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Abstract

Novice programmers sometimes need to understand code written by others.

Unfortunately, most software projects lack comments suitable for novices. The lack of

comments has been addressed through automated techniques for generating comments

based on program statements (or lines of code). However, these techniques lack the

context of how these statements function since they are aimed toward experienced

programmers. In this thesis, I present a novel technique for automatically generating

comments for Java statements suitable for novice programmers. My technique not

only goes beyond existing approaches to method summarization to meet the needs of

novices, it also leverages API documentation when available. In an experimental study

of 30 computer science undergraduate students, explanations based on my technique

were preferred over an existing approach.
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Chapter 1

INTRODUCTION

All software used on computers is made of lines of instructions called code,

which is written by programmers. Programmers can add new features to a program by

writing new lines of code and can fix problems in programs by changing lines of code.

Programmers must understand the lines of code to make the appropriate changes to

the code to add new features or to fix a problem. As technology continues to evolve,

more programmers are needed. To help novice programmers, I propose an automated

method to explain, in full English text, any line of code.

1.1 A Motivating Example

Novice programmers may struggle to understand lines of code, and thus struggle to

add new features and fix problems in programs. To better explain the importance of

understanding code, I will present a common example scenario below:

As you were using your start menu on Windows, you notice the start menu

looks grey and simple. Let’s say that grey is not your favorite color and you prefer a

more colorful, feature-filled start menu. Your start menu is made of some lines of code.

To change the style of the start menu, you must change the lines of code, and thus

you must understand the lines of code (see Figure 1.1) to change it correctly. After

you correctly modified it, you get a much more aesthetically pleasing start menu (see

Figure 1.2). This thesis proposes an automated method to explain lines of code to help

make this entire process easier.
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Figure 1.1: Example of why understanding lines of code is important

Figure 1.2: Changed lines of code for a better start menu, compared to 1.1
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1.2 Understanding Code

While there are ways to learn programming such as courses and websites like

Codeacademy, only limited help is for understanding specific lines of code from most

projects. For instance, code often lacks documentation and comments explaining how

the code works [2, 3] and the author may be unavailable to respond to questions

regarding their code. Often code is published online in websites like GitHub for public

reuse, but the code must be understood to be reused correctly. In classroom projects,

teachers may be unfamiliar with reused code or may lack sufficient availability to help

many students with code that lacks documentation.

There are infinite possibilities of what could be written in code, such as methods

that contain more written lines of code and specific syntaxes like words, symbols,

expressions, values, numbers, and variables which can store any value and even other

variables. Due to these infinite possibilities of coding, searching online for a solution

may not help novices, because example code found online is not always similar to the

code in question. My proposed solution is an automated approach to generate English

text explanations of any specific statement of code requested which aim to be helpful

for novice programmers and can also be helpful for experts who may be unfamiliar

with the code in question.

1.3 Summarizing Code

Lines of code may contain English words or phrases which can be used toward

automatic summarization of code, such as method names, class names, variable names

(see Figure 1.3). Prior work [4] has evaluated the potential of a Part-Of-Speech (POS)

tagger for English words in code, called “SWUM”, to be used for summarization of

code by automatically processing the labeled POS of words to generate a grammatically

correct summary using those words (see Figure 1.4). However, lines of code may not

contain useful English word POS information, rendering SWUM to be not a viable

option (see Figure 1.5). In addition, SWUM only outputs POS information, identifying
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Figure 1.3: Example of English words found in code

Figure 1.4: Example of POS tagging [4]

English words in code as “noun”, “verb”, etc, rather than producing a summary of code

in English sentences.

Novice programmers commonly struggle to understand the connections between

lines of code [12], but SWUM does not address the connection between different lines

of code. Examples of connections between lines of code include “if statements” where

a certain condition stated within the if statement must be true to execute another line

of code, or a “method call” where a “method” holds some lines of code and “calling”

it allows for execution of the lines of code inside that “method” (see Figure 1.6).

Figure 1.5: Example of code that generally lack useful English words
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Figure 1.6: How a Novice programmer may struggle with connections between statements
such as a method call

1.4 Novice and Expert Summary Differences

Prior summarization approaches were designed for expert programmers to help

them understand how to use libraries, or publicly available methods, for their code.

However, experts, unlike novices, excel at understanding connections between different

lines of code [19]. Novices and experts have different needs for code summarization

as novices may need more assistance to understand code. Gugerty, et al. studied

how novice programmers debug programs differently from experts. They found that,

because the novices’ hypothesis of code, or their understanding of how the program

works, is greatly inferior to experts, novice programmers tended to introduce more bugs

to programs they were debugging. They also took substantially longer than experts

to find the bug or did not find the bug at all. Experts took roughly half the time of

novices to understand the program, and yet had significantly better hypothesis than

the novices [18]. Thus, the need for novice-friendly documentation is crucial to help

novice programmers understand code.

Novices’ mental representations of code, based on their responses to technical

questions about the code, lacked two crucial characteristics which are generally found
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in experts’ representations. Novices did not understand that code is: (1) Hierarchi-

cally structured and (2) explicitly mapped [12]. Hierarchically structured explanations

mention the order of execution between lines of code within a program. For instance,

a hierarchically structured explanation addresses that, after executing a line of code

that is a method call, the lines of code within that method will be executed next in

order from the first line of the method to the last, then the code outside that method

and under the method call will be executed (see Figure 1.6). To correctly understand

the code, the order of execution is crucial to recognize.

Explicitly mapped representations include a clear connection between both high-

level (concise) and low-level (exhaustive) explanations of a program [12]. high-level

lines of code depend on low-level lines of code. For example, a method call is a high-

level line of code as it depends on its method declaration. A method declaration

contains the lines of code of the method which are the low-level counterpart of the

method call (see Figure 1.6). While both novices and experts can make a hypothesis of

a method’s purpose based on high-level details such as an intuitive method call name,

novices generally can’t relate the appropriate low-level lines of code to their own high-

level hypothesis [12]. For instance, novices are not sure how the lines of code inside

a method declaration lead to the output found within the line of code that called the

method, which shows their lack of understanding of how the method works.

This thesis proposes a method that, unlike prior approaches, automatically ex-

plain all the significant connections between different lines of code mainly to assist

novice programmers in understanding how programs work. The summarization tech-

nique will be based on the two main characteristics of experts’ understanding of pro-

grams, hierarchically structured and explicitly mapped explanations of code, which

novices lack in their understanding [12]. Prior approaches utilized a database of al-

ready existing explanations of code to automatically generate new explanations of

related code [21, 29]; however, programs often lack such a database [2, 3]. The ap-

proach in this thesis will not require any prior made (previously existing) explanations

as it will dynamically generate new explanations based only on the given source code.
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However, if explanations already exist such as API Documentation, an online website

explaining various common built-in methods for Java, this approach can optionally

utilize such information to further supplement the auto-generated explanations. Prior

approaches that are designed for experts are also limited to summarizing only specific

types of statements at a higher level, such as a method declaration or class, while the

approach this paper proposes aims to support any line of code possible and include

low-level details when necessary.

This thesis makes the following contributions: (1) It evaluates current summa-

rization approaches and how they fail to meet the needs of novice programmers. (2)

It offers a novel approach toward summarization of any line of code that helps fulfill

the needs for novice programmers. (3) It evaluates this approach through a study

conducted within Computer Science classes at Drew University to find whether un-

dergraduate students of Computer Science preferred my approach over a competing

approach developed by Sridhara, et al [5].
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Chapter 2

RELATED WORK

In this section, I will (1) analyze prior approaches that automatically generate En-

glish Explanations of source code. Then, I will (2) address the shortcomings of prior

approaches.

2.1 Summarization through Previously-made Documentation

Prior approaches created machine learning algorithms that utilize a dataset of

already-existent information to automatically generate explanations for lines of code.

The information in the dataset could be comments within code, relevant search terms

to code, explanations created by hired expert programmers, or other online documen-

tation.

Ying, et al. developed a machine learning approach towards summarizing code

fragments in order to better present a code example [21]. Their machine learning

approach is trained through a corpus of code fragments. Through training, it can

observe what kind of synantic features exist within code summaries. These synantic

features include variable declarations, method invocations, assignments, and many

more [21]. It also considers term queries and online searching terms that may be

common within certain code fragments. These terms and queries can also come from

documentation, such as FAQs [21].

Nazar, et al. developed a machine learning approach to summarize source code

fragments [29] similar to Ying, et al’s [21] through crowdsourcing, which is a process of

hiring a group of experienced programmers online to annotate source code [29]. Nazar

also uses different synantic features such as class declarations, constructor calls, return

statements, part of method signatures, etc.
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Oda, et al. developed an approach towards automatic generation of pseudo-

code for statement level source code [31]. Pseudo-code allows programmers to more

easily understand source code, especially if it is for a language they are not familiar

with. Pseudo-code generally has some natural language explanations as well. For

this approach to work, it requires a corpus of source code and pseudo-code translation

statements. For example, a “%” in Python can be translated as “divisible by,” which is

more easily understood by those who are unfamiliar with Python. Oda, et al’s approach

require common tokenizer techniques depending on the goal natural language. For

instance, English is separated by spaces which can use a simple tokenizer technique

(dividing words by spaces), while Japenese text requires more sophisticated common

tokenizer techniques as it has no spaces. Their approach also requires a tokenizer

for the coding language being processed. For instance, Python has its own tokenizer.

Lastly, their approach requires a parser of the coding language, which generates a tree

describing the structure of the code (abstract syntax tree).

Chen, et al. developed an approach to summarize both high and low-level

source code details and also developed an approach to find relevant source code based

on input search terms resembling an English description of the code being looked for

[37]. Their summarization technique utilizes already existent English descriptions that

are relevant to the source code that needs to be summarized. They can utilize informal

online resources like StackOverflow [37].

Haiduc, et al. developed an approach to summarize source code at many levels,

such as classes, methods, package, etc [22]. This approach utilizes already existent

comments and documentation within the source code to form a text corpus. Then, it

utilizes common text retrieval techniques to determine the most relevant terms within

the text corpus. It also uses method names, parameter names, parameter type names,

etc to attach roles to every term on the text corpus [22].
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2.1.1 Short Comings

These approaches require a pre-existing dataset of relevant English text infor-

mation, such as summaries, comments, or documentation, of the appropriate code

fragments. Approaches that require expert programmers to create summaries of code

is limited by the availability of other expert programmers. In addition, previously-

made explanations written by expert programmers may not be suitable for novices.

Approaches that depend on previously-made comments and documentation are inap-

plicable because most projects lack comments and documentation [5].

The proposed approach in this thesis accommodates for the limitation of En-

glish text information by utilizing only the source code itself with no requirement of

other English text information. Often code may lack relevant online solutions and any

relevant English descriptions in general.

2.2 Highlighting Prior-Made Documentation

The Eclipse IDE, an advanced Java programming editor, displays upon a mouse

hover the full API Documentation page for any specified statement that utilizes built-in

methods. Built-in API methods are widely available methods within the Java program-

ming language itself, thus, API documentation does not exist for most methods that

are made by other programmers. Since API functions are designed for general use, API

documentation will include all possible details that a programmer may need to know

about a specific function. As a result, the full API Documentation page may include

excessive verbose details that could be irrelevant to what a programmer is seeking [14].

Some prior approaches concentrated on highlighting the most useful details within the

verbose API documentation.

Uri Dekel, et al. developed an Eclipse Plugin, “eMoose,” which highlights di-

rectives within an API documentation page to help find what a programmer may be

seeking within verbose text. These directives are Restrictions, Protocols, Locking, Pa-

rameters, Returns, Alternatives, Limitations, Side Effects, Performance, Threading,

and Security. Restrictions are certain contexts in which it is not safe to invoke a
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method; Protocols are restrictions of specific sequences of what is invoked before and

after a method; Locking and Threading are synchronization requirements; Alternatives

are other methods that are suggested within an API Documentation page; Performance

is related to usage of memory and speed of algorithms; and Security are warnings with

API Documentation of potential security vulnerabilities when using certain methods

[14].

Pandita, et al. developed an approach that infers method specifications from

API Documentation without requiring code contracts [15]. Code contracts specify

required method inputs (pre-conditions), as well as expectations after execution (post-

conditions). Most API Documentation does not have the correct formalized form of

code contracts but is specified informally in natural language text descriptions [15].

Their approach is useful, for example, to quickly notify a programmer who encounters

an exception from inputting parameters of incorrect type to a built-in method. Their

evaluation involved determining the precision and recall of contract sentences from

API Documentation. Contract sentences were identified grammatically through POS

tagging [15].

Robillard, et al. similarly developed an approach to recommend fragments of

API Documentation. This approach distinguishes usage directives, constraints, threats,

alternative API elements, dependent API elements, best practices, and improvement

options, which are all extracted from the API documentation text [16].

2.2.1 Short Comings

These approaches were not evaluated on novice student programmers. Unlike

these approaches, my study involved college undergraduates ranging from freshman

to seniors, from less than one year of experience in programming to 5 or more years.

Thus, my approach is more suitable for novice student programmers.

In addition, these approaches can only be used on available API Documen-

tation. Since most programmers don’t write documentation on their code [5], these
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approaches are limited to only built-in Java functions that have online API Documen-

tation available, which majority of functions do not. The approach proposed in this

thesis combines information both from available API Documentation and from my own

approach towards explaining any statement without the need for written documenta-

tion. This thesis approach also uses a portion of API Documentation to help prevent

verbose, unnecessary details. Thus, this thesis accommodates for the limitations of

API-dependent approaches while still taking advantage of available API Documenta-

tion.

2.3 Highlighting Source Code

Fowkes, et al. developed a tool, called “TASSAL,” which highlights what they

consider to be the most important areas of source code to help developers concentrate

on understanding the more informative areas of source code [36]. They hide unim-

portant code, commonly known built-in methods which have API documentation to

bring more attention to the lines of code that are unique to the program in question

[36]. However, this approach does not summarize source code. Novices may, therefore,

struggle with the most important highlighted source code and other code in general.

Their approach was also evaluated on expert programmers with at least 4 years of

industry experience [36].

2.4 Summarization based on Source Code

Some prior approaches also utilize only information located within the source

code itself to generate explanations. These could include English words & POS tagging

within the source code like a method or class name, some dependencies between lines

of code, inputs & outputs of method calls, frequency of method calls within a program,

and so on. These approaches include the major advantage of supporting most code

that does not include documentation, comments, or any other outside information.

Sridhara, et al [5] developed an approach towards automatic generation of Java

comments in source code. Their approach utilizes SWUM for linguistic information
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and a specific selection of statements from a method body. These specific selections

are called s-units, which consist of a method’s return, method calls in void methods,

data dependencies in variable assignments, and conditional statements. Void methods

lack return statements and would have other effects other than returning a value,

thus defaulting to mentioning the names of method calls instead. Data dependency

is when a statement utilizes a variable, which depends on the corresponding variable

assignment(s) (see Figure A.4 for an example).

Sridhara, et al. also have another approach towards detecting and describing

high-level actions with methods [7] that utilizes linguistic information within loops,

conditions, and similar sequences. This is similar to the previous approach of automatic

generation of Java comments [5], but with the aim of identifying the high-level actions

within methods rather than generating source code comments.

Newman, et al. claimed to have developed an approach toward summarizing

methods without any dependence on intuitive English words [39]. They fill in one

manually written template with object names inside the return statement, parameter

names and its object names, and method call names [39].

McBurney, et al. developed an approach towards automatic documentation

summarization by using method context [6]. The method context includes the state-

ment which called the method, statements that supply the method’s input, and state-

ments which use the method’s output [6]. Their aim was to better explain when and

how to use a Java method. This approach utilizes PageRank Call Graphs to obtain a

method’s context [6]. Call Graphs rank the most frequently method calls, as well as

their location. Their approach uses locations of method calls as an example usage for

documentation.

Sridhara, et al further developed an approach towards parameter comment gen-

eration utilizing some of their own s-units, as well as some control and data dependen-

cies of relevant variables [10].

Moreno, et al. developed an approach towards class summarization [11]. Their
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approach utilizes method stereotypes classification definitions, class stereotypes clas-

sification definitions, and linguistic information within method signatures and class

definitions to summarize classes. This provides summaries of linguistic information

within method signatures and class definitions.

Wang, et al. developed an approach to summarize source code for object related

statement sequences [32]. Object-related statement sequences are a set of statements

that are assignments/declarations and/or method calls that are associated with each

other. Statements are associated with each other if, for instance, it supplies an input

of a method call statement [32]. Then, similarly to Sridhara et al [5], it utilizes Part-

Of-Speech information, as well as actions and themes of every English word located

within each object related statement. Themes could, for instance, be a noun or a

method argument. Actions are verbs. The participants used to evaluate Wang, et al’s

explanations had experience ranging from 5-10 years; the majority of them considered

themselves to be expert programmers [32].

2.4.1 Short Comings

These approaches depend on the words located only within the same method.

If the words are not intuitive (not English words) or if dependencies exist outside the

same method, these approaches may not work. For instance, these approaches would

not explain a variable that stores a value returned from a method call, because that

method call is based on its method declaration which is outside the method the variable

is in (see Figure 1.6). Instead, these approaches default to mentioning the name of the

method, which may not be intuitive English words or phrases. Novices may need help

understanding how certain methods work as their approach was designed for experts.

Like Sridhara, et al’s approach [7], the proposed approach in this thesis utilizes

return statements, method calls, data dependencies in variables, and conditions to allow

us to identify possible important lines of code within a method declaration. However,

unlike Sridhara’s this thesis automatically utilizes inter-dependencies, dependencies

that exist outside the method in question, to generate explanations that are suitable
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for novices. This thesis has the advantage of accommodating non-intuitive method

and variable names by understanding the origin of these methods or variables through

control and data dependency summarization that may exist in other methods. A

control dependency is when a certain condition stated within a statement must be true

to execute another statement(s). For example, a certain condition stated within an “if

statement” must be true to execute certain other line(s) of code (see Figure A.7 for an

example of an “if statement” in code). Prior approaches were restricted to methods

or classes, while the approach in this thesis aims to go beyond to summarize any line

of code. Although the thesis will analyze some of the s-units as Sridhara does [7], my

approach goes beyond by analyzing the inter-dependencies within these s-units. Thus,

with the addition of inter-dependency explanations within the thesis statement-level

approach, the proposed approach can generate more detailed lower-level explanations.

These detailed lower-level summaries can be useful for novices or for those who are

unfamiliar with the lower-level source code of a project.

Prior approaches do not explain operators, such as addition and subtraction,

or comparators like less than or greater than. This thesis has an approach to ex-

plain statements with multiple mathematical operators and comparators. The thesis

approach proposes a method to automatically define operators and their usage in an

expression.

Some prior approaches are limited to mentioning names of objects and methods

which both Novices and Experts alike can do as its high-level details [12]. Some prior

approaches also generalized a template that utilizes object names and method names

for all cases without evaluation by human subjects to verify if their approach is helpful.

Novices can make a reasonable hypothesis of high-level details such as method names

[12], which may be the only aspect summarized by prior approaches. Novices struggle

with low-level details, and dependency connections between high-low-level details [12]

which my approach will address.

Prior approaches that are completely dependent on method call frequency are

missing other potentially valuable information (such as returns, variables, etc). A
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novice may not understand the origins of a variable or an expression within a return

statement, for instance. Lastly, the subjects of the prior evaluations were conducted

on expert programmers, while the evaluation of this thesis had undergraduate students

less than 1-3 years of programming experience.

2.5 Observational Studies

Other prior work conducted observational studies to better understand what

is needed for summarization of source code based on expert programmers’ perception.

They try to define what is a “good” code summary by analyzing documentation of code

in comparison to its source code counterparts, analyzing experts’ explanations of code

in comparison to the authors’ explanations and analyzing how current documentation

is used to understand code.

Rodeghero, et al. made an eye-tracking study with experienced programmers

to help identify what lines of code are the most important for explanations, then used

the results of their study as a basis for summarizing code [8]. Unfortunately, this

approach can produce explanations only for experienced programmers as it is based on

the perceived needs for explanations of experts themselves; novices’ explanation needs

differ [12]. This approach has the same limitation of dependence on intuitive words

within a single method declaration and still does not utilize inter-dependencies.

Rodeghero, et al also conducted a study of how often APIs are used within

descriptions of source code [9]. They concluded that more API keywords exist in lower-

level (exhaustive) manually written method summaries than higher-level (concise) ones.

This finding aligns well with how my work uses APIs whenever available. However,

user-defined source code often does not have API documentation, which creates the

need for the proposed thesis approach for non-API code.

Nielebock, et al conducted a study on comments within programs and how they

assist novice and expert programmers toward program comprehension [38]. They found

that experts were much more likely to correctly complete coding tasks in comparison

to novices even with the same API documentation, code, and tasks given [38]. This
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suggests that API documentation alone is not enough to assist novice programmers.

In general, they also found that programmers consider in-code comments to only be

slightly useful for program comprehension [38]. This finding suggests that even if

programs have comments within code, it is still not very useful in general and further

summarization techniques are needed to assist novices.

McBurney, et al analyzed keyword similarities between the source code and ex-

planations of the code from reader-written summaries and author-written summaries.

Reader-written summaries are from programmers selected to explain the code. Author-

written summaries are from documentation of a project. They found that the more

similar author-written explanations are to source code, the more accurately it is per-

ceived by outside readers of the code [20]. This finding aligns well with my approach

that strives to summarize lower-level source code inter-dependencies. McBurney et al.

also conducted a user-study comparing the approach of Sridhara, et al [5] to his own

approach [6] which included method context unlike Sridhara, et al [20]. He found that

programmers preferred his approach [6] to understanding how a method was used. My

approach takes McBurney’s approach [6] even a step further by also including inter-

dependencies within statements of method contexts.

My approach addresses the limitations in the above-mentioned studies in the

following ways: (1) The evaluation of my approach involved undergraduate students of

Computer Science rather than experienced programmers. (2) My approach summarizes

based on data-dependencies, control-dependencies, and inter-dependencies between any

line(s) of code rather than dependence on English words within the source code. (3)

My approach can optionally utilize API documentation, if available.
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Chapter 3

SUMMARIZATION OF ARBITRARY STATEMENTS

The last chapter addressed the ways in which some prior approaches utilized

already-existent explanations to either highlight important details or generate new ex-

planations of similar code. However, these approaches are problematic as most code

lacks such explanations. Thus, my approach aims to solve this problem by generating

new explanations based on the given source code rather than utilizing any prior made

explanations. However, if API Documentation exists, then this approach utilizes it to

further supplement explanations. Some prior approaches have depended completely

on intuitive English words, like method names, variable names, class names, etc. This

approach aims to accommodate non-intuitive names (that are not words) by under-

standing the origin of methods or variables through control and data dependency sum-

marization that may exist in other methods. Prior approaches do not explain operators

such as +, -, / or divide, * or multiply. My approach proposes a method to automati-

cally explain operators and their usage in an expression. Many prior approaches only

summarize dependencies within the same method, but important dependencies may

exist outside of the method. For instance, a variable may store the value returned

from a method call, and that method call is based on its method declaration which is

outside the method the variable is in (see Figure 1.6). This proposed approach will sup-

port dependencies outside the method, called “inter-dependencies.” Prior source-code

summarization approaches are limited to specific types of statements, such as method

declarations or classes, while this approach aims to support any line of code possible.

This approach towards summarizing methods involves 4 main components: (1)

Selecting the most significant lines of code within the method to summarize, (2) lexi-

calizing (or creating English explanations of) those significant lines of code, (3) finding
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and lexicalizing their most significant dependencies, (4) using of API Documentation

when available. This process of finding the most significant lines of code within a

method is partially based on the s-units of Sridhara, et al [5]. An S-unit is a source

code statement such as a return, a method call, a variable assignment, or a condi-

tional statement [5]. Like Sridhara, my approach utilizes return statements, method

calls, data dependencies in variables, and conditions to allow us to identify possible

important lines of code within a method declaration. However, to generate method

summaries that are more useful for novice programmers, we go beyond Sridhara by uti-

lizing dependencies found from these s-units, as well as recursively processing complex

expressions and usage of API Documentation.

We created a set of rules for complicated expressions, usage of API Documenta-

tion, and dependency lexicalization based on the authors’ 10+ years collective experi-

ence tutoring novice programmers. This approach is aimed towards: (1) Automatically

summarizing the main action of a method, (2) including information necessary for sum-

maries to be understandable by novice programmers.

3.1 Non-Void and Void Methods

A novice programmer could be confused about what a specific statement does

or how it works. My approach aims to automatically generate explanations of any

statement that is appropriate for a novice programmer so that the user can have as

much information as needed to fully understand the statement in question. An example

of the practicality of this approach is shown in Figure A.2, where a novice is provided

with a descriptive explanation of the mouse-hovered statement on-demand without the

need for any external documentation or resources.

This statement could have a method call that is either void or non-void and, as

a result, have other statements within its method body that could be helpful towards

explaining how the method works. This method body exists outside the method the

statement is in, which is also known as an inter-dependency. Thus, we must deter-

mine the most significant lines of code of the inter-dependent method. The process
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is shown in Algorithm B.1. For non-void Methods, we adapt the idea of Sridhara, et

al [5] that selects return statements for non-void methods, which are called “ending

s-units.” For void methods, we use the most frequent variable assignments, sorted by

the last occurrence first. This approach is similar to the approach of Sridhara, et al

[5] of data-facilitating s-units, however, unlike Sridhara, et al., this approach is not

limited to dependencies of “ending s-units”, “void-return s-units”, and “same action s-

units.” Data-facilitating s-units are data dependencies (like assignments) that support

a particular statement. Ending s-units are return statements [5]. Void-return s-units

are method calls that are void, and same action s-units are method calls where its

name has the same action POS as the method declaration it exists in [5]. As shown

in Figure A.3 for void methods, we consider all variables within the method, starting

with the most often assigned or appended, as well as its last occurrence to its first

occurrence. As shown in Figure A.4 for non-void methods, we consider statements

that supply the return statement.

This leads to Algorithm B.2, where we recursively analyze the sub-expressions lo-

cated within S. The most common sub-expressions this approach processes are method

calls, constructors, variables, complex expressions, enumerators, literals, parameters,

and lists. Enumerators contain a list of constants all specified with a specific object

type. Lists can contain a list of any objects. Enumerators are defined as their own

class, while lists are defined as statements within methods. These sub-expressions tend

to have other hard-to-notice dependencies that novice programmers may find useful to

understand. An example of hard-to-notice dependencies is shown in Figure A.4.

To prevent duplicate explanations of statements, we keep track of introduced

variables and control flow statements in a list of statements, seen. Control flow state-

ments are statements that have a condition and are control dependent on other con-

ditional statements. Generally, a variable, parameter, or control flow statement that

exists in seen was already mentioned, or its type and name from assignments with a

common left-hand side were already mentioned. Thus, a statement found in seen, later

on, will not be explained again.
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It is also possible to have an expression within statements that consists of multi-

ple operators, comparators, variables, method calls, etc, which we consider “complex”

expressions. We have determined that it is best to automatically explain complex ex-

pressions for novice programmers because complex expressions may confuse novices

with the many sub-cases to consider and the appropriate order of parentheses that

must be followed (E.g. Nested sub-expressions in parenthesis with multiple method

calls, variables, in between many operators). The return statement and “offset” vari-

able assignment in Figure A.5 is an example of complex expressions. We consider the

following when analyzing complex expressions in Algorithm B.3: Comparators, Math-

ematical operations, short-hand if statements, BitWise Operators, “NOT” operators,

other variables, and literals.

3.2 Lexcalizing Complex Expressions

Algorithm B.3 covers complex expressions that contain multiple mathematical

operations, comparators, and bitwise operators. In the case of parentheses, we recur-

sively process the subexpressions that exist within them, from leftmost subexpression

in parentheses to rightmost.

3.2.1 Comparators and BitWise Operators

Comparators are generally processed first, as they contain subexpressions to

recursively lexicalize in their left and right-hand sides. Table C.1 contains a set of

templates for summarizing the most common comparators used, before lexicalizing

the left and right subexpressions. The left-hand sub-expression is mentioned before

the comparator explanation, and the right-hand sub-expression is mentioned after the

comparator explanation.

For more complex sub-expressions, we recursively analyze the multiple possi-

ble dependencies located within the left and right-hand sub-expressions, as shown in

Figure A.5 where offset and x are the dependencies being explained. Comparator

summaries for more complex expressions are shown in Table C.2.
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In table C.2, lhs(e) is the left hand side sub-expression and rhs(e) is the right

hand side sub-expression (of the comparator). There are special cases where both the

left and right-hand expressions of a comparator are variables or boolean literals, which

allow more simplistic and intuitive explanations. For instance, as shown in Figure A.7,

for 2 boolean values to be equal, they both must be “true” or they both must be

“false”, and that leads to the entire expression becoming true (otherwise false), which

demonstrates a quick explanation for the special case of 2 booleans, as well as the

special case of operator ++. Mentioning the special cases as expressions or numbered

values based on the previous tables is less intuitive. The special cases for comparator

explanations are shown in Table C.3.

Table C.4 contains a set of templates for summarizing the most common BitWise

Operators, before lexicalizing the left and right subexpressions.

3.2.2 Simple Expression Exceptions

Exceptions to these generalizations are Java short-hand operators ‘++’, ‘–’,

Java not, and short-hand-if statements. These kinds of subexpressions can use a more

simple and direct explanation for novices, as shown in Table C.5. These kinds of

subexpressions also deviate in appearance from most general mathematical operations

and regular control flow statements, which is why a simple and direct explanation is

preferred for novices. Figure A.8 shows an example of a short-hand if explanation.

3.3 Lexicalizing Method Calls and Constructors

If an expression is built-in, we automatically use the API Documentation’s “re-

turn” section, as it generally aligns well at the end of a variable assignment explanation

or return statement explanation as shown in Figure A.9.

If the expression in question is a constructor call (e.g... returning a new object),

we mention the actual parameters used, as well as their object type. Later, we recur-

sively lexicalize every parameter found to consider its control and data dependencies,
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as well as the relevant sub-expressions found within these dependencies. For non-built-

in method calls, the same process of lexicalizing parameters is done after recursively

analyzing its declaration. Method parameters are analyzed within Algorithm B.4.

When we have a constructor, we just add the phrase “a new” after the variable

name but before the name of the constructor. When we have a method call, we just

mention that we call the method then the parameters are analyzed in the same recursive

analysis in Algorithm B.5. An example of a method call, short-hand-if, and control

dependencies are shown in Figure A.10.

When given numerical value variable parameters, we mention them with a

phrase such as “calculated” as often their dependencies involve multiple mathemat-

ical operations or assignments that affect their numerical values. If we have multiple

objects of the same type within the parameters arguments, we also mention “1st, 2nd,

and 3rd... etc” and use grammatically correct listing of the parameters (commas,

and... etc), which helps introduce the arguments being used before recursive analysis

of dependencies in algorithm B.5 to better understand what is being summarized. See

Figure A.11 for an example of a constructor call with multiple parameters.

3.4 Data and Control Dependencies

A variable may contain many data and control dependencies. The approach

of Sridhara, et al [5] primarily relied on one line summary of s-units, which means

that his approach doesn’t take any dependencies of the s-unit into account. Unlike

the approach Sridhara proposes, this approach considers dependencies (as shown in

Figure A.10) since a novice programmer may not easily understand the origins of a

variable without explanation of dependencies.

Algorithm B.5 searches for all assignment and appending statements that a

variable V depends on, introduces the variable and its type, then recursively lexicalizes

the right-hand side of the assignments V depends on. If V depends on an appending

statement, we lexicalize the expression being appended. Examples of these have been

shown throughout the Figures.
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For every statement S that V depends on, we consider all control dependency

statements of S. Algorithm B.5 covers a common control dependency combination

such as an if statement inside of a for loop, as well as for loops and if statements

alone. As shown in Figure A.12, we also recursively lexicalize the conditions of the

control dependency statement to ensure understanding of the conditions in which a

dependency is covered.
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Chapter 4

EVALUATION

The goal of my evaluation is to answer the following research questions:

• How helpful are the explanations generated by my approach?

• Do students with more coding experience tend to prefer less detailed explana-
tions? (and vice-versa)

• Do students have a specific preference for API documentation or purely my own
lexicalization technique in my approach?

Since expert programmers tend to understand how a program works more accu-

rately and quickly than a novice [18], I evaluate the effect of the amount of experience

on the preference for detail in order to understand the needs of a novice programmer.

I have a secondary goal of identifying if students with varying levels of experience may

have a preference for different explanations. I have another secondary goal of knowing

if subjects have a preference of my approach with API documentation appended or

my approach without API documentation (but with my own lexicalization technique).

Since my approach can use both API Documentation and my own lexicalization tech-

nique, it could be useful to understand if API documentation is more helpful or if my

own lexicalization technique is better without any API information.

4.1 Setup

4.1.1 Participants

For my subjects, I had 30 undergraduate students ranging from first-year stu-

dents to seniors, from less than one year of experience of coding to five or more years.

At minimum, students were expected to have taken a semester, an introductory course
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in Python Programming or JavaScript and are taking or have taken a semester, intro-

ductory course to Java. No other experience was required for this study. I asked for

the years of coding experience they had in general, coding experience in Java (because

the snippets are in Java), as well as other classes they have taken or are taking.

4.1.2 Questions (for Subjects)

I had a set of 4 different questions coming from 3 different domain open-source

projects. Two of the questions contained information from API documentation, and

the other two did not contain any API information. Two of the questions had the same

code snippet and bug, but one has API documentation and the other does not. Every

subject was given a randomized set of any 2 different questions from the 4 questions.

Every question consisted of a snippet of Java code; all snippets have one bug existing

in one statement of the snippet.

4.1.3 Measures to Determine if my Approach is Preferred

Every question consisted of four explanations of the code; participants were

asked to select the explanations that the subjects found useful for understanding the

code and understanding how to solve the bug. Subjects could indicate that none of

the explanations were useful or could have chosen any one or more of the explanations.

Subjects were given a multiple choice question that asked to specify the statement with

the bug.

One of the four explanations was generated by the approach of Sridhara, et al [5]

for comparison. Three of the four explanations were generated by my own approach.

The reason my approach generated more possible explanation choices than Sridhara [5]

is due to my approach utilizing lower-level source code inter-dependencies within one

selected statement. My first explanation is a higher-level explanation of a statement,

which is of the same level as Sridhara. My next two choices explained the lower-level

inter-dependent statements that supply the first explanation.
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All explanations were for the closest statement to the bug. To determine the

closest statement to the bug, I found the nearest statement that the bug depends on. I

don’t explain the statement that consists of the bug itself, since a programmer may not

know the exact location of a bug in a real scenario. However, to prevent exhaustion of

subjects, I chose a snippet of code nearby the bug, but also representative of an entire

function (method) of a program.

Two of the questions used the same snippet of code and the same bug, how-

ever, my three explanations were different for each. For one of those two questions,

I rely on API documentation. For the latter, I rely on my own approach, regardless

of API Documentation availability. These choices help us analyze how useful API

Documentation is compared to my manual explanations. There was no need to alter

the explanation generated by Sridhara [5] since it does not use API Documentation,

regardless of availability.

4.2 Results

According to the results of the Chi-Squared goodness of fit test, students have a

statistically significant difference in preference between choosing my explanations and

the explanations of Sridhara because χ̃2 = 40.88 where N = 75, df = 2, p <.0005.

Additional post hoc goodness of fit tests were performed to understand the nature

of these differences. Students preferred my hints to the Sridhara explanations. They

preferred any explanation to no explanations, as shown in Table 4.1 and Figure 4.1.

Comparing my explanations to none, χ̃2 = 34.57 where N = 56, df = 1, p <.0005.

Comparing Sridhara to none, χ̃2 = 6.76 where N = 25, df = 1, p = .009, and experi-

mental to Sridhara χ̃2 = 13.93 where N = 69, df = 1, p <.0005. On the other hand,

there are three of my choices and only one Sridhara choice. Students do not prefer the

experimental choice in a ratio that is greater than 75%:25%, χ̃2 = 0.24 where N = 69,

df = 1, p = .63.

Next, I evaluated the number of each of my 3 explanations chosen, as well

as the frequency of at least one of my explanations being chosen for each individual
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Table 4.1: Which explanations do people prefer more?

Total Sridhara H None

60 19 50 6

Sridhara
25.33%

H
66.67%

None
8%

Figure 4.1: Total percentages of those who preferred explanations of Sridhara, et al., those
who preferred at least one of our explanations per question ”H”, and those who preferred no
explanations.

question. This could allow us to weigh the strengths and weaknesses of my algorithm

and Sridhara, et al., as well as possibly observe effects from the specific code snippets.

These results are displayed in table 4.2, Figures 4.2a, 4.2b, 4.3a, and 4.3b.

The next question was whether the subjects tend to find the bugs correctly if

they chose my explanation or Sridhara. According to the results of the Chi-Squared test

of independence, there was not a statistically significant difference in the percentage

correct between Sridhara, et al. explanations (15.79%) and my explanations (28.00%),

χ̃2 = 1.11 where N = 69, df = 1, p = .29. This means that correctly identifying the bug

Table 4.2: Which explanations do people prefer for each question? H1: Our 1st explanation,
H2: Our 2nd explanation, and so on, H: At least one of our explanations chosen in one
question.

Sridhara H1 H2 H3 None H

Bug A 1 12 3 2 5 13
Bug B 5 2 1 8 0 9
Bug C 2 6 4 4 1 10
Bug D 11 9 9 7 0 18

28



None

26.32%

H

68.42%
Sridhara

5.26%

(a) Percentages for bug A (non-API
supplemented), where ”H” is at least one of

our explanations chosen for questions.

None
0%

H
64.29%

Sridhara
35.71%

(b) Percentages for bug B (non-API
supplemented), where ”H” is at least one of
our explanations chosen for questions. Note
that ”none” is 0% (thus not showing above)

None
7.69%

H

76.92%

Sridhara

15.38%

(a) Percentages for bug C (API supplemented
explanations), where ”H” is at least one of

our explanations chosen for questions.

None
0%

H
62.1%

Sridhara
37.93%

(b) Percentages for bug D (API
supplemented), where ”H” is at least one of

our explanations chosen for questions.

had no significant impact on preference for explanations. Thus, whether they correctly

identified the bug or not, the participants were more likely to prefer my explanations.

To determine if experience can have an effect on explanation preferences, all of

my subjects were divided into 2 cases: participants who are taking algorithms and have

taken Data Structures (expert case), and participants who are taking introduction to

Java and have taken introduction to python (novice case). Do note that participants in

the expert case have also taken introduction to Java and Python as well. The Novice

and Expert explanation preference comparison is shown in table 4.3. The “None”

category is omitted from this analysis because there are so few cases. There is no

statistical significant difference in the degree to which novices (73.33%) and experts

(70.83%) preferred my hints, χ̃2 = 0.05 where N = 69, df = 1, p = .83.

29



Table 4.3: Does experience have an effect on preference?

Total Sridhara H None

Novice 38 12 33 3
Expert 22 7 17 3

None
6.25%

H

68.75%

Sridhara

25%

(a) Novice preference percentages

None
11.11%

H

62.96%

Sridhara

25.93%

(b) Expert preference percentages

Next, I observe the difference of preference of explanations between the 2 ques-

tions that have the same code snippet and bug, but one uses API Documentation

appended to part of my approach, and the other uses purely my own lexicalization

technique. Results are shown in table 4.4. There was no statistically significant dif-

ference in the number selecting the API supplemented explanations and non-API pure

lexicalized explanations, χ̃2 = 1.29 where N = 19, df = 1, p = .26 and χ̃2 = 2.58 where

N = 50, df = 1, p = .11. However, more subjects chose Sridhara explanations for the

Non-API version of my explanations, and there was only one less explanation of mine

chosen in the non-API version. There was also one subject who chose that none of the

explanations were useful for the API-version, while no subjects chose “None” in the

non-API version.

I also observe the difference of preference between all API explanations and all

Table 4.4: API supplement or our pure lexicalization Preference

Total Sridhara H None

API Bug C 11 2 10 1
Non-API Bug B 11 5 9 0

30



Table 4.5: API supplement or our pure lexicalization Preference (all questions)

Total Sridhara H None

API Bugs C & D 31 13 28 1
Non-API Bugs A & B 29 6 22 5

Table 4.6: How consistent are participants? ”1 & 2” means ”chosen one explanation and
at least one other of this approach.” ”Either Y” means they chose 1 other of this approach,
”Both Y” means they chose 2 other of this approach, ”No Y” means none was chosen.

Either Y Both Y No Y

Giri=Y 1 & 2 15 4 15
H = Y 1 & 2 29 21 1

NA = Y 1 & 2 0 0 24

non-API explanations, regardless of it being the same code snippet and bug to further

look for a possible specific preference between the two. Results are shown in table 4.5.

We can come to a similar conclusion that there is no significant difference between the

number of my explanations selected and Sridhara’s explanations depending on whether

API explanations were appended to my approach or not since χ̃2 = 0.88 where df = 1,

N = 69, p = .35. However, this result contradicts table 4.4 in that Sridhara was chosen

more in the amount in API bugs (41%) than non-API (20.7%), whereas Table 4.4 is

nearly the opposite.

Finally, I observe the consistency of subject preferences. For instance, I can

answer the following question: Does a subject who chose the Sridhara, et al explanation

for the first question tend to choose Sridhara again for the 2nd question? The results are

shown in table 4.6. Of the people who selected at least one Sridhara explanation, only

21% selected two Sridhara explanations and 42% of the people who selected at least

one of my explanations selected two of my explanations. According to the chi-square

test of independence, these percentages are not statistically significantly different since

χ̃2 = 2.62 where N = 69, df = 1, p = .11.
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4.3 Discussion

It is evident that students were much more likely to prefer my explanations

over Sridhara’s explanations, regardless of whether the students found the correct bug.

Question C, which consists of my technique supplemented with API, appears to be my

best result out of the other questions (highest percentage of my explanation chosen). It

also meets the 25%:75% ratio to prevent the threat of validity of having 3 explanations

to choose from while Sridhara only has 1. All 3 explanations in Question C were

almost evenly chosen, with 6 choosing the 1st explanation, and 4 choosing the 2nd

and 3rd explanations. The 1st explanation does not consist of API documentation,

but my pure lexicalization technique with some lower-level detail. The 1st explanation

performed slightly better than the 2nd and 3rd API explanations, but the difference is

not significant.

Question B is the same code snippet and bug as question C, however, question

B does not consist of API supplemented explanations. C performed somewhat better

than B overall, mostly because more subjects preferred to choose Sridhara explanations

in B and my explanation was chosen somewhat less in B, as shown in Figures 4.3a and

4.2b. Since there are no other varying factors between B and C, this result could mean

that my approach performs better when supplemented with API Documentation. More

subjects may prefer to choose Sridhara in B because my non-API explanations were

less clear in comparison than my API-explanations. As a result, the less clear my

explanations are, the more likely that participants will choose Sridhara. This shows

that it is possible that it’s better to utilize API documentation in addition to my

approach whenever possible. However, the differences between these results were not

statistically significant. This result shows potential for further analysis as future work,

where there could be a bigger population dedicated to differentiating between non-API

explanations and API supplemented explanations of my approach.

in Question A, 26.32% of subjects thought none of the explanations were useful,

while only 0% thought none was useful for questions B and D, and only 7.69% for

question C. The worst performance of Sridhara also took place in question A, with
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only 5.26% choosing his approach, as opposed to 15.38% in question C and slightly

above 35% in questions B and D. This result might indicate that the explanations

in question A were the least helpful compared to the other questions. However, my

approach still performs significantly better than Sridhara in Question A, especially if

the “None” category is excluded where I would surpass the 25%:75% ratio (92% of my

explanations versus 7.14% of Sridhara).

Question A consists of non-API supplemented explanations of my approach. It

also utilizes inter-dependencies at least one method outside the snippet. A, in particu-

lar, consisted of multiple bitwise operators in single expressions, as shown in Figure A.5,

for example. It is possible that this question had the most “none” useful explanation

choices because bitwise operators were never taught in this school. Explanations 2 and

3 of A covered the bitwise operator in detail, while explanation 1 mentioned more high-

level detail without explaining bitwise operators. 12 participants chose explanation 1,

whereas only 3 chose explanation 2, and 2 chose explanation 3. This shows that my

algorithm better explains high-level detail than less commonly used operators such as

bitwise.

Sridhara, et al. had their best performance in D while I had my worst perfor-

mance, although my approach still had a much higher percentage in D than Sridhara.

D consists of explanations that also utilizes API Documentation. Considering that

C (which also consists of API supplemented explanations) had my best performance,

D slightly contradicts that API supplemented explanations are more preferred. Com-

paring Figures 4.3a and 4.3b, however, this contradiction may not be significant, as

there is only a 14.82% difference between the percentage of chosen explanations of mine

from C compared to D. The difference for Sridhara is slightly more significant with a

difference of 22.55% but is still an overall insignificant difference from C.

Total percentages of non-API bug explanation preferences and API bug explana-

tion preferences are shown in Figures 4.5 and 4.6. It would appear that I have the same

percentage between the 2 Figures, however, there is a difference between the percentage

of “None” and Sridhara chosen. Overall, there is no significant difference in preference
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None
2.38%

H

66.67%

Sridhara

30.95%

Figure 4.5: API supplement C & D Preference

between my API supplemented approach and my non-API supplemented approach.

However, my non-API supplemented approach tends to have more “None” chosen, and

my API supplemented approach tends to have more explanations of Sridhara chosen.

This is likely an effect of how the explanations of Sridhara differs between the 2 ques-

tions. Question A consists of many complex expressions, and since complex expressions

are unsupported by Sridhara, it is less likely that subjects will choose Sridhara in A.

However, Sridhara likely supports simpler expressions in D. Thus, Sridhara performs

better in pairs C & D (where D is supported) than A & B (where A is unsupported).

Although A is unsupported, I allowed Sridhara’s approach to explain the supported

aspects of A (all other aspects such as variable assignment, variable name, and method

name). I have chosen a randomized set of domains for picking code snippets to most

emulate the chances of project encounters in the real world, and by chance, one of the

four questions was not fully supported by Sridhara.

The level of experience among my subject population had little to no effect on

the preference of explanation, as shown in Figures 4.4a and 4.4b. This result may be

due to the fact that all subjects were undergraduate students. There is potential future

work for comparing between undergraduate students and professionals in the field to

better evaluate if there could be a significant difference, as it is evident in the study

of Gugerty, et al.[18] that novice programmers have significantly slower and inferior

comprehension of debugging programs compared to expert programmers. The gap in
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None

15.15%H
66.67%

Sridhara

18.18%

Figure 4.6: non-API supplement A & B Preference

experience between senior undergraduates and freshman undergraduates, for instance,

may not be significant enough in comprehension of real-world programs.

Subjects were somewhat more consistent in picking 2 of my explanations in

addition to picking my first explanation, as compared to Sridhara. This shows that

it may be possible that the way my approach supplements lower-level explanations to

higher-level explanations is more useful, however, it is not statistically significant. This

shows potential for future studies to compare this with more participants, especially of

a more varied experience level ranging from freshman undergraduates to professionals

in the field.

4.4 Threats to Validity

Since my approach utilizes lower-level source code inter-dependencies within one

selected statement, I had three possible choices of my approach while Sridhara only

had one possible choice. This difference of the number of explanations is purely a

difference in approaches. To accommodate for this difference, I considered the number

of explanations of Sridhara chosen compared to only at least one of my explanations

being chosen per question. For instance, even if all three of my explanations were

chosen, that increases my count by only one, not three. The cases were also weighed

equally, by considering whether or not I meet the 25%:75% ratio, to accommodate for

Sridhara only having one possible choice. Despite this, the number of my explanations

chosen were significantly greater.
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Although I can add more choices of Sridhara, these choices will be irrelevant to

the bug as it will be a higher-level approach of a line of code further away from the

bug (it may not supply the bug in any way, or explain a line of code that’s different

from the bug). Even if I added 3 Sridhara explanations regardless (to test whether it

is irrelevant to the bug or not), there will be 7 choices in total per question. I chose

not to do this in order to prevent subject exhaustion. I already had a task of them

having to read 2 snippets of code, find 2 bugs, and read a pair of explanation choices,

in addition to entering demographic information. I always put Sridhara’s choice first

above all other choices in every question to help accommodate that Sridhara has only

one choice.

There was also not a statistically significant difference between bugs correctly

found and preference of choices. However, since there was a statistically significant

difference between the preference of students between the approaches, this means that

my approach was preferred in both cases of the correct and incorrect bug found. There

was also no statistically significant difference between Novice and Expert preferences.

However, the experience ranged from only freshman undergraduates to senior under-

graduates. This is not as significant of a difference to, for example, a freshman under-

graduate to an experienced professional in the field. In fact, this shows potential for

future work where I compare my approach preference between experts in the field to

student undergraduates. There were also only minor to no differences between pref-

erence for my approach supplemented with API Documentation or not. This result

shows that my approach could work equally well in both cases. There is also more

potential for future work for comparing only API documentation to my approach to

better understand the differences.
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Chapter 5

CONCLUSIONS & FUTURE WORK

This thesis presented an approach for summarizing any line of code for novice

programmers. This approach was evaluated by undergraduate students of Computer

Science at Drew University. Overall, my approach was found to be statistically sig-

nificantly preferred over a competing approach [5]. The presented approach addresses

common struggles of novice programmers to understand the following characteristics

of programs: the connection between different lines of code; the dependence of lines

of code on other lines; and the order of lines of code executed. These characteristics,

called hierarchically structured & explicitly mapped [12], were found to be missing from

novice programmers’ understanding of code in comparison to experts [12]. Therefore,

this thesis presented a method to auto-generate explanations of these characteristics

to help novices understand any line of code written by other programmers.

In summary, this thesis makes the following contributions: (1) It evaluates

current summarization approaches, and how it differs from the needs of novice pro-

grammers. (2) It proposes a novel approach toward summarization of any line of code

that will help fulfill the needs of novice programmers. (3) It evaluates this approach

through a study conducted within Computer Science classes at Drew University, to

find whether undergraduate students of Computer Science preferred my approach over

a competing approach by Sridhara, et al [5].

There are prior approaches that use a database of already made explanations

[21, 29], but my approach does not require any information beyond the source code

itself. This approach can, however, optionally augment existing API documentation to

further supplement auto-generated explanations. Prior approaches utilize dependencies

only within the same method in question [5, 10, 11, 20, 32], while my approach can
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utilize dependencies outside the method, called inter-dependencies, to further fulfill

the needs of novices as lines of code may depend on other lines of code outside of

the method. This thesis approach also summarizes any line of code possible, while

prior approaches are limited to only higher level lines of code such as methods and

classes [5, 11, 22]. Prior approaches with evaluations of programmer subjects aim their

study toward expert programmers [5, 8, 21, 31, 32], while the evaluation of this thesis

was aimed toward undergraduate computer science students who are considered novice

programmers. Finally, these prior approaches either utilize source code information

alone or API documentation information alone [16, 15, 14], while the approach in this

thesis can utilize both simultaneously.

5.1 Future Work

Including eye tracking studies within my evaluation might help identify more

accurately the process of how novice programmers understand code. In addition, in-

cluding expert programmers in the study and eye tracking for comparison might also

be fruitful. There has been prior work that utilized eye tracking to better find details

that expert programmers look for in code [8], however, this approach can lead to in-

formation useful to only expert programmers, so eye tracking for novice programmers

should also be taken into account.

While the evaluation in this thesis included novice programmers as undergrad-

uate students, it did not include novice industry programmers, or novice programmers

entering the industry recently. Having industry novice programmers in this study could

be useful to compare whether academic environments could have an effect in compar-

ison to industry environments on novices, as well as comparing those who recently

graduated to those who are still undergraduates to determine if specific coursework

taken recently can have a significant effect.

Although undergraduates preferred the explanations generated by the thesis ap-

proach, the explanations of this approach are significantly lengthier in comparison to
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the competing approach [5]. It might be useful to determine if having shorter expla-

nations is possible and if the length may have a positive or negative effect on novice

programmers, and how or why experts may or may not prefer lengthier explanations.

Finding methods to better present lengthy explanations shows potential for an in-

teractive automated tutoring application which could provide information requested

through user input (E.g. Clicking a “More info on...” link) to help prevent the display

of unnecessary information. Having experts and novices identify what information

may be extraneous in these lengthy explanations could also be important information

to better understand what is required for program comprehension.

For future work, we can augment my explanations with informal online re-

sources such as StackOverflow (a popular question-answer forum for programmers),

code reviews, online posts, video tutorials that may describe functions, methods of

source code. Currently, this thesis approach only augments explanations from API

documentation but a variety of other useful online resources exist. Many existing ap-

proaches are dedicated to utilizing information from informal documentation [17, 23,

24, 25, 26, 27, 28, 30]. For example, Treude, et al. developed an approach towards

augmenting API documentation with stack overflow information by utilizing the Stack

Overflow API and the search query of the type name found from a statement. Their

approach is a machine learning algorithm that considers POS tags, code within stack

overflow answers, position of sentence, position of API type name in the sentence,

reputation, whether the API type name is in the title, answer score, and whether it

was the accepted solution. Then, they tested the similarity of the answer to the API

Documentation description to determine the relevance of the stack overflow answer

[17]. Lastly, for future work, we should ask questions related to comprehension of code

rather than identifying bugs, because there was no statistical significance on whether

correctly identifying the bug affected the preference for explanations.

Currently, the approach proposed in this thesis is being developed into a form

of an Eclipse IDE plugin. The Eclipse IDE is an advanced Java programming editor,

and the plugin would give explanations of any line of code upon a mouse hover (see
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Figure A.2).
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Appendix A

FIGURES

41



Figure A.1: Example of this thesis approach optionally utilizing available API
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Figure A.2: Example of the proposed approach
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protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {

final int widthMode = MeasureSpec.getMode(widthMeasureSpec);

int desiredWidth = MeasureSpec.getSize(widthMeasureSpec);

lastMeasuredDesiredWidth = computeDesiredWidth();

switch (widthMode) {

case MeasureSpec.EXACTLY:

break;

case MeasureSpec.AT_MOST:

desiredWidth = Math.min(desiredWidth,

lastMeasuredDesiredWidth);

break;

case MeasureSpec.UNSPECIFIED:

desiredWidth = lastMeasuredDesiredWidth;

break;

}

Figure A.3: Ordering of variable assignments lexicalized: desiredWidth (3 assignments,
1 input parameter), lastMeasuredDesiredWidth (1 assignment, 1 input parameter, used for
desiredWidth assignment), widthMode (1 assignment)

private Map<Element, List<Element>> getElementsAnnotatedOrMetaAnnotatedWith(

RoundEnvironment roundEnv, TypeElement annotation) {

Map<Element, List<Element>> result = new LinkedHashMap<>();

for (Element element : roundEnv.getRootElements()) { //***

LinkedList<Element> stack = new LinkedList<>();

stack.push(element); //***

if (!stack.isEmpty()) { //***

result.put(element, Collections.unmodifiableList(stack)); //***

}

}

return result;

}

Figure A.4: An example of hard-to-notice dependencies: To explain a non-void method, we
start with explaining the return statement. However, for a novice, the name “result” alone
may not be enough. For example, what if there was a bug? Then a novice would have to
understand how “result” was created. Thus, we consider the lines labeled with *** which
supplies “result.” For instance, a novice could miss the detail of how “stack” is created and
used with the for loop, and stack is appended as a part of result. Control dependencies like
ifs and fors are also considered. We lexicalize statements labeled with ***, and lexicalization
is shown in our other algorithms.
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public boolean get(int x, int y) {

int offset = y * rowSize + (x / 32);

return ((bits[offset] >>> (x & 0x1f)) & 1) != 0;

}

Figure A.5: Our explanation generates the following for a statement level summary of the
return statement: “Bits[offset]” represents a value located in the “offset” index in the Bits
list. “>>>” will shift the value of “bits[offset]” to the right by the value of (x & 0x1f). Offset
is the value of “y * rowSize + (x >> 5)” where >> pushes the binary form of x to the right
by 5. y is 1st input, x is 2nd input. (x & 0x1f) represents the binary number where each 0
and 1 of x is compared to the same index of the 0 and 1 of 0x1f, where 1 & 1 is true, 1 & 0
is false, 0 & 0 is false for each spot.

x < 5

Figure A.6: Our explanation generates: x is less than 5. “x” is rhs, “5” is lhs.

isBlack = (a boolean value)

inBlack = (a boolean value)

if (isBlack != inBlack) {

transitions++;

}

Figure A.7: In the expression “isBlack != inBlack”, “isBlack” is lhs and “inBlack” is rhs.
Our explanation generates: Transition is increased for each time isBlack & inBlack are NOT
both true or false at the same time.

public static int max(a, b) {

return (a>=b)?a:b

}

Figure A.8: Our explanation generates: The max method returns “a” if “a >= b” is true.
The “?” mark takes the 1st value if true, else the 2nd after “:”. If “a >= b” is false, it takes
“b”.
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desiredWidth = Math.max(desiredWidth, lastMeasuredDesiredWidth);

Figure A.9: Our approach generates: The “desiredWidth” integer variable is assigned the
value of calling the max method, which returns the greater of two double values.

*if (steep) {

int temp = fromX;

fromX = fromY;

fromY = temp;

temp = toX;

toX = toY;

toY = temp;

}

int dx = Math.abs(toX - fromX);

int dy = Math.abs(toY - fromY);

int error = -dx >> 1;

int ystep = fromY < toY ? 1 : -1;

int xstep = fromX < toX ? 1 : -1;

int transitions = 0;

boolean inBlack = image.get(steep ? fromY : fromX, steep ? fromX :

fromY);

* for (int x = fromX, y = fromY; x != toX; x += xstep) {

*** boolean isBlack = image.get(steep ? y : x, steep ? x : y);

if (isBlack != inBlack) {

transitions++;

inBlack = isBlack;

}

Figure A.10: Our approach generates: “isBlack is assigned the value of calling the “get”
method, which returns true if the expression “bits[offset] >>> (x & 0x1f) & 1” is not equal
to 0. The “?” mark takes the 1st value if true, else the 2nd after “:”. If steep is true, isBlack
takes the x, y as inputs in the get method.” Remainder of explanation is generated and shown
in figure A.5. ***is line being summarized, *is a control block dependency.

return new ResultPointsAndTransitions(from, to, transitions);

Figure A.11: Our explanation generates: ”Returns a new ResultPointsAndTransitions
given the 1st resultpoint “from”, the 2nd resultpoint “to”, & a calculated “transitions”
integer variable.” Then, “transitions” is explained by our approach automatically, as shown
in Figure A.7. The same process is done on “from” & “to”.
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for (int x = fromX, y = fromY; x != toX; x += xstep) {

boolean isBlack = image.get(steep ? y : x, steep ? x : y);

if (isBlack != inBlack) {

transitions++;

inBlack = isBlack;

}

Figure A.12: Our approach generates: Transition is increased for each time isBlack &
inBlack are NOT both true or false at the same time.
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Appendix B

ALGORITHMS

Algorithm B.1 Process Method

function summarizeMethod(M)
output←′′

list← [] n
if M is void then
list← set of variable assignments ∈M ,

sorted by most frequent var, last occurrence first
else
list← set of return statements ∈M

end if
for each s ∈ list do
output← output + lexicalize(S, MD)

end for
return output

end function
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Algorithm B.2 Lexicalize Expression

function lexicalize(S,MD)
S ←Statement Input
MD ←Method Declaration Input
explain←Output String
switch s do

case s is method or constructor call
explain += summarizeMethodCall(S)

case s is a variable
explain += summarizeVariableDependence(S, MD)

case s is a Complex expression
explain +=summarizeExpression(S,MD)

case s is an Enum
explain += summarizeEnum(S, MD)

case s is a literal parameter
explain += ”the ” + type(s) + s

case s is literal
explain += s

case s is a list
explain += (
s + ”represents a value located in the ”
+ getSquareBracketNum(s) + ” index in the ”
+ getListName(s) + ”list”.
)
seen.add(getSquareBracketNum(s))
ComplexParameterFollow += (
lexicalize(getSquareBracketNum(S), MD)
)

return explain
end function
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Algorithm B.3 Summarizing Complex Expressions

function summarizeExpression(E,MD)
E ←Expression
MD ←Method Declaration
switch E do

case e is return statement
return ”returns”+lexicalize(stripReturn(E))

case e has comparator
explain += summarizeComparator(E)

case e has ++
explain += is increased

case e has −−
explain += is decreased

case e has −−
explain += is decreased

case e increased or decreased by more than 1 or non-literal only
subExpressions← []
for each exp ∈ E do

. exp ∈ subexpressions between operators
subExpressions.append(lexicalize(exp))

end for
explain += (
”the following integer values combined: ”

+ each subExpression
)

case e has short hand if
explain += ShortHandTable(short-If)

end function
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Algorithm B.4 Process Method Calls and Constructors

function summarizeMethodCall(M)
Output←”
follow ←[]
if constructor(M) then
output += a new + name(M)

end if
if methodcall(M) then
output += calling the+name(m)+method, which

end if
if hasParameters(M) and NOT Built-in then

if hasVariableParameters(M) then
output += given

end if
num← 0
for each parameter P in M do

seen.add(parameter)
if isLiteral(P) then
output += the + type(P) + name(P)

end if
if isVariable(P) then
follow +=P
if type(P) exists multiple times then
output += ordinal(++num) //1st,etc

end if
if type(P) is int, float, or double then
output += calculated
+ name(parameter) + type(parameter)
+ variable

else
output += name(parameter)
+ type(parameter)

end if
follow += parameter
if parameter not last and not 2nd last then
output += ” ,”

end if
if parameter is 2nd last then
output += ”, and”

else
output += ”.”

end if
end if

end for each
end if
if method M is built-in then
output += return section of API Doc

else
output += Algorithm B.1 analysis of M

end if
for each parameter P in M do
output += Algorithm B.2 analysis of P

end for each
return output

end function
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Algorithm B.5 Summarizing Variable Data and Control Dependencies

function summarizeVariableDependence(V,MD)
V ←Variable
MD ←Method Declaration
explain←”
follow ←”
while v is data dependent on assignment or append statement x ∈ md (reverse

order of appearance) do
explain += variableName(v)
if v is append statement then
follow += v represents the following: +
lexicalize(getValue(v), md)

else
follow += is assigned the value of: +
lexicalize(rhs(x), md)

end if
for each control statement c that x depends on do

if c /∈ seen then
seen.add(c)
if c is an if Statement then

if c is within on loop condition then
explain += for each time

end if
explain +=lexicalize(ifStatementCond(c), md)

end if
if c is a loop statement then

if c is a short-loop statement then
explain += every lhs(varName(c)) in the +
rhs(varName(c)) rhs(varType(c))
if (lhs(varName(c))) /∈ seen then
explain +=lhs(varName(c)) +
represents: lexicalize(lhs(varName(c)), md)

end if//Repeat above for rhs as well
end if

end if
end if

end for each
explain += follow
v ← x

end while
If not dependent on any assignment statement: return varName(v) + most recently

used method it is assigned in
return ( explain)

end function
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Appendix C

TABLES
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Table C.1: Comparator Summaries (Literals, single variables)

Symbol Explanation

Always append lhs(e) is
< less than
<= less than or equal to
== is equal to
> greater than

! = is not equal to
>= greater than or equal to

Always append
at end

rhs(e)

Table C.2: Comparator Summaries (Complex Expressions)

Symbol Explanation

Always append The expression lhs(e) is
< less than
<= less than or equal to
== is equal to
> greater than

! = is not equal to
>= greater than or equal to

Always append
at end

the expression rhs(e)

Table C.3: Comparator Summaries (2 variables or booleans)

Symbol Explanation

Always append
in beginning

lhs(e) and rhs(e) are

== both
! = not both

Always append
at end (booleans)

true or false at the same time

Always append
at end (variables)

equal to each other
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Table C.4: BitWise Summaries

Symbol Explanation

<<<
<<< will shift the value of + lhs(e) + to

the left by the value of + rhs(e)

>>>
>>> will shift the value of + lhs(e) + to

the right by the value of + rhs(e)

Table C.5: ShortHand Summaries

Symbol Explanation

!
is not

(expression method call noun/adj
or boolean literal)

++ (variable name) is increased
−− (variable name) is decreased

Short− If

getTrueConditions(e) if
getCondition(parameter) is true.

The ? mark takes the 1st value if true,
else the 2nd after :.

If getCondition(parameter) is false,
it takes getFalseConditions(e)
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Appendix D

GLOSSARY

• API-Documentation: Documentation for Built-in methods and classes.

• Binary: Numbers expressed as bits in 1’s or 0’s with base 2.

• Bitwise signed left-shift operator (<<): Shifts the 0’s and 1’s of a binary number
to the left, which as a result, decreases numbers by powers of 2.

• Bitwise signed right shift operator (>>): Shifts the 0’s and 1’s of a binary number
to the right, which as a result, increases numbers by powers of 2.

• Bitwise unsigned left-shift operator (<<<): Similar to signed but is a strictly
positive number.

• Bitwise unsigned right shift operator (>>>): Similar to signed but is a strictly
positive number.

• Built-in: Anything that is included within the coding language. This could be
methods or classes that can be utilized without the need to be programmed by
users, as it already exists as part of the language itself. All built-in methods and
classes have API-Documentation.

• Character: A letter, which can include symbols and numbers. Note that mathe-
matical operations can not be done on character numbers. For instance, adding
characters is string concatenation, not arithmetic.

• Class: Contains a collection of methods and statements for any specified purpose.
Every object is made from a “class.” For instance, a float object has a float class,
which contains built-in methods such as a round method, which returns an integer
that is rounded to a specified decimal place. User-made classes can contain user-
made methods specifically designed for the class.

• Constructor: Specifications for how an object of a class can be instantiated in
code. For instance, a “Person” object can have a height, age, and weight, all of
which are specified in the constructor can be inputted later in a statement. See
Figure A.11 for an example of returning an expression that instantiates an object
through its constructor specifications.
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• Control-Dependency: Lines of code can determine if other “control-dependent”
lines of code should be executed, as well as the number of times of execution. If
statements, For loops, and While loops are examples of Control Dependencies.

• Complex Expressions: Expressions containing two or more literals, objects, and
so on (see Figure 1.5 for an example).

• Data-Dependency: Statement(s) that utilizes variable(s), which depend on cor-
responding variable assignment(s) (see Figure A.4 for an example). If a variable
is assigned to other variables in prior lines of code, then that variable is “data-
dependent” on other lines of code.

• Double: Decimal Numbers.

• Enumerator: List of constants all specified with an object type. Enumerators are
defined as their own class while lists are defined as statements within methods.

• Equals Comparator (“==”): Checks whether 2 numbers are equal or not. It has
two equal signs adjacent to each other because a single equal sign is interpreted
to be a variable assignment.

• Expression: A collection of objects as part of one line of code. Can contain
one or more mathematical operations, such as add (+), multiply (*), divide (/),
subtract (-), and so on. Method calls that return an object can also be part of
an expression.

• Float: Decimal Numbers.

• For-loops: A control dependency that allows for the execution of the same set of
lines of code for a specified amount times. See Figure A.12 for an example of an
if statement and for loop statement.

• If-statements: A control dependency where a certain condition stated within the
if-statement must be true to execute another line of code. See Figure A.12 for
an example of an if statement and for loop statement.

• Integer or int: Whole Numbers.

• Inter-Dependency: Any dependency of lines of code that is located outside of the
method that line of code is in. For instance, A method call can be located inside
of a method, but it depends on its own method declaration which is outside of
the method that the method call is located in (see Figure 1.6).

• Literals: Any value or data in code that is utilized directly without a variable
(without the need to find data from computer memory). For example, 2 is an
integer literal and “Hello” is a string literal. The integer variable “x” of value 2
is NOT literal, because it must reference some location in computer memory to
obtain the value of 2.
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• Method Call: Refers to lines of code that is wrapped inside a method declaration
of the same name, the same number of parameters, and the same type parameters.
See Figure 1.6 for an example of a variable being assigned to a method call and
a method call referring to its declaration.

• Method Declaration: Contains lines of code that can later be called without
having to repeat those lines of code again.

• Method (non-void): Method declarations that have return statements, which
returns the value of an object or type specified in the method declaration. For
instance, a method can return an integer, string, and so on (see Figure A.4).

• Method (void): Method declarations that lack return statements and do not re-
turn any value. It is not practical to assign variables to void methods or to have
void methods as part of any expression, as it does not return any value. The
purpose of a void method is to have a side effect of some kind. For instance, a
void method might have the purpose of printing out information to the screen
in a specific format, can call other methods, and/or reassign variables (see Fig-
ure A.3).

• Objects: A data type that is either made by a programmer or already built into
the programming language. For example, String is an object that is built-in to
the Java programming language and as a result, has API documentation because
it is built-in.

• Parameter: Inputs within a method, which are then utilized for lines of code
that depend on the value of these inputs within the method declaration. These
inputs or parameters can be any expression as long as it obeys the correct type
of object specified in the parameter. For instance, a parameter can be declared
as an integer, and any expression that ultimately calculates into an integer can
be inputted as that parameter. If it is a float or double, it must be rounded to
an integer in some way or else an error will occur.

• Print Statements: Output any specified information to the computer screen.

• Recursion: Call a method inside of the same method itself repeatedly, until a cer-
tain condition specified is met. This is the only time a method call’s declaration
is inside the same declaration (non-inter-dependent). For instance, the method
can call itself inside an if-statement until the if-statement is false.

• String: A list of characters together, which can be Words, phrases, or sentences
(that can be English sentences) which can also include numbers, shown in code
between quotes. Note that mathematical operations cannot be done on string
numbers. For instance, adding strings is string concatenation, not arithmetic.
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• String Concatenation: Combine strings by putting them adjacent to each other.
For example: “Hello” + “There” is equivalent to “HelloThere”.

• Variable assignment: Assign any literal, object, or any kind of expression to a
certain part in the computer memory which can be later referred to for any fu-
ture statements. A variable has a name, and its name can be referred to in any
expression to be utilized from memory. With variable assignments, values can be
organized into a name, and the value does not have to be repeated, recalculated,
or restated in code to be utilized repeatedly. Variables can be assigned to an ex-
pression which could contain a collection of literals of any objects, mathematical
operators, comparators, variables, values returned by method calls, and many
more.

• While-loop: A control dependency that executes the same set of lines of code
until a certain condition specified is no longer met.
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