within the preserved soils: red indicates the presence of 

hematite, forming when wet soil gets dried out, and purple paleosols contain much less 

hematite, indicating less drying of soil. In the Bighorn Basin, paleosols formed before the 

PETM are purple and represent a period of poorly drained soil. At the onset of the PETM, 

the paleosols were much better drained and red, and during the body of the PETM the 

paleosols are largely yellow and filled with carbonate nodules (calcium carbonate filling 

in burrows) indicating very good draining. These paleosols tell a story of a wet climate 



Scher 
 

15 

before the PETM and a dry climate during the PETM. During the recovery of the PETM, 

red paleosols formed, and purple paleosols after recovery [Kraus et al. 2013].  

Chemical proxies can be applied to a number of materials: soils, fossils, rocks, 

etc. One example of a chemical proxy is the use of oxygen isotopes to reconstruct 

temperature/global ice volume. Many of the basic concepts used in this proxy are also an 

important part of the work in this study, so I’ll take some time to explain delta notation 

(d) and how delta values are calculated here.  

Oxygen exists in three stable isotopes: 16O is the dominant isotope, and has an 

average abundance on earth of 99.76%. 18O has an average abundance of 0.2%, and 17O 

0.04%. Variations in the 18O/16O isotopic composition of materials can provide 

information linked to environmental and geologic processes. 17O is generally too low in 

abundance to make meaningful measurements, though some researchers can make high-

precision measurements. For simplicity, 17O will be ignored in this discussion. 

Measurements of 18O and 16O in a sample are expressed as d18O, following 

equation 1: 

𝛿"#𝑂	(‰) = * (+,-/+/-)	012345
(+,-/+/-)	06178198

− 1< ∗ 1000  (1)  

18O/16O ratios are measured using isotope ratio mass spectrometers. For every isotope 

system, there is a standard (or standards) that samples are referenced against. In the case 

of d18O, that standard is usually Standard Mean Ocean Water, or SMOW. d values are 

expressed in units ‰, permille, or part per thousand. A high value of d18O means that 

there is a lot of 18O in the sample, the sample is enriched in 18O. A low value means there 

is very little 18O in the sample, the sample is depleted in 18O.  
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When water evaporates from the surface of the ocean, it contains both H218O and 

H216O. As this air mass containing water vapor lifts via convection and travels to higher 

latitudes, it cools. Following a Rayleigh fractionation process, the heavier H218O 

condenses and rains out more readily than the H216O, so the d18O of the remaining water 

vapor becomes lower (depleted in the heavy H218O). By the time this water vapor 

precipitates over land, it is extremely depleted in 18O. During a warm period of climate, 

this precipitation would likely make its way back to the ocean. During cold climates, 

however, this precipitation falls as snow or ice which does not melt. Frozen water 

continues to accumulate on land, enriched in 16O. As water continues to evaporate from 

the ocean and deposit 16O on land in the form of snow and ice, the ocean becomes 

increasingly enriched in 18O. The change in d18O of the ocean is recorded in the calcium 

carbonate (CaCO3) shells of tiny plankton called foraminifera which they precipitate 

from sea water. The d18O value of these shells also, however, records temperature as the 

fractionation between 18O and 16O during precipitation of CaCO3 is temperature 

dependent [Emiliani 1955]. These components can be separated with a few tricks, and 

foraminifera are able to give record of both global ice volume and ocean temperature, 

though more work is needed to refine this distinction [Marchitto 2014]. 

Isotopes are used in a variety of other ways for paleoclimate reconstructions as 

well, all relying on fractionation processes that are recorded in the rock record. For 

example, the ratio of the stable isotopes of boron (11B/10B) preserved in corals and the 

shells of foraminifera are related to the pH of the ocean at the time that the shells or coral 

formed. This paleo-pH reconstruction can further be related to atmospheric CO2 as ocean 

acidification is a result of atmospheric CO2 entering the ocean, forming carbonic acid, 
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and driving down the pH, following Equations 2-4. Change in pH causes the equilibrium 

between boric acid (B(OH)3) and the borate (B(OH)4-) ion to shift (Equation 5). 10B 

preferentially exists in the borate ion, but under more acidic conditions, 11B residing in 

boric acid is converted to borate, which is incorporated into the shells of foraminifera. 

The higher the ratio of 11B/10B in these shells, the lower the ocean pH and the higher the 

atmospheric concentration of CO2 [Zeebe 2005; Klochko et al. 2006].  

 

𝐻@𝑂 + 𝐶𝑂@ ↔	𝐻@𝐶𝑂D    (2) 

	𝐻@𝑂 + 𝐻@𝐶𝑂D ↔ 𝐻D𝑂E + 𝐻𝐶𝑂DF   (3)  

𝐻@𝑂 + 𝐻𝐶𝑂DF ↔ 𝐻D𝑂E + 𝐶𝑂D@F   (4) 

𝐵(𝑂𝐻)D + 2𝐻@𝑂 ↔ 𝐵(𝑂𝐻)I
F + 𝐻D𝑂E  (5) 

 

Paleo-CO2 proxies like the boron proxy have been developed, but are 

problematic. The world’s oldest ice core, discovered just in October of 2019, is 2.7 

million years old [Voosen 2019]. This means that the oldest direct proxy of pCO2, the air 

bubbles traced in this ice, can only go back that far, 2.7 million years. Indirect proxies for 

pCO2 include the boron proxy mentioned above [Zeebe 2004; Klochko et al. 2006], 

paleosol measurements of carbon isotopes in calcite and goethite [Cotton and Sheldon 

2012], carbon isotopes in phytoplankton and bryophytes [Freeman and Hayes 1992; 

Fletcher et al. 2005], plant stomatal measurements [Royer 2001], carbon isotopes of cave 

deposits (speleothems) [Wong and Breecker 2015], and one direct (but rarely found) 

evaporite mineral called Nahcolite (NaHCO3) which only precipitates above 680 ppm 

CO2 and directly incorporates atmospheric carbon [Jagniecki et al. 2015].  



Scher 
 

18 

Nahcolite is unfortunately very rare, so these paleo-CO2 reconstructions are hard 

to come by. The boron proxy, and carbon isotope measurements in phytoplankton, 

bryophytes, speleothems, and paleosols are all subject to error in estimates arising from 

an incomplete understanding of the fractionation steps that result in the final isotopic 

composition in the material. Stomatal measurements have recently been reevaluated 

[Barclay and Wing 2016], and pCO2 reconstructions in deep time are forthcoming. In 

addition to refining and calibrating current paleo-CO2 proxy methods, more ought to be 

developed. With an increase in the types of proxies and records that are created from 

these proxies, the signal to noise ratio increases. From Figure 4 [IPCC 2013], it is clear 

that the further back we go into the geologic record, uncertainty increases dramatically 

(blue shaded area). Not only is variability high, but reconstructions in periods of 

particular interest, like the PETM 56 Ma, are few and far between. A high-resolution 

record of paleo-CO2 reconstructions is necessary to catch this transient warm peak.  
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Figure 4. Figure 5.2, IPCC 2013. A compilation of reliable paleo-CO2 proxy 
reconstructions. Data comes from a variety of papers, and is broken into proxies in the 
box above. The blue shaded area represents 1 standard deviation calculated with block 

bootstrap resampling for a kernel regression through all the data points with a bandwidth 
of 8 Myr prior to 30 Ma, and 1 Myr from 30 Ma to present.  

 

 

The C3 Plant Proxy 

The C3 plant proxy has been proposed in the search for new paleo-CO2 proxies. 

This method relies on the fractionation of carbon isotopes during photosynthesis that 

covaries with pCO2. As pCO2 increases, it is expected that the difference in the carbon 

isotopic composition of leaves relative to the air around them increases (leaf-level carbon 

isotopic discrimination). In this section, I will describe fractionation in plants, the 

mechanism for the C3 plant proxy, previous studies that have found this positive 

relationship, and finally our study.  

 

Plants preferentially incorporate 12C over 13C due to a kinetic isotope effect, 

depicted in Figure 5. This figure shows the energetic profile for a reaction (i.e., reaction 

coordinate diagram), like carbon fixation, starting with the reactants on the left and 

progressing to products on the right. In order for a reaction to progress from reactant to 

transition state (and then to product), the activation energy (difference between reactant 

energy and transition state energy) must be overcome. The lower the activation energy, 

the faster a reaction can progress. The zero-point energy (lowest possible energy state) 

for 13C is lower than that of 12C because lighter molecules have more vibrational energy 

than heavy molecules. This means that the activation energy is greater for 13C than 12C. 

Because 12C has a smaller activation energy, the rate at which 12CO2 goes through the 
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process of carbon fixation by RuBisCO is faster than that of 13CO2. The difference in 

rates results in the carbon of leaf and plant tissues being depleted in 13C relative to the 

composition of atmospheric CO2. 

 

Figure 5. A reaction coordinate diagram depicting the kinetic isotope effect. ZPE is zero-
point energy. ∆ZPEreactants represents the difference in ZPE between 13C and 12C in the 

reactant, ∆ZPEtransition state in the product. The ∆ZPEreactants is larger than the ∆ZPEtransition 

state. Vertical dashed lines represent activation energies. The blue line (13C) is longer than 
the red line (12C). 

 

Through the rest of this thesis, there are a few terms that will be repeatedly used 

in discussion: leaf-level discrimination (∆13C), carbon isotopic signature of the leaf 

(d13Cleaf), and carbon isotopic composition of the air (d13Cair). These terms are organized 

in Figure 6 with the equations used to calculate them, as well as a scale bar to familiarize 
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readers with the range of carbon isotopic composition values discussed in this study. 

 

Figure 6. Graphic depicting terminology used in this paper. The top portion 
shows the term, the symbol used for the term, and the equation used to calculate the term. 
The bottom portion shows a scale of isotopic composition values that are relevant to this 

study. -40‰ is the lowest value which means that the sample is very depleted in the 
heavy isotope of carbon, 13C, and therefore has a low 13C/12C ratio. -10‰ is the highest 

value and means that the sample contains more of the heavy isotope of carbon, and 
therefore has a higher 13C/12C ratio. 

 

C3 and C4 plants have very different isotopic signatures, with C4 plant carbon 

isotope values centering around -14 ‰ and C3 plants around -28 ‰. The two signatures 

do not overlap and allow for easy assignment of plants into their respective groups 

[Bender 1971]. This difference is attributed to the different carbon fixation pathways 

used by C3 and C4 plants: C3 plants utilize ribulose bisphosphate carboxylate oxygenase 

(RuBisCO), while C4 plants utilize phosphoenolpyruvate (PEP) carboxylase [O’Leary 

1988]. Plants are of interest for paleo-CO2 proxies because the carbon isotopic 

composition of the plant changes with the ratio of internal CO2 (Ci) to external 

atmospheric CO2 (Ca). Changes in C4 plants are minimal because while RuBisCO 
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fractionates against 13C by ~27‰, PEP carboxylase only fractionates by ~5.7‰ 

[Farquhar et al. 1989]. This makes the carbon isotopic composition of C3 plants much 

more sensitive to changes in atmospheric CO2, and more useful for a potential paleo-CO2 

proxy. 

 

𝛿"D𝐶	(‰) = * (
+JK/+LK)	012345
(+J/+LK)	06178198

− 1< ∗ 1000   (6) 

 

∆"D𝐶451N = 𝑎 + (𝑏 − 𝑎) *KQ
KR
<      (7) 

 

∆"D𝐶451N =
d+JKRQSFd

+JKTURV

"FW
d+JKTURV

"XXX
Y Z

      (8)  

 

 Equation 7 shows the relationship between fractionation during diffusion into the 

stomata (“a”), fractionation during carbon fixation (“b”), the ratio of internal pCO2 to 

external pCO2 (Ci/Ca), and ∆13Cleaf. ∆13Cleaf (or carbon isotope discrimination) is 

measured for plants: the carbon isotopic composition (d13C, Equation 6) of the leaf and 

the atmosphere that the leaf grew in are measured, and Equation 8 is used to calculate 

∆13Cleaf. The relative impact of the fractionations represented by “a” and “b” in Equation 

7 is dependent upon the Ci/Ca ratio. With low Ci/Ca, ∆13Cleaf approaches “a”, the 

fractionation from CO2 diffusing through the stomata, which is only 4.4 ‰. With high 

Ci/Ca, ∆13Cleaf approaches “b”. In C3 plants, the value for “b” is ~27 ‰ from RuBisCO 

fractionation, so there is a lot of change in ∆13Cleaf with change in Ci/Ca. In C4 plants, 

however, the value for “b” is a combination of PEP carboxylase fractionation (~5.7 ‰) 
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and other steps which can vary, giving “b” a variable and smaller value than for 

RuBisCO in C3 plants [Farquhar et al. 1989]. Therefore, changes in Ci/Ca would result in 

much more variable and smaller changes in ∆13Cleaf than in C3 plants. It is for this reason 

that the proxy method investigated in this work utilizes C3 plants for ∆13Cleaf 

measurements instead of C4 plants.  

 Carbon isotope discrimination changes with the Ci/Ca ratio, following Equation 7.  

The C3 plant proxy method relies on increasing Ci/Ca with pCO2. As atmospheric pCO2 

increases, Ci also increases relative to Ca, so long as plants do not respond to changing 

pCO2 by closing their stomata. Increasing Ci causes an increased expression of 

fractionation due to RuBisCO, bringing the ∆13Cleaf value closer to “b” (larger). With 

increasing pCO2, in theory we would expect to see an increase in the leaf-level carbon 

isotope discrimination (∆13Cleaf) in a plant (Figure 7).  

 

 

Figure 7. A cartoon of carbon isotope discrimination. On the left pane, in a low CO2 
scenario, the internal leaf space (green) has half the CO2 of the air (blue), giving a Ci/Ca 

of 0.5. Both the internal CO2 and the CO2 of the air have the same carbon isotopic 
composition (dark blue C is 13C, light blue is 12C). On the right pane, in a high-CO2 
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scenario, the Ci/Ca is higher at 1, and the composition of CO2 in the leaf is more depleted 
in 13CO2 than the surrounding air, as RuBisCO preferentially incorporates 12C.  

 

 In order to determine the validity of this theory, studies have been carried out 

where C3 plants are grown under different atmospheric CO2 concentrations. The idea is 

that if this relationship is present in C3 plant species, a calibration curve of ∆13Cleaf versus 

pCO2 can be generated. Then, fossil plants can be analyzed for their carbon isotopic 

composition (d13Cleaf) and used with known d13Cair to calculate ∆13Cleaf. With ∆13Cleaf, 

pCO2 can be calculated from the calibration curve. Schubert and Jahren observed the 

expected positive correlation between ∆13Cleaf and pCO2 [2012]. In this study, two C3 

species, Arabidopsis thaliana (rockcress) and Raphanus sativus (radish) were grown in 

growth chambers under 7 and 8 levels of pCO2, respectively, ranging from 370-2255 ppm 

and 407-4200 ppm, respectively. In bulk n-alkanes (extracted from leaves), above-ground 

and below-ground tissue for R. sativus bulk and above-ground tissue for A. thaliana, a 

positive hyperbolic relationship was found between ∆13Cleaf and pCO2 (Figure 8). 
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Figure 8. Figure 2 Schubert and Jahren 2012. ∆13Cleaf versus pCO2 for R. sativus tissues 
and A. thaliana tissues. Error bars represent one standard deviation. A hyperbolic curve 

was fit to the data. 
 

 Unfortunately, small annual plants like R. sativus and A. thaliana are not well 

preserved in the fossil record, so these calibration curves cannot be directly applied to 

fossils of the same lineage. In order to use this observed positive relationship between 

∆13Cleaf and pCO2, similar studies must be carried out with plants that are relevant to the 

fossil record: the same species is present in the fossil record, or there are very similar 

species present in the fossil record.  
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Ginkgo is a popular taxon for paleoclimate reconstructions given its extremely 

long fossil record and excellent preservation. The genus Ginkgo goes back to the Jurassic 

[Tralau 1968], and has changed very little morphologically over the past 100 million 

years [Zhou and Zhang 2003]. Ginkgo is also extremely well preserved in the fossil 

record, with intact leaf cuticle often being found. At the time of the PETM, Ginkgo 

wyomingensis was extant. Today, Ginkgo biloba is the only living species, and looks 

nearly identical to extinct G. wyomingensis. This unique preservation allows for the 

possibility to do many kinds of studies: morphological, anatomical, and chemical. The 

ability to reconstruct paleo-CO2 from Ginkgo is of particular interest because of the large 

amounts of Ginkgo wyomingensis cuticle that have been collected surrounding the PETM 

in the Bighorn Basin, Wyoming.  

Ginkgo has been used for paleo-CO2 proxies (stomatal index). These studies have 

used herbarium sheets (going back to pre-industrialization), modern samples, and 

experimental leaves grown under elevated CO2 [Barclay and Wing 2016]. There are 

limited data to correlate Ginkgo under high CO2 conditions (~400-1000 ppm). To be 

applicable to periods like the PETM, extant G. biloba must be thoroughly studied under 

elevated CO2 levels.  

In 2016, 15 mature Ginkgo trees (~1.5m) were planted in an experimental plot, 

and surrounded by open-topped chambers. CO2 was pumped into these chambers to reach 

pCO2 levels ranging from ambient (~410 ppm) -1000 ppm. Growing mature trees in an 

outdoor setting over several years has a few advantages. Many types of studies can be 

conducted on these plants: samples can be taken to look at stomatal index and carbon 

isotopic composition, physiological measurements can be made on these plants, and 
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environmental conditions captured. With all of this data coming from one experimental 

plot, it is possible to investigate questions of plant physiology in elevated CO2 conditions, 

as well as several paleo-CO2 proxies, namely the stomatal index proxy [Barclay and 

Wing 2016], carbon isotope discrimination (C3 plant proxy), and the Franks method 

which uses isotopic measurements in conjunction with anatomical measurements to 

estimate pCO2 [Franks et al. 2014]. These trees are growing under real environmental 

conditions, so while they are watered to avoid stress, they do experience real seasonality, 

weather patterns, etc. These are the same environmental variable that would also have 

been recorded in the leaves of trees that were preserved in the fossil record. Our 

experiment is therefore different than well-controlled growth chamber experiments in 

being more analogous to the plants preserved in the fossil record and the conditions that 

they grew under. The subject of this study is the carbon isotopic discrimination of these 

G. biloba trees under elevated CO2. 
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Materials and Methods 

Summary: In order to assess the effect of elevated pCO2 on leaf-level carbon isotope 

discrimination (∆13Cleaf) in Ginkgo biloba, G. biloba trees were grown under elevated 

pCO2 conditions. Leaves from these trees and the air from around the canopy were 

sampled and analyzed for d13C using an elemental analyzer isotope ratio mass 

spectrometer (EA/IRMS). Average air d13C values were calculated from the sampled 

d13Cair values with a mixing line and the measured average [CO2] for each tree.  ∆13Cleaf 

was calculated from the calculated d13Cair and the measured d13Cleaf values, following 

Equation 7.  

 

Trees grown Under Elevated CO2: Ginkgo biloba trees have been growing since 2016 

under experimental conditions outdoors in a field surrounded by mature trees at the 

Smithsonian Environmental Research Center in Edgewater, MD. All G. biloba trees are 

male and of the variety Presidential Gold grafted onto root stock to reduce genetic 

variability. Each tree is in an open-topped chamber, under ambient light and temperature 

fluctuations and exposed to natural precipitation (Figure 9A). There are three trees at 

each CO2 level: 1000, 800, 600, and ~400 ppm (ambient, no CO2 added), and an 

additional 3 trees outside of chambers under ambient conditions. Treatment levels are 

randomized following a randomized block design, with three rows that each contain all 

treatment levels (Figure 9B). In early Spring of 2019, saplings in small pots were added 

to each chamber. CO2 is added to chambers at the intake of the blower fans, and levels 

are monitored and recorded in each chamber (or next to outdoor trees) with a LiCOR 

7000 gas analyzer. CO2 levels are adjusted as needed via flowmeters in the control shed. 
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The air inside each chamber is replaced every few minutes by new air blowing in, so 

people breathing while moving in and out of the chambers to take measurements, perform 

maintenance, etc. does not have a significant effect on CO2 levels. Shade cloth was added 

to the experiment in the summer of 2018. Trees are watered as necessary, and 

occasionally fertilized. Eight environmental parameters are measured within the 

chambers every minute: CO2 concentration, relative humidity, air temperature, soil 

moisture, soil temperature, photosynthetically active radiation (PAR), a measure of plant-

reflected light (NDVI), and the photochemical reflected index (PRI).  

 

 

Green Leaf Sampling: In the Summer of 2018, leaves were sampled for 11 weeks 

through the growing season, from 4/18 through 6/20. The first week of sampling occurred 

when leaves were barely large enough to be sampled (sometimes less than 1 cm). In trees 

with large canopies, the d13Cleaf value can vary through the canopy depending on how 

Figure 9. Experimental setup at the Smithsonian Environmental Research Center in Edgewater, 
Maryland. Trees are in open-topped chambers aside from outdoor control trees (pictured on the 

left). The control shed houses monitoring equipment as well as the supply of CO2. Blowers 
combine ambient air and CO2 from the control shed into each of the chambers. 
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central the leaf is or the distance of the leaf to the ground. Our trees have relatively small 

canopies, but it was still necessary to test for variability in d13Cleaf within each tree. Three 

to six leaves were taken from the bottom of the North side (low and more shaded) and top 

of the South side (high and in the full sun) of each mature tree, sampling along the same 

branch on both sides for the season. After determining that there was no significant 

difference between leaves taken from the North or South side of each tree, leaves in 2019 

were sampled only on the South side, on the same branch and locations as 2018, from 

4/17 through 6/19. Leaves were also sampled from saplings every other week over the 

same period, less than the large trees to limit the destruction of their canopy. These 

saplings in pots were added to the experiment before the beginning of the growing season 

in 2019. They are the same variety (Presidential Gold) as the large trees and are also 

grafted to root stock, but are only about 50 cm tall.  

  

Abscised Leaf Sampling: Abscised leaves from Fall 2015 were collected from the ground 

around trees before they had entered experimental conditions. Leaves from the Fall of 

2016 through the Fall of 2018 were collected from the ground within each chamber.  

 

Leaf preparation: Leaves collected from the ground in the Fall of 2015 were first 

brushed to remove dirt, then soaked in 5% HCl for 48 hours to remove any inorganic 

carbon from the surface (e.g., carbonate minerals). Excess HCl was poured off, and 

leaves were rinsed 4x with DI water before being air dried. For all leaves, an image was 

taken, the leaf dried for 48 hours at 40°C in an oven, and the mass of the leaf recorded. 

The petiole (stem) of the leaf and half of the blade was saved, and the other half of the 
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blade used for analysis (Figure 10). The half-blades were then ground to a powder in a 

ceramic mortar and pestle that was washed between leaf samples with acetone. When 

leaves were too small, more than half of the blade was ground. For very early leaves 

(from the first week of sampling), the entire leaf including the petiole was ground. Leaf 

powders were transferred to small, labeled glass vials.  

 

 

Figure 10. Ginkgo biloba leaf from week 6 of the 2019 growing season. Dashed lines 
show where this leaf was cut with a razor blade, removing the petiole and halving the 

blade of the leaf.  

 

Elemental Analyzer-Isotope Ratio Mass Spectrometry (EA-IRMS): EA-IRMS was used 

to analyze the carbon isotopic composition of leaf samples (d13Cleaf) (Figure 11). About 5 

mg of homogenized powder from each was weighed into a small tin boat. The tin boat 

was then flattened and folded into a tin cube containing the sample. The sample-

containing tin cube was dropped into the furnace of the Elemental Analyzer. Here, the 
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sample immediately combusts in the presence of O2 to evolve CO2, H2O, SO2, N2, NO2, 

and NO. This mixture of gases then enters a reduction column where excess O2 and 

nitrogen oxides are scrubbed out of the gas mixture, forming CuO and producing 

elemental nitrogen gas from the nitrous oxides. The gases move through a water trap 

where H2O gas is removed by a drying agent (such as magnesium perchlorate) before the 

gas chromatography column where the remaining gas species are separated. Then, the 

eluent flows through a thermal conductivity detector (TCD) where each gas species is 

quantified on its way to the IRMS. First, two pulses of a nitrogen reference gas are 

flowed through the system, followed by the sample N2 gas, then the sample CO2 gas 

followed by two pulses of a CO2 reference gas. The gas is ionized, and a magnetic field is 

applied to separate masses 28 and 29 for N2, and 44, 45, and 46 for CO2. Between N2 

samples and CO2 samples, the magnetic field is adjusted to properly separate the masses 

and align each mass with one of three Faraday cups, which measure the abundance of 

each mass from the current produced by ions hitting the cup. From the EA-IRMS setup, 

weight percent and isotopic data is collected for both N and C.  
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Figure 11. Cartoon of EA-IRMS. The sample enters the EA where it combusts, and the 
evolved gases move through the reduction column, water trap, gas chromatography 
column, thermal conductivity detector (TCD), then to the continuous flow interface. 

From there, the sample becomes ionized in the ion source before the masses are separated 
by the magnet and each mass is collected in one of three Faraday cups. 

 

The raw data output from the IRMS system is the current from each of the three Faraday 

cups with a retention time (Figure 12). The software associated with the instrument 

(Thermo ISODAT) defines peaks and integrates under the peak to give an area that 

corresponds to the abundance of that m/z value in the sample. The software corrects for 

the contribution of isotopologues containing 17O (Table 1). Once corrected, the 

instrument then uses the ratio of masses to produce a d13C value.  

 

m/z value Isotopologues 

44 12C16O16O+ 

45 13C16O16O+, 12C17O16O+ 
46 12C16O18O+, 13C17O16O+, 12C17O17O+ 
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Table 1. Isotopologues are listed for each m/z value measured in the analysis of CO2. For 

m/z 45 and 46, the 17O correction must be made to the data to avoid miscalculating the 

ration of 13C to 12C.  

 

Figure 12. Output from EA/IRMS setup. Two peak of reference N2 are analyzed before 
the sample N2 peak. Then, the sample CO2 peak is analyzed, followed by two samples of 

reference CO2.  
 

After calculating the d values from the raw instrument output, these values still 

have to be corrected using standards, both reference and in-house. In this work, the most 

common combination of standards for a run was Peru Mud (in house), L-glutamic Acid 

(reference) and Urea 1 (reference), with certified carbon isotopic compositions of -20.29 

‰, -26.389 ‰, and -31.43 ‰, respectively. The measured values for the standards are 

plotted against these certified values, and are fit to a line (Figure 13). The equation of this 

line is then used to normalize the d values of the leaf samples, and these values become 

the real, reported data. 
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Figure 13. Certified d13C values of standards plotted against measured d13C during an 
EA/IRMS run. The equation of the line of best fit is y=0.9461x-1.7944, R2=0.9993. 

 

In this study, carbon and nitrogen isotope ratios and weight percent TOC and 

TON were measured in duplicate using a FlashEA 1112 Isolink that was coupled via a 

Conflo IV universal interface to the DELTA V Plus isotope ratio mass spectrometer 

(Thermo Fisher Scientific) with a universal triple collector. The Flash EA consisted of a 

zero blank autosampler, a single combustion-reduction reactor (18 mm o.d., 14 mm i.d., 

45.4 cm long) filled with WO3 and reduced copper grains and operated at 1020°C, a 

water trap (glass tube, 11 cm long, 8 mm i.d., plastic end-fittings with Teflon/rubber O-

rings) containing magnesium perchlorate, a packed GC column for separation of analyte 

gases (sulfinert separation column PP-QS, 2 m, 1/4”, 50/80 mesh, Restek PC4974), and a 

thermal conductivity detector (TCD). A magnetic field jump of the IRMS was 

automatically programmed between the N2 and CO2 peaks and the CO2 and SO2 peaks. 

Carbon and nitrogen isotope values are reported in delta notation normalized to the 

internationally recognized standards Vienna Pee Dee belemnite (VPDB) and AIR, 
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respectively, using reference standards Urea 1 (Indiana University) and L-glutamic acid 

(USGS 40) and two in-house standards: Peru Mud and Cornstarch. 

The in-house standards are measured against internationally recognized standards 

(for carbon, Vienne Pee Dee Belemnite or VPDB) to come to a certified d13C value for 

the in-house standards (Equation 9). These standards are then used to calibrate the 

measurements made during a run. 

 

𝛿"D𝐶	(‰) = *(
+JK/+LK)	[7F\]^05	06178198

(+J/+LK)	_`ab
− 1< ∗ 1000  (9) 

 

Air Sampling: Air sampling was carried out to determine the d13Cair value needed to 

calculate ∆13Cleaf with d13Cleaf (Equation 8).  Air samples were collected in flasks the 

same day as leaf sampling in the summers of 2018 and 2019, with some extra samples 

taken through the week prior to sampling in 2019. Air was sampled next to each tree, 

inside experimental chambers, and from the CO2 source dewar weekly. An air pump was 

connected via hosing to a collection flask under vacuum. The pump moved air through 

the opened flask for a period of two minutes before being closed off. Air samples were 

analyzed for stable carbon isotopes and pCO2 at the SIRFER Lab in Utah via dual-inlet 

IRMS, which is very similar to the system used for leaf isotope analysis. Instead of 

combusting the sample in a tin boat, the sample gas is introduced directly to the 

instrument, alternating with a reference gas.  
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Figure 14. d13C values from the source of added CO2 through each week of leaf sampling 
in both 2018 (red circles) and 2019 (orange circles). d13C values from 2019 show far less 

variability than from 2018.  
 

 In our calculation of d13Cair, we need to account for 2 variables: (1) the changing 

d13C value of added air from the dewars from week to week (Figure 14) and (2) the 

different ratio of ambient CO2 to added CO2 in each chamber, we took weekly air 

samples from each chamber. Ambient air has a  d13Cair value of ~-10‰. If the CO2 that 

we added to the elevated CO2 chambers also had a consistent d13Cair value of ~-10‰, we 

would not need to take air samples and could use -10‰ as the d13Cair value in all 

calculations for ∆13Cleaf (Equation 8). Unfortunately, the CO2 that is added to chambers to 

raise the [CO2] to 600, 800, and 1000 ppm has a variable composition that is much more 

depleted in 13C than ambient air. The dewars depicted in Figure 8 on the control shed are 

replenished weekly with CO2 from industrial sources. Through the 2018 growing season, 

the d13C of the added CO2 was quite variable, ranging from -40.75 to -25.45‰ (Figure 

14). In 2019, it was far more consistent, the average -40.83‰ with a very small standard 

deviation of 0.44‰. In elevated CO2 chambers, ambient air (-10‰) is mixed with the 13C 
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depleted dewar air (-40.75 to -25.45‰) to give an intermediate value that decreases in 

d13C with increasing chamber [CO2] as more of the 13C-depleted CO2 is added.  

When the air samples are analyzed, a value for d13Cair is received along with the 

[CO2] of the sample. A mixing line (Fig. 15) was constructed for each week using the 

data from air samples. d13C of each sample was plotted against the proportion of added 

CO2, calculated with Equation 10: Using the ambient [CO2] value from the air flask 

samples, the proportion of added CO2 average for the week is calculated. The d13Cair 

value for every chamber falls along this line for the week: the higher the [CO2] and the 

proportion of dewar air, the more negative the d13Cair value, and the more 13C-depleted 

that air is. The points that create this line represent each air sample that was taken that 

week.  

The [CO2] from gas samples is just a snapshot in time: these samples establish the 

mixing line for the week, but do not accurately represent the [CO2] in each chamber. The 

average daytime [CO2] for each chamber for each week was calculated with the LiCOR 

gas analyzer data taken every 15 minutes. Using the ambient [CO2] value from the air 

flask samples for the week, the proportion of added CO2 for the week is calculated. The 

equation of the mixing line is then used to calculate average weekly d13Cair from the 

proportion of added CO2:  

 

𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛	𝑜𝑓	𝑎𝑑𝑑𝑒𝑑	𝐶𝑂@ =
[K-L]oRpqTUF[K-L]RprQUst

[K-L]oRpqTU
      (10) 
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Figure 15. Sample mixing line of ambient air and dewar CO2. Plotting the isotopic 
composition of the air against the proportion of dewar gas added to the chamber gives a 

linear relationship used to calculate average d13C values of the atmosphere for each week 
of the experiment. 

Below is a table of values used to calculate d13Cair for each week of sampling in 

2018 and 2019: 

 
Leaf 

Collection 
Year         
Week 

Ambient 
pCO2 
(ppm) 

Ambient 
d13C (‰) 

Dewar 
d13C (‰) 

Mixing line 
equation R2 

2018 

1 420.81 -9.34 -40.07 y = -30.81x -
9.63 0.9984 

2 420.81 -9.34 -40.07 y = -30.81x -
9.63 0.9984 

3 427.41 -10.11 -37.33 y = -27.60x -
10.28 0.9973 

4 430.26 -9.81 -40.75 y = -30.95x -
10.20 0.9981 

5 425.52 -10.19 -40.60 y = -30.94x -
10.01 0.9945 

6 425.86 -9.50 -34.75 y = -25.78x -
9.67 0.9989 

7 427.70 -10.12 -26.193 y = -16.44x -
10.31 0.9948 
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8 453.56 -11.09 -25.451 y = -14.57x -
10.98 0.9940 

9 411.45 -9.42 -38.578 y = -29.35x -
9.32 0.9987 

10 401.74 -8.92 -40.501 y = -31.50x -
9.09 0.9987 

11 442.91 -10.12 - y = -23.78x -
10.13 0.9844 

2019 

1 419.67 -9.56 -40.333 
y = -31.04x -

9.28 0.9955 

2 423.80 -9.57 -40.308 
y = -30.69x -

9.62 0.9995 

3 419.41 -9.26 -40.996 
y = -32.19x -

9.27 0.9984 

4 424.63 -9.15 -40.973 
y = -31.84x -

9.14 0.9999 

5 422.22 - -40.874 
y = -32.04x -

8.87 0.9992 

6 422.22 - -41.786 
y = -32.95x -

8.84 0.9994 

7 419.81 -9.03 -40.873 
y = -31.84x -

9.03 0.9995 

8 449.33 -8.84 -40.61 
y = -32.08x -

8.53 0.9986 

9 396.88 -7.95 -40.683 
y = -32.63x -

8.06 1.0000 

10 472.85 -11.86 -  
y = -28.96x -

11.86 1.0000* 
 

Table 2. Air data for leaf sampling weeks from both 2018 and 2019. Cells marked with 
“-” represent missing data (broken flask, bad data acquisition). In the mixing line 

equation, y is d13Cair and x is the proportion of the added CO2 in the sample. *- only 
contains two data points 

 

∆13Cleaf calculations: The d13Cleaf and d13Cair were used in Equation 8 from Farquhar et 

al. 1989 was used for the calculation of ∆13Cleaf. Leaf values were paired with air values 

from the weeks prior to collecting the leaf. A leaf collected on 6/5/19 was composed of 

carbon from CO2 that had been incorporated before that collection day. Therefore, if the 

leaf was collected in week 8, then the air values from weeks 1-7 were averaged for the 
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d13Cair value used in Equation 7 (Figure 15). In the case of 2015, 2016, and 2017 abscised 

leaves for which no air data was collected, average air composition values from the 

summer of 2018 were used for ∆13Cleaf calculations.  

 

∆"D𝐶451N =
d+JKRQSFd

+JKTURV

"FW
d+JKTURV

"XXX
Y Z

      (8) 

 

 

Figure 16. Sampling timeline for 2019. Air samples were collected once a week for ten 
weeks, large trees had leaves collected once a week, and small trees were collected for 

the first two weeks and every other week for the ten-week period. Images are from trees 
in 800 ppm CO2 chambers. All leaf images are normalized to the same scale. The d13Cleaf 

values for the leaves outlined in orange would be paired with the average of weeks of 
d13Cair samples outlined in orange. 
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Results 

 

Figure 17. d13Cleaf values for each tree through the 2018 growing season. A 
similar pattern is seen in the 2019 data, not plotted. Grey lines represent outdoor 

ambient trees, green lines in-chamber ambient trees, blue lines 600 ppm trees, red 
lines 800 ppm trees, and orange lines 1000 ppm trees.  

 

Over the course of the 2018 growing season, we saw a decline in the d13Cleaf 

values from every tree with an average decline of 2.86±1.38‰ over the 11-week 

sampling period (Figure 17). This seasonal decline is due to changing leaf diffusivity. 

When leaves first develop, they lack airspaces and mature stomata which are necessary 

for photosynthesis. With development, airspaces and stomata increase in size, thereby 

increasing diffusivity, and the internal CO2 concentration of the leaf (Ci). Ci is the main 

driver for ∆13Cleaf, and from Equation 7, as Ci increases relative to Ca, so does ∆13Cleaf, so 

increasing Ci through the growing season produced a decline in d13Cleaf. The same 

process occurs no matter what treatment level of CO2 the tree is subjected to—diffusivity 

will change over the course of the growing season regardless.  
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A decline of the same magnitude was observed in the 2019 growing season as 

well. Because the leaf values level off at week 6-7 (Figure 17), we decided to use only 

the last four weeks (weeks 8-11 from 2018 and 7-10 in 2019) in our calculations of 

∆13Cleaf. This way, we were able to compare values between treatments without having to 

consider that offsets could be due to differences in the timing of airspace development 

between trees. 

 

Figure 18. ∆13Cleaf values from the last four weeks of the 2018 growing season. Open 
circles represent individual leaves. Filled circles represent the average ∆13Cleaf value for 
each treatment level. Horizontal error bars represent one standard deviation in the actual 

[CO2] of each chamber, and vertical one standard deviation of ∆13Cleaf values. 
  

 In 2018, we found an unexpected relationship between ∆13Cleaf and pCO2 (Figure 

18). The expectation is that as pCO2 increases, Ci also increases, yielding a higher ∆13Cleaf 

value. Rather than increasing ∆13C with increasing pCO2, in 2018 we saw a decrease in 

∆13C from ambient trees (19.52±0.67 and 18.40±2.23‰) to 600 ppm trees 

(16.95±0.81‰), then an increase in ∆13C to 800 ppm (18.35±1.73‰) and another 
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increase to 1000 ppm (19.30±3.30‰). Not only does this data not follow the expected 

relationship between ∆13Cleaf and pCO2, it is non-monotonic and U-shaped, not following 

one overall trend. We were hard-pressed to interpret this data, and developed two 

hypotheses for why we might be observing this strange relationship.  

 Our first hypothesis was that tree health was obscuring our results. Studies that 

have shown the expected positive relationship between ∆13Cleaf and pCO2 were carried 

out in extremely well-controlled growth chambers where plant health was minimally 

variable and overall very good [Schubert and Jahren 2012]. Our experiment has health 

variability between trees (Figure 19). Stress was not part of the experimental design of 

this study, but an unintended consequence of bad weather and poor drainage. In order to 

assess the effect of tree health on ∆13Cleaf, in 2018 we scored each tree on a semi-

quantitative 3-point scale, where “1” was the least healthy and “3” the most. We looked 

at leaf size, color, and curling of leaves (which indicates water stress).  

 

Figure 19. A very healthy tree in our experiment on the left, rated a “3” on our health 
score. A very unhealthy tree on the right, rated a “1” on our health score. 
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Tree health was found to have an effect on ∆13Cleaf values (Figure 20). ∆13Cleaf 

increased with health, from an average of 15.28‰ for the trees rated “1” to 19.05‰ for 

the trees rated “3”. Using our scale, tree health is largely an indicator of water stress on 

the trees. When plants are water stressed, they conserve water by partially or completely 

closing the stomata on the bottom of their leaves. This limits water loss, but also prevents 

CO2 from entering the leaf, resulting in a decrease in Ci relative to plants that are not 

stressed. This relative decrease in Ci causes a decrease in ∆13Cleaf for plants that are 

stressed relative to those that are perfectly healthy. 

 

 

Figure 20. Boxplot of ∆13Cleaf values from the last four weeks of the growing season 
binned by tree health rating. “X”s represent the mean value for each bin.  

 

Though there clearly is a dependence of ∆13Cleaf on health, we did not find that 

health was changing the overall relationship that we observed between ∆13Cleaf and pCO2. 

There was at least one extremely healthy tree rated a “3” at each CO2 treatment level, and 

plotting just these healthiest trees’ ∆13Cleaf against pCO2 showed the same relationship as 
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the whole dataset (Figure 21). Though stress on the trees does lead to a lower ∆13Cleaf, it 

does not affect the shape of the relationship that we observed.  

 

 

Figure 21. ∆13Cleaf of the healthiest trees and all of the trees plotted against pCO2. Red 
squares represent the average value of all trees at each treatment level, and yellow 
squares represent the healthiest tree at each level. Error bars represent one standard 

deviation.  
 

 In 2019, we added sapling in pots to the experiment. These saplings were well-

watered through the growing season and overall appeared to be extremely healthy. These 

saplings also helped us to investigate the effect of tree health on ∆13Cleaf, giving us a 

larger sample size of data to analyze. With this dataset from the saplings (also referred to 

as “small trees”), we also did not detect an increase in ∆13Cleaf with an increase in pCO2 

(Figure 23). 

After determining that tree health couldn’t explain the relationship that we 

observed between ∆13Cleaf and pCO2, we investigated our second hypothesis that stored 

starches were offsetting the ∆13Cleaf values. When leaves begin to grow, they use starch 
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reserves stored from prior years until leaves develop airspaces and can photosynthesize, 

fixing carbon from their atmosphere. In other words, leaves begin growing with old 

carbon and then add new carbon from their environment. If the old carbon is of a 

different isotopic composition than the new carbon added through photosynthesis, then a 

measurement of d13Cleaf would reflect a combination of old and new carbon while we are 

only interested in the new carbon from elevated CO2 atmospheres.  

The CO2 that we added to experimental atmospheres had a much more negative 

d13C value than ambient air (about -40‰ compared to about -10‰), so starches stored 

prior to being under experimental conditions would result in less negative d13Cleaf values, 

they would contain more 13C. If our trees and their stored starches were not in 

equilibrium with their experimental atmospheres, the calculated ∆13C from these leaf 

values would be artificially low. With increasing treatment levels, the elevated CO2 

atmospheres are increasingly depleted in 13C, so the effect of stored starches is 

incrementally larger. If we could remove the effect of stored starches in this scenario, we 

would expect the average ∆13Cleaf values of the 600, 800, and 1000 ppm trees to go up, 

giving a positive relationship between ∆13Cleaf and pCO2. 

In order to test if stored starches were having an effect on our observed 

relationship between ∆13C and pCO2, we measured d13C of leaves from our experimental 

trees from before they entered experimental conditions (2015) through 2019 (Figure 22). 

In 2015 before entering the experiment, leaves from different trees had very similar 

isotopic compositions with an average and standard deviation of -28.29±0.41‰. The 

trees were put under experimental atmospheres halfway through the growing season in 

2016, where we see the composition of the leaves begin to diverge into treatment levels, 
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with the highest CO2 trees having the most negative and 13C depleted values. The 

treatment groups separated fully after the 2017 season when they had been under 

experimental atmospheres for one and a half growing seasons. There was a slight increase 

in d13C values from 2017 to 2018 and 2018 to 2019 which can be attributed to the trees 

being under some stress. Overall, after 2017, trees were in equilibrium with their 

atmospheres, as evidenced by the asymptote in separation of d13Cleaf values. The small 

increases in d13C between 2017 and 2018 and 2018 and 2019 are likely a signal of stress. 

Overall, trees were more stressed in 2019 than 2018, and 2018 than 2017. As discussed 

above, stress causes a lower ∆13Cleaf value from an increase in d13C.  

 

Figure 22. d13Cleaf values from abscised leaves collected in the fall of 2015, 2016, 2017, 
2018, and green leaf values from the summer of 2019 plotted against time. Each point 

represents a d13Cleaf measurement from one leaf from one tree. Dark blue points represent 
outdoor ambient trees, light blue represents chamber ambient trees, teal represents 600 

ppm trees, red represents 800 ppm trees, and yellow 1000 ppm trees.  

 



Scher 
 

49 

We calculated ∆13Cleaf values from leaves collected in 2018 and in 2019, so stored 

starches would not have an effect on ∆13Cleaf as the trees and their starch reserves were 

already in equilibrium with their experimental atmospheres. Neither tree health nor stored 

starches can explain the relationship found in 2018 between ∆13Cleaf and pCO2.  

 In the 2019 growing season, we again measured ∆13Cleaf from the mature trees as 

well as the small potted trees that were added to chambers in the spring of 2019. This 

data is shown in Figure 23. Again, it is clear that we do not see an increase in ∆13Cleaf 

with an increase in pCO2. However, we do not see the same U-shaped relationship that 

we observed in 2018. Instead, there is more of a general downward trend in ∆13Cleaf with 

pCO2. The ∆13Cleaf values from the small trees are all higher than the mature trees, with 

offsets ranging from 0.26‰ for the outdoor ambient trees to 2.73‰ for the 800 ppm 

trees. The higher ∆13Cleaf values for the small trees are again likely due to the effect of 

stress: the small trees were able to be watered more completely than mature trees and the 

soil is loamier, so less water stress means stomata can stay open and Ci does not decrease.  
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Figure 23. ∆13Cleaf values from the last four weeks of the 2019 growing season for both 
mature (dark blue) and small (light blue) trees. Open circles represent individual leaves. 

Filled circles represent the average ∆13Cleaf value for each treatment level. Horizontal 
error bars represent one standard deviation in the actual [CO2] of each chamber, and 

vertical one standard deviation of ∆13Cleaf values. 
 

 When we look at all three datasets (2018 mature trees, 2019 mature trees, 2019 

small trees) together, there is no easy relationship to draw from Figure 24. The U-shaped 

relationship from mature trees in 2018 was not completely replicated by mature trees or 

small trees in 2019. From the combined data, there appears to be either no relationship or 

a negative relationship between ∆13Cleaf and pCO2 over 400 to 1000 ppm CO2, though 

there seems to be a repeated decrease in ∆13Cleaf between ambient trees and 600 ppm trees 

in all three datasets. Above 600 ppm, the response of ∆13Cleaf to increasing pCO2 varies. 

 

Figure 24. ∆13Cleaf values from the last four weeks of the 2018 season for mature trees 
(green) and the 2019 growing season for both mature (dark blue) and small (light blue) 

trees. Filled circles represent the average ∆13Cleaf value for each treatment level. 
Horizontal error bars represent one standard deviation in the actual [CO2] of each 

chamber, and vertical one standard deviation of ∆13Cleaf values. Linear fit through all data 
gives y=-0.001819x+17.85 with an r^2 of 0.321. 
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Discussion 

Our results suggest a negative/no relationship between ∆13Cleaf and pCO2 which is 

at odds with the relationship found in Schubert and Jahren 2012. There are important 

differences between our study and theirs: (1) This study is of a single tree species, G. 

biloba, while Schubert and Jahren studied two small annual plants R. sativus and A. 

thaliana. (2) Soil moisture and relative humidity varied naturally in our study. In 

Schubert and Jahren 2012, both of these variables were extremely well-controlled for 

consistent soil moisture and relative humidity (40%).  

 Schubert and Jahren created a compilation of 11 studies that they used to support 

the relationship that they found in R. sativus and A. thaliana. Different species exhibit 

different offsets in carbon isotopic compositions and therefore ∆13Cleaf values, so a plot of 

∆13Cleaf versus pCO2 can be confusing. Two species may show the same relationship, but 

be offset by several ‰. To assess multiple sets of ∆13Cleaf versus pCO2 data without the 

offsets that exist between species, sensitivity (S) can be used to normalize data. 

Sensitivity is the first derivative of a ∆13Cleaf versus pCO2 plot, it is calculated by 

Equation 11: 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦	(‰/𝑝𝑝𝑚) = 8(∆+JK)
8(3K-L)

    (11) 

 

When sensitivity is positive, it indicates an increase in ∆13Cleaf with pCO2. When 

sensitivity is negative, it indicates a decrease in ∆13Cleaf with pCO2. Figure 25 is a 

reproduction of Figure 3 from Schubert and Jahren 2012. It shows sensitivity values 

versus CO2. Each data point represents a calculated sensitivity value from two 
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discrimination data points: 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦	(‰/𝑝𝑝𝑚) = ∆+JKzQ{zF∆+JKT|}
3K-LzQ{zF3K-LT|}

    (12)  

 

The calculated sensitivity is plotted against the average of the two pCO2 values. The error 

bars extend to the lower and the upper pCO2 values. This data was fit with a hyperbolic 

curve, showing very large positive sensitivity values at low levels of CO2 that asymptote 

to low positive sensitivity values at high CO2. The high sensitivity at low pCO2 (<1000 

ppm) indicates that the C3 plant proxy would be useful in this range, but likely not above 

~1000 ppm, because as large changes in pCO2 would yield only minimal changes in 

∆13Cleaf. It is expected that at a certain level of pCO2, this response would asymptote as 

RuBisCO becomes saturated with CO2. 
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Figure 25. Reproduced from Figure 3 in Schubert and Jahren 2012. Sensitivity is plotted 
against CO2 for a variety of studies, listed in the legend. The pentagon is located on the 
average CO2 for two treatment levels. The errors bars represent the span of CO2 that the 

two treatments cover. The red line through the data is a hyperbolic fit: 
S=(0.21)(28.26)2/[28.26+0.21(pCO2+250]2.   

 

The data from this study (Figure 26, Ginkgo biloba) shows a very different 

relationship than Schubert and Jahren 2012. Overall, this sensitivity plot shows almost 

the exact opposite relationship (mirror over the x-axis) as the Schubert and Jahren 

compilation. Rather than decreasing from positive sensitivity to zero, we see increasing 

negative sensitivity to zero. All sensitivity values are negative aside from a few values at 

600 and 800 ppm, and even these are very close to zero. The largest decrease in ∆13Cleaf 

with pCO2 was from outdoor ambient trees to chamber ambient trees, then from chamber 
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ambient trees to 600 ppm trees (Figure 26). Our results are clearly not in agreement with 

Schubert and Jahren’s compilation.  

 

Figure 26. Sensitivity values calculated from this study. The triangle is located on 
the average CO2 for two treatment levels. The errors bars represent the span of CO2 that 
the two treatments cover. Colors indicate the dataset. Light blue – small trees 2019, dark 

blue- mature trees 2019, green- mature trees 2018.  
 

Schubert and Jahren’s compilation (Figure 25) showed a striking, well-defined 

relationship that would be useful in paleo-CO2 reconstructions. To understand why our G. 

biloba data does not agree with this curve, two main issues with the Schubert Jahren 

compilation will be discussed: (1) In order to attain the sensitivity values from the 

published datasets that they cite, large groups of data from multiple species was 

sometimes averaged with no regard to a mix of responses within that average. In studies 

that contained multiple species that showed very different responses, all of the responses 

were averaged together. Some of the values were either miscalculated or misreported. (2) 
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This compilation purposefully excluded data that did not support a positive relationship 

between ∆13Cleaf and pCO2.  

Following issue (1), data from 17 species at three levels of pCO2 from Beerling 

and Woodward 1995 was combined into just one data point in Figure 25. If the data from 

the original paper is broken down into each species and into two S values rather than 

combined into one, the sensitivity versus pCO2 plot looks like Figure 27. From this 

figure, we see that there are a variety of responses to increasing pCO2 among the different 

species of plant present. While the majority of S values are positive, almost one-third (11 

out of 34) are negative. Clearly, there are species-specific responses that are ignored 

when all of this data is combined into one data point in the Schubert and Jahren 

compilation (2012).  

 

Figure 27.  Sensitivity values from Beerling and Woodward 1995, calculated from raw 
data. Sensitivity is plotted against CO2 for a variety of species (17). The triangle is 
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located on the average CO2 for two treatment levels. Lines were added connecting points 
from the same species. S values at 438 ppm are from experiments at 350 and 525 ppm. S 

values at 613 ppm are from experiments at 525 and 700 ppm.  
 

 Data from Hietz et al. 2005 was used in Schubert and Jahren’s compilation for an 

S value of 0.0145 ‰/ppm for Swietenia macrophylla, a positive relationship between 

∆13Cleaf and pCO2. However, when the original ∆13Cleaf data from the paper is digitized 

and plotted against pCO2 (data from 

https://data.giss.nasa.gov/modelforce/ghgases/Fig1A.ext.txt ), there is actually a negative 

relationship between ∆13Cleaf and pCO2 (Figure 28). From this plot, the S. macrophylla 

data gives an S value of -0.013 ‰/ppm when a linear fit is used to calculate S. Schubert 

and Jahren’s compilation also ignores the Cedrela odorata data which gives another 

negative S value of -0.003 ‰/ppm when a linear fit is used to calculate S. The S. 

macrophylla data was either miscalculated or misreported, while the C. odorata data was 

ignored, following point (2). While some of the raw data present in this compilation can 

reproduce the values that Schubert and Jahren used, there is clearly data that is used 

incorrectly. 



Scher 
 

57 

 

Figure 28. ∆13Cleaf data from Hietz et al. 2005 plotted against pCO2 (data from 
https://data.giss.nasa.gov/modelforce/ghgases/Fig1A.ext.txt). Both datasets (S. 

macrophylla, blue and C. odorata, orange) show decreasing trends in ∆13Cleaf with pCO2 
(linear fit). 

  

Aside from the Hietz et al. data (2005), there are other studies (including our 

study) that have found either no relationship or a negative relationship between ∆13Cleaf 

and pCO2 (Hietz et al. 2005; Tu et al. 2004; Peñuelas and Azcón-Bieto 1992; Lomax et 

al. 2019). Like the Schubert and Jahren 2012 compilation, these studies also include a 

variety of species and include studies that are geological, use herbarium sheets, and are 

experimental with growth chambers.  

Using mature modern oak trees and Miocene fossil oak of two ages, Tu et al. 

(2004) investigated discrimination for whole leaves. Experimental Quercus petraea trees 

were at 350 and 700 ppm, a ‘nature’ tree at 370 ppm, and Miocene fossils (Quercus 

psuedocastanea) from 2 ages known to be 280 and 360 ppm. Fossil leaves had a smaller 

discrimination overall than modern, but there was no overall significant effect of pCO2 

on discrimination found. Sensitivity values from this study (Figure 29) show that there is 
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no consistent relationship, with negative S values at the low and high ends of CO2 

treatment and positive values (spanning small increments of pCO2) in the middle.  

 

Figure 29. Sensitivity values calculated from Tu et al. 2004. Circles The triangle 
is located on the average CO2 for two treatment levels. The horizontal error bars 

represent the span of CO2 that the two treatments cover. 
 

 Peñuelas and Azcón-Bieto (1992) used herbarium specimens to study changes in 

∆13Cleaf over historical CO2 change from 280 to 348 ppm (1750-1988). The 12 species 

studied are endemic to a Mediterranean climate. Their data shows a variety of responses 

to pCO2. 21 of the 36 sensitivity values plotted in Figure 30 are negative. Of the 21 

species, only 2 (Alnus glutinosa and Hellebores foetidus) showed a consistent 

relationship between S and pCO2, both of which consistently decreased in sensitivity with 

increasing pCO2. A. glutinosa decreased from 0.042 ‰/ppm to 0.0165 ‰/ppm, indicating 

a relationship similar to Schubert and Jahren (2012) where an increase in pCO2 causes an 

increasingly small increase in ∆13Cleaf. H. foetidus decreased from 0.11‰/ppm to -0.0165 

‰/ppm. Though S decreases with increasing pCO2, this relationship does not support 

Schubert and Jahren (2012). At low CO2, H. foetidus shows an increase in ∆13Cleaf with 
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an increase in pCO2, but at higher CO2, H. foetidus showed a decrease in ∆13Cleaf with an 

increase in pCO2. The changing direction of the relationship for H. foetidus makes it 

either useless for the C3 plant proxy which relies on decreasing positive S over increasing 

pCO2, or useful only under a certain level of pCO2. All other species studied by Peñuelas 

and Azcón-Bieto show changing responses as well. Only one species from this study (A. 

glutinosa) supports a positive relationship between ∆13Cleaf and pCO2, all others (11) do 

not.  

 

Figure 30. Sensitivity values calculated from Peñuelas et al. 1992. The square is 
located on the average CO2 for two treatment levels. Lines were added connecting points 

from the same species. S values at 285 are from periods of 280 and 290 ppm CO2, S 
values at 299 are from periods of 290 and 308 ppm, S values at 328 are from periods of 

308 and 348 ppm. 
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Lomax et al. (2019) studied one of same species as Schubert and Jahren did in 

their 2012 work, Arabidopsis thaliana. These plants were also grown in well-controlled 

growth chambers, at 6 levels of pCO2 ranging from 380 to 3000 ppm. After 4 weeks of 

growth, plants were subjected to one of 3 watering regimes (10 mL per day per pot, 20 

mL per day per pot, or permanently saturated) for 2 weeks before being harvested. The 

results showed a large spread in response to pCO2 that isn’t clearly explained by 

difference in watering regimes. From the sensitivity plot below (Figure 31), there is no 

clear trend in sensitivity on the whole, or between watering regimes. S values show a 

changing response (positive to negative or vice-versa) for every watering regime. This 

work was not able to reconstruct the same relationship as Schubert and Jahren observed 

for A. thaliana (2012), and also showed that watering regime introduces additional 

variability to the relationship between ∆13Cleaf and pCO2.  
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Figure 31. Sensitivity values calculated from Lomax et al. 2019. The square is 
located on the average CO2 for two treatment levels. The errors bars represent the span of 

CO2 that the two treatments cover. Colors indicate watering regime: red is low water 
treatment, yellow is mid water treatment, and blue is saturated water treatment. 

 

 These major flaws in Schubert and Jahren’s compilation ((1) misuse of published 

studies and (2) exclusion of contrary studies) are significant and show that their 

relationship between ∆13Cleaf and pCO2 cannot be applied to all species, and can 

sometimes not even be applied to the same species (in the case of Lomax et al.’s study of 

A. thaliana). In addition to these flaws, their relationship is also problematic because of: 

(3) restriction of application because of empirical fitting parameters, (4) differences in the 

fractionation due to RuBisCO in different species, and (5) stomatal control in different 

watering regimes and with differing leaf-gas exchange strategies.  

The relationship found by Schubert and Jahren is used to reconstruct paleo-CO2 

by looking at relative changes in ∆13C over time, following equation 12 (Cui and 

Schubert 2016).  

 

∆(∆"D𝐶) = ∆"D𝐶(6) − ∆"D𝐶(6~X)   (13) 

 

Where ∆13C(t) is the ∆13C at the time of interest and ∆13C(t=0) is the ∆13C at a known time 

of known pCO2 and ∆13C. ∆(∆13C) is solved for, and the empirical fitting parameters 

(Equation 14) of the hyperbolic relationship between ∆13Cleaf and pCO2 are plugged in to 

solve for pCO2(t), pCO2 at the time of interest, following Equation 15. 

 

∆"D𝐶451N =
(�)(b)(3K-LEK)
(�)E(b)(3K-LEK)

    (14) 
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𝑝𝐶𝑂!(#)

=
∆(∆%&𝐶) ∗ 𝐴! + ∆(∆%&𝐶) ∗ 𝐴 ∗ 𝐵 ∗ 𝑝𝐶𝑂!(#'() + 2 ∗ ∆(∆%&𝐶) ∗ 𝐴 ∗ 𝐵 ∗ 𝐶 + ∆(∆%&𝐶) ∗ 𝐵! ∗ 𝐶 ∗ 𝑝𝐶𝑂!(#'() + ∆(∆%&𝐶) ∗ 𝐵! ∗ 𝐶! + 𝐴! ∗ 𝐵 ∗ 𝑝𝐶𝑂!(#'()

𝐴 ∗ 𝐵! − ∆(∆%&𝐶) ∗ 𝐴 ∗ 𝐵 − ∆(∆%&𝐶) ∗ 𝐵! ∗ 𝑝𝐶𝑂!(#'() − ∆(∆%&𝐶) ∗ 𝐵! ∗ 𝐶
 

(15) 

Clearly, the fitting parameters of the hyperbolic relationship are quite important in the 

determination of pCO2(t). The value of “A” in Equation 14 determines the asymptote of 

∆13C values, and the combination of values is such that at 0 ppm, ∆13C=4.4‰, the 

fractionation from stomatal diffusion alone (Schubert and Jahren 2012).  

 Lomax et al. (2019) found that using the C3 plant proxy with the relationship in 

Equation 14 makes it impossible to apply the proxy to values of ∆13Cleaf that are above 

those of the empirical fitting parameter “A”. Schubert and Jahren set the preferred value 

of “A” at 28.26, so if any plants exhibit a ∆13C value higher than 28.26‰, the model does 

not work. Lomax et al. found this to occur within their own study of A. thaliana (one of 

the same species studied by Schubert and Jahren that created this curve) nine times. 

When there is a ∆13Cleaf value over 28.26 (the value of fitting parameter “A”) it is 

impossible to apply the hyperbolic relationship and predict paleo-CO2. The value of “A” 

then limits this proxy to plants that don’t have high values of ∆13C, which puts the 

underlying mechanism of the relationship put forth by Schubert and Jahren into question.  

 While the fractionation by RuBisCO is largely treated as a constant, different 

species have slightly different version of RuBisCO, causing differences in fractionation 

through carbon fixation. RuBisCO fixes both CO2 and O2, with CO2 fixation being 

beneficial for the plant and O2 fixation causing respiration. RuBisCO’s are optimized for 

the CO2:O2 that they operate under. Under low CO2:O2 ratios, RuBisCO’s operates more 

slowly with a higher activation energy, giving larger fractionation than RuBisCO’s that 
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are optimized to high CO2:O2 ratios (Tcherkez 2006). Therefore, if different plant species 

evolved under varying CO2:O2 ratios, the fractionation associated with RuBisCO would 

vary. This value of “b” in Equation 7 should not be a constant. The value of “A” in 

Equation 12 also cannot then be applied to other species: “A” controls the maximum 

value of ∆13C, and following Equation 7 the maximum value of ∆13C is equal to the 

fractionation from RuBisCO (“b”) as Ci/Ca cannot exceed 1.  

The C3 plant proxy is reliant upon stomata opening more with an increase in 

pCO2, causing Ci to increase relative to Ca for an increased ∆13Cleaf value (Equation 7). If 

stomata close or remain slightly opened, Ci/Ca will either remain constant or decrease, 

giving a null or negative response with increasing pCO2. In Ginkgo, we see a decrease in 

∆13Cleaf with increasing pCO2, suggesting that stomata are closing to conserve water 

rather than opening to accept more CO2. This physiological response was discussed by 

Voelker et al. (2016). Plants can utilize several different strategies to regulate their gas 

exchange (CO2 in and H2O out): (1) maintain a constant Ci, (2) maintain a constant Ca- 

Ci, (3) maintain a constant Ci/ Ca, or (4) a mix of strategies depending whether the ‘goal’ 

of the plant is to maximize carbon gain, minimize H2O loss, or sit somewhere in the 

middle. Figure 32 shows these strategies and what they look like plotted against Ca. Panel 

(c) on figure 32 is the most important for the discussion of ∆13Cleaf and pCO2, as Ci/ Ca is 

directly proportional to ∆13Cleaf (Equation 6) and Ca is analogous to pCO2, so panel (c) is 

analogous to ∆13Cleaf versus pCO2 plot. The only leaf-gas exchange strategy that results in 

the hyperbolic relationship observed by Schubert and Jahren is maintaining a constant Ca- 

Ci. With this strategy, carbon gain is valued over water loss. Schubert and Jahren kept the 
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A. thaliana and R. sativus plants well-watered, so water stress was not an issue for these 

plants, and they could afford to lose water for carbon gain.  

The relationship exhibited by Ginkgo in our study suggests a leaf-gas exchange 

strategy of a constant Ci, as the shape of our ∆13Cleaf versus pCO2 plot matches that of a 

constant Ci from panel (c) in figure 32. This is a much more conservative strategy: with 

increasing Ca, stomata don’t open further to take advantage of increasing carbon gain and 

are able to instead conserve water while incorporating the same amount of carbon as at a 

lower Ca. The Ginkgo trees in our study did experience water stress, so it makes sense 

that they would seek to limit water loss. The difference in leaf-gas exchange strategy 

between our study and Schubert and Jahren’s could be due to more than just watering 

regime. Plant growth strategy may have influence over leaf gas-exchange strategy. Small 

herbaceous annual plants may weigh carbon gain for growth over water loss, and large 

woody trees may weigh water retention over carbon gain and growth.  
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 In order to actually measure the gas-exchange strategy of plants, physiological 

measurements are made. For the past two summers, physiological measurements have 

been made on the ginkgo trees in our study. With later analysis of this data and of 

physiological data from other studies that also measured ∆13Cleaf, we will be able to 

determine the strategy used by Ginkgo and other species. Then, we can determine if leaf-

gas exchange strategy can explain the difference in ∆13Cleaf responses to pCO2 that have 

Figure 32. Figure 1, Voelker et 
al. 2016. Leaf gas-exchange 
strategies plotted as Ci against 
Ca (panel a), Ca- Ci against Ca 
(panel b), and Ci/ Ca (panel c). 
Each colored curve represents a 
different leaf gas-exchange 
stomatal control strategy (refer 
to legend).  
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already been discussed. This work is outside confines of this study, but will be important 

in understanding how ∆13Cleaf varies with pCO2. 

Though the above complications (3, 4, and 5) are well-documented, Schubert and 

Jahren proceeded to apply the positive hyperbolic relationship between ∆13Cleaf and pCO2 

in R. sativus and A. thaliana in their 2012 paper to the fossil record (Schubert and Jahren 

2015) seemingly without serious regard to several confounding factors. In this paper, 

total organic matter (TOM) and fossil leaf (Salix and Pinus) ∆13C data was used to 

reconstruct pCO2 through the last glacial maximum (LGM). They found that the 

reconstructions from both TOM and leaves matched ice core records very well. This 

reconstruction has been put under scrutiny. Kohn (2016) points out that the agreement 

between TOM and ice core pCO2 records could be due not to a pCO2 response in ∆13C, 

but rather to a change through the LGM in the abundance of C3/C4 grasses. Schubert and 

Jahren claim to have removed the possibility of this mixing by only using records that 

have d13Cleaf values between -18.5 and -32‰, the range for C3 plants. C4 plants range 

from -9 to -19‰ (O’Leary 1988). TOM records can be a combination of signals from a 

variety of plants, so it is impossible to say that a TOM sample with a value between -18.5 

and -32‰ is purely a C3 plant record. This pCO2 reconstruction is then faulty as the 

proxy used to create this reconstruction cannot be applied to C4 plants.  

Additionally, the TOM and fossil leaf records from this 2015 paper were not 

specifically from extremely wet environments, against the recommendation that they 

themselves made in their 2012 paper. It is then impossible to say whether the changes in 

∆13C used to reconstruct paleo-CO2 in this study are due to changes in pCO2 or changes 

in mean annual precipitation (MAP) or humidity. Species-specific responses were also 



Scher 
 

67 

not considered: the TOM record includes an unknown number and type of C3 plant 

species, which can all have isotopic varying responses to pCO2 because of a difference in 

stomatal control or a difference in RuBisCo and therefore degree of change in ∆13C with 

a change in pCO2. The leaf record splices two species together (Pinus and Salix) which 

are also prone to the differences that apply to the TOM record.   

 

In short, the relationship between ∆13Cleaf and pCO2 is not as simple as it is 

presented by Schubert and Jahren (2012). This relationship is influenced by a variety of 

factors, including fitting parameters, differences in RuBisCO fractionation, leaf gas-

exchange strategy, and watering regime. While some studies support a positive 

relationship between ∆13Cleaf and pCO2, others enumerated here oppose that observation 

(Hietz et al. 2005; Tu et al. 2004; Peñuelas and Azcón-Bieto 1992; Lomax et al. 2019).  

When studies the studies discussed above are compiled (Figure 33), the sensitivity 

plot looks much more complicated than the sensitivity plot of the compilation put 

forward by Schubert and Jahren (2012) (Figure 25). There is no relationship to be drawn 

from this plot, other than that there are a range in responses to pCO2 at low values (<500 

ppm) and that values converge around zero, or no response, above 500 ppm CO2. This 

kind of relationship is not useful for a paleo-CO2 proxy.  
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Figure 33. Sensitivity values calculated from Van de Water et al. 1994, Penuelas and 
Estiarte 1997, Feng and Epsetin 1995, Sharma and Williams 2009, Hietz et al. 2005, 
Saurer et al. 2003, Beerling and Woodward 1995, Penuelas and Azcon-Bieto 1992, 
Schubert and Jahren 2012, Lomax et al. 2019, Tu et al. 2004, and this study. Studies 

ranged in pCO2 from 270 to 3000 ppm. 
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Conclusion 

Paleoclimate reconstructions are important to better understand earth systems. By 

looking at periods (like the PETM) that are analogs to our current situation, we can 

better predict the direction future climate change. Of particular importance are paleo-

CO2 reconstructions. More paleo-CO2 proxies are needed to have a clearer picture of 

past CO2 levels, especially around periods analogous to our current changing climate, 

like the PETM.  

The C3 plant proxy developed by Schubert and Jahren (2012) is based on a 

positive hyperbolic relationship between ∆13Cleaf and pCO2. This study of modern 

Ginkgo biloba under elevated CO2 conditions found a messy but generally opposite 

relationship: decreasing ∆13Cleaf with pCO2. Several other studies also show differing 

relationships between ∆13Cleaf and pCO2. Physiological measurements and leaf gas-

exchange strategy may be able to explain the range of responses of ∆13Cleaf to pCO2. 

Without a complete understanding of these influences on ∆13Cleaf, extreme caution 

should be taken in applying the C3 plant proxy to the fossil record.  

 

 

 

 

 

 



Scher 
 

70 

References 
(2020) Earth System Research Laboratory Global Monitoring Division, 
www.esrl.noaa.gov. 
 
Barclay, R.S. and Wing, S.L. (2016) Improving the Ginkgo CO2 barometer: 
Implications for the early Cenozoic atmosphere. Earth and Planetary Science Letters 
439, 158-171. 
 
Beerling, D.J.t. and Woodward, F.I. (1995) Leaf stable carbon isotope composition 
records increased water-use efficiency of C 3 plants in response to atmospheric CO 2 
enrichment. Functional Ecology, 394-401. 
 
Bender, M.M. (1971) Variations in the 13C/12C ratios of plants in relation to the 
pathway of photosynthetic carbon dioxide fixation. Phytochemistry 10, 1239-1244. 
Berninger, F., Sonninen, E., Aalto, T. and Lloyd, J. (2000) Modeling 13C discrimination 
in tree rings. Global Biogeochemical Cycles 14, 213-223. 
 
Bettarini, I., Calderoni, G., Miglietta, F., Raschi, A. and Ehleringer, J. (1995) Isotopic 
carbon discrimination and leaf nitrogen content of Erica arborea L. along a CO2 
concentration gradient in a CO2 spring in Italy. Tree Physiology 15, 327-332. 
 
Chapman, T., Cui, Y. and Schubert, B. (2019) Stable carbon isotopes of fossil plant 
lipids support moderately high pCO2 in the early Paleogene. ACS Earth and Space 
Chemistry. 
 
Cotton, J.M. and Sheldon, N.D. (2012) New constraints on using paleosols to reconstruct 
atmospheric pCO2. Geological Society of America Bulletin 124, 1411-1423. 
 
Cui, Y., Kump, L.R., Ridgwell, A.J., Charles, A.J., Junium, C.K., Diefendorf, A.F., 
Freeman, K.H., Urban, N.M. and Harding, I.C. (2011) Slow release of fossil carbon 
during the Palaeocene–Eocene Thermal Maximum. Nature Geoscience 4, 481. 
 
Cui, Y. and Schubert, B.A. (2016) Quantifying uncertainty of past pCO2 determined 
from changes in C3 plant carbon isotope fractionation. Geochimica et Cosmochimica 
Acta 172, 127-138. 
 
Cui, Y. and Schubert, B.A. (2017) Atmospheric pCO2 reconstructed across five early 
Eocene global warming events. Earth and Planetary Science Letters 478, 225-233. 
 
Diefendorf, A.F., Freeman, K.H. and Wing, S.L. (2012) Distribution and carbon isotope 
patterns of diterpenoids and triterpenoids in modern temperate C3 trees and their 
geochemical significance. Geochimica et Cosmochimica Acta 85, 342-356. 
 
Diefendorf, A.F., Mueller, K.E., Wing, S.L., Koch, P.L. and Freeman, K.H. (2010) 
Global patterns in leaf 13C discrimination and implications for studies of past and future 
climate. Proceedings of the National Academy of Sciences 107, 5738-5743. 



Scher 
 

71 

Ehleringer, J.R. and Cerling, T.E. (1995) Atmospheric CO2 and the ratio of intercellular 
to ambient CO2 concentrations in plants. Tree physiology 15, 105-111. 
 
Emiliani, C. (1955) Pleistocene temperatures. The Journal of Geology 63, 538-578. 
 
Farquhar, G.D., Ehleringer, J.R. and Hubick, K.T. (1989) Carbon isotope discrimination 
and photosynthesis. Annual review of plant biology 40, 503-537. 
 
Feng, X. and Epstein, S. (1995) Carbon isotopes of trees from arid environments and 
implications for reconstructing atmospheric CO2 concentration. Geochimica et 
Cosmochimica Acta 59, 2599-2608. 
 
Fletcher, B.J., Beerling, D.J., Brentnall, S.J. and Royer, D.L. (2005) Fossil bryophytes as 
recorders of ancient CO2 levels: experimental evidence and a Cretaceous case study. 
Global Biogeochemical Cycles 19. 
 
Franks, P.J., Royer, D.L., Beerling, D.J., Van de Water, P.K., Cantrill, D.J., Barbour, 
M.M. and Berry, J.A. (2014) New constraints on atmospheric CO2 concentration for the 
Phanerozoic. Geophysical Research Letters 41, 4685-4694. 
 
Freeman, K.H. and Hayes, J.M. (1992) Fractionation of carbon isotopes by 
phytoplankton and estimates of ancient CO2 levels. Global biogeochemical cycles 6, 
185-198. 
 
Friend, A.D., Woodward, F.I. and Switsur, V.R. (1989) Field measurements of 
photosynthesis, stomatal conductance, leaf nitrogen and δ 13 C along altitudinal 
gradients in Scotland. Functional Ecology, 117-122. 
 
Hietz, P., Wanek, W. and Dünisch, O. (2005) Long-term trends in cellulose δ13 C and 
water-use efficiency of tropical Cedrela and Swietenia from Brazil. Tree physiology 25, 
745-752. 
 
Hyland, E.G. and Sheldon, N.D. (2013) Coupled CO 2-climate response during the early 
Eocene climatic optimum. Palaeogeography, Palaeoclimatology, Palaeoecology 369, 
125-135. 
 
IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working 
Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate 
Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. 
Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, 
Cambridge, United Kingdom and New York, NY, USA, 1535 pp. 

IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, 
II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate 
Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, 
Switzerland, 151 pp.  



Scher 
 

72 

 
IPCC, 2018: Summary for Policymakers. In: Global Warming of 1.5°C. An IPCC Special 
Report on the impacts of global warming of 1.5°C above pre-industrial levels and related 
global greenhouse gas emission pathways, in the context of strengthening the global 
response to the threat of climate change, sustainable development, and efforts to 
eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. 
Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. 
Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. 
Waterfield (eds.)]. In Press.  
 
Jagniecki, E.A., Lowenstein, T.K., Jenkins, D.M. and Demicco, R.V. (2015) Eocene 
atmospheric CO2 from the nahcolite proxy. Geology 43, 1075-1078. 
Klochko, K., Kaufman, A.J., Yao, W., Byrne, R.H. and Tossell, J.A. (2006) 
Experimental measurement of boron isotope fractionation in seawater. Earth and 
Planetary Science Letters 248, 276-285. 
 
Kohn, M.J. (2016) Carbon isotope discrimination in C3 land plants is independent of 
natural variations in pCO2. Geochemical Perspectives Letters 2, 35-43. 
 
Kraus, M.J., McInerney, F.A., Wing, S.L., Secord, R., Baczynski, A.A. and Bloch, J.I. 
(2013) Paleohydrologic response to continental warming during the Paleocene–Eocene 
thermal maximum, Bighorn Basin, Wyoming. Palaeogeography, Palaeoclimatology, 
Palaeoecology 370, 196-208. 

Kürschner, W.M., van der Burgh, J., Visscher, H. and Dilcher, D.L. (1996) Oak leaves 
as biosensors of late Neogene and early Pleistocene paleoatmospheric CO2 
concentrations. Marine Micropaleontology 27, 299-312. 
 
Lloyd, J. and Farquhar, G.D. (1994) 13 C discrimination during CO 2 assimilation by 
the terrestrial biosphere. Oecologia 99, 201-215. 
 
Lomax, B.H., Lake, J.A., Leng, M.J. and Jardine, P.E. (2019) An experimental 
evaluation of the use of Δ13C as a proxy for palaeoatmospheric CO2. Geochimica et 
Cosmochimica Acta 247, 162-174. 
 
Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.-M., Siegenthaler, U., 
Raynaud, D., Jouzel, J., Fischer, H. and Kawamura, K. (2008) High-resolution carbon 
dioxide concentration record 650,000–800,000 years before present. Nature 453, 379-
382. 
 
Marchitto, T.M., Curry, W.B., Lynch-Stieglitz, J., Bryan, S.P., Cobb, K.M. and Lund, 
D.C. (2014) Improved oxygen isotope temperature calibrations for cosmopolitan benthic 
foraminifera. Geochimica et Cosmochimica Acta 130, 1-11. 
McInerney, F.A. and Wing, S.L. (2011) The Paleocene-Eocene Thermal Maximum: A 
perturbation of carbon cycle, climate, and biosphere with implications for the future. 
Annual Review of Earth and Planetary Sciences 39, 489-516. 



Scher 
 

73 

 
O'Leary, M.H. (1988) Carbon isotopes in photosynthesis. Bioscience 38, 328-336. 
Panchuk, K., Ridgwell, A. and Kump, L.R. (2008) Sedimentary response to Paleocene-
Eocene Thermal Maximum carbon release: A model-data comparison. Geology 36, 315-
318. 
 
Peñuelas, J. and Azcón-Bieto, J. (1992) Changes in leaf Δ13C of herbarium plant species 
during the last 3 centuries of CO2 increase. Plant, Cell & Environment 15, 485-489. 
 
Peñuelas, J. and Estiarte, M. (1996) Trends in plant carbon concentration and plant 
demand for N throughout this century. Oecologia 109, 69-73. 
 
Porter, A.S., Gerald, C.E.-F., Yiotis, C., Montañez, I.P. and McElwain, J.C. (2019) 
Testing the accuracy of new paleoatmospheric CO2 proxies based on plant stable carbon 
isotopic composition and stomatal traits in a range of simulated paleoatmospheric O2: 
CO2 ratios. Geochimica et Cosmochimica Acta. 
 
Royer, D.L. (2001) Stomatal density and stomatal index as indicators of 
paleoatmospheric CO 2 concentration. Review of Palaeobotany and Palynology 114, 1-
28. 
 
Royer, D.L., Moynihan, K.M., McKee, M.L., Londoño, L. and Franks, P.J. (2019) 
Sensitivity of a leaf gas-exchange model for estimating paleoatmospheric CO 2 
concentration. Climate of the Past 15, 795-809. 
 
Saurer, M., Cherubini, P., Bonani, G. and Siegwolf, R. (2003) Tracing carbon uptake 
from a natural CO2 spring into tree rings: an isotope approach. Tree Physiology 23, 997-
1004. 
 
Schubert, B.A. and Jahren, A.H. (2012) The effect of atmospheric CO2 concentration on 
carbon isotope fractionation in C3 land plants. Geochimica et Cosmochimica Acta 96, 
29-43. 
 
Schubert, B.A. and Jahren, A.H. (2015) Global increase in plant carbon isotope 
fractionation following the Last Glacial Maximum caused by increase in atmospheric p 
CO2. Geology 43, 435-438. 
 
Sharma, S. and Williams, D.G. (2009) Carbon and oxygen isotope analysis of leaf 
biomass reveals contrasting photosynthetic responses to elevated CO 2 near geologic 
vents in Yellowstone National Park. Biogeosciences 6, 25-31. 
 
Tcherkez, G.G.B., Farquhar, G.D. and Andrews, T.J. (2006) Despite slow catalysis and 
confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly 
perfectly optimized. Proceedings of the National Academy of Sciences 103, 7246-7251. 
 
Tralau, H. (1968) Evolutionary trends in the genus Ginkgo. Lethaia 1, 63-101. 



Scher 
 

74 

 
Treydte, K.S., Frank, D.C., Saurer, M., Helle, G., Schleser, G.H. and Esper, J. (2009) 
Impact of climate and CO2 on a millennium-long tree-ring carbon isotope record. 
Geochimica et Cosmochimica Acta 73, 4635-4647. 
 
Tu, T.T.N., Kürschner, W.M., Schouten, S. and Van Bergen, P.F. (2004) Leaf carbon 
isotope composition of fossil and extant oaks grown under differing atmospheric CO2 
levels. Palaeogeography, Palaeoclimatology, Palaeoecology 212, 199-213. 
 
Van de Water, P.K., Leavitt, S.W. and Betancourt, J.L. (1994) Trends in stomatal 
density and 13C/12C ratios of Pinus flexilis needles during last glacial-interglacial cycle. 
Science 264, 239-243. 
 
Voelker, S.L., Brooks, J.R., Meinzer, F.C., Anderson, R., Bader, M.K.F., Battipaglia, G., 
Becklin, K.M., Beerling, D., Bert, D. and Betancourt, J.L. (2016) A dynamic leaf gas-
exchange strategy is conserved in woody plants under changing ambient CO2: evidence 
from carbon isotope discrimination in paleo and CO2 enrichment studies. Global Change 
Biology 22, 889-902. 
 
Wang, W., Liu, X., Shao, X., Leavitt, S., Xu, G., An, W. and Qin, D. (2011) A 200 year 
temperature record from tree ring δ13C at the Qaidam Basin of the Tibetan Plateau after 
identifying the optimum method to correct for changing atmospheric CO2 and δ13C. 
Journal of Geophysical Research: Biogeosciences 116. 
 
Westerhold, T., Röhl, U., Donner, B. and Zachos, J.C. (2018) Global extent of early 
Eocene hyperthermal events: A new Pacific benthic foraminiferal isotope record from 
Shatsky Rise (ODP Site 1209). Paleoceanography and Paleoclimatology 33, 626-642. 
 

Wing, S.L. and Currano, E.D. (2013) Plant response to a global greenhouse event 56 
million years ago. American Journal of Botany 100, 1234-1254. 
 
Wong, C.I. and Breecker, D.O. (2015) Advancements in the use of speleothems as 
climate archives. Quaternary Science Reviews 127, 1-18. 
 
Zeebe, R.E. (2005) Stable boron isotope fractionation between dissolved B (OH) 3 and 
B (OH) 4−. Geochimica et Cosmochimica Acta 69, 2753-2766. 
 
Zeebe, R.E., Zachos, J.C. and Dickens, G.R. (2009) Carbon dioxide forcing alone 
insufficient to explain Palaeocene–Eocene Thermal Maximum warming. Nature 
Geoscience 2, 576-580. 
 
Zhou, Z. and Zheng, S. (2003) The missing link in Ginkgo evolution. Nature 423, 821-
822. 
 
 


