
Resolving Abbreviations and Domain

Terms in Source Code using

Documentation

May 8, 2019

Karan Erry
Drew University

Abstract
Hitherto, term resolution techniques have focused on resolving ex-

pansions for abbreviations, i.e. terms that correspond textually with

their meanings. However, in many contexts that deal with mathemat-

ical or software variables, the variables do not borrow characters from

the meanings they represent. This means that these variables cannot

be expanded using abbreviation-expansion techniques. Additionally,

current term-resolution techniques search for expansions primarily in

source code, largely ignoring a wealth of knowledge contained in the

accompanying documentation. In this paper, I present novel tech-

niques to allow the variables described above to be resolved as well,

using cues inspired by how a human understands the meaning of a

piece of code/documentation. My techniques are designed to search

documentation, leveraging natural-language clues. I also present re-

finements to previous papers’ acronym-expanding techniques. For all

techniques I achieve recall averaging in the upper third and fourth

quartiles.

2

Karan Erry

Drew University

An Honors Thesis
Submitted in Partial Fulfillment of the

Requirements for the Degree of Bachelor in Arts with Specialized Honors in
Computer Science
at Drew University

May 2019

3

Contents

Acknowledgements 4

1 Introduction 5

1.1 What is Computer Code? . 5
1.2 Why Abbreviate Code? . 5
1.3 Why automatically resolve abbreviations? 6
1.4 Two Types of Abbreviations 6
1.5 Background Terminology . 7

2 Background 8

3 Approach 11

3.1 Overview of the Process . 11
3.2 Search Area . 12
3.3 Acronym-Expansion Technique 12
3.4 Context-based Search Technique 14

3.4.1 Parts of Speech rule 14
3.4.2 Description List rule 15
3.4.3 Variable Definition rule 16

3.5 For Testing: Finding Abbreviations in Documentation as a
Proxy . 16

3.6 Consolidating and Ranking Expansions 17

4 Evaluation 18

4.1 Overview . 18
4.2 Defining the Metrics . 19
4.3 Evaluation Setup . 19
4.4 Results . 20
4.5 Easy-to-Implement Improvements 20

4.5.1 Improvements to the variable-definition rule 21
4.5.2 Improvements to the description list rule 21
4.5.3 Predicted Performance Gains post Improvements . . . 23

4.6 Major Advancements . 23
4.6.1 Major Improvements to the abbreviation-expansion tech-

nique . 24
4.6.2 Major Improvements to the variable-definition rule . . 25

1

4.6.3 Major Improvements to the description-list rule 25
4.6.4 Major Improvements to the parts-of-speech rule 26

5 Conclusions and Future Work 26

5.1 Conclusion . 26
5.2 Future Work . 27

A Techniques Source Code 30

A.1 Abbreviation-Expansion technique 30
A.2 Parts-of-Speech rule . 38
A.3 Description-List rule . 41
A.4 Variable-Definition rule . 43

List of Figures

1 Commands to a computer . 5
2 An example of shortening long computer commands 6
3 An example of regular expression searching 8
4 Parts of Speech as used in natural English language 8
5 Overview of the abbreviation resolving process 11
6 Example Part-of-Speech (Noun Phrase) Resolution 15
7 Example Description-List Formatting in HTML 16
8 Underlying HTML Code for a Description List 17
9 Evaluation Setup . 19
10 Results of the Evaluation . 21
11 Instances of the sample population where the Variable-Definition

rule failed to correctly resolve terms. 22
12 An instance of the sample population where the Description-

List rule failed to correctly resolve terms. 22
13 Predicted results following implementation of suggestions. . . 24
14 Instance 1 of the sample population where the Acronym-Expansion

technique would require major enhancements to correctly re-
solve the acronym. 25

15 Instance 2 of the sample population where the Acronym-Expansion
technique would require major enhancements to correctly re-
solve the acronym. 25

2

16 Instances of the sample population where the Variable-Definition
rule would require major enhancements to correctly resolve the
terms described. 26

17 An instance of the sample population where the Parts-of-
Speech rule would require major enhancements to correctly
resolve the terms described. 26

3

Acknowledgements

First and foremost, I would like to thank Dr. Emily Hill for serving as the
advisor to this research and thesis work. She provided immense support and
guidance along the way, while giving me room to come into my own as a
Computer Science researcher. Thank you to Dr. Seung-Kee Lee and Dr.
Barry Burd for sitting on my thesis committee, reading and re-reading my
drafts, and providing constructive feedback at every step. I am grateful to
Drew University and its Department of Mathematics and Computer Science
for allowing me the opportunity to complete this work. Finally, I would
not have reached here without the support and motivation provided by my
friends and family along the way.

4

1 Introduction

1.1 What is Computer Code?

The job of a computer programmer is to manipulate computer programs to
do certain things. They do this by writing commands in a language that
the computer understands, in order to tell the computer to behave in certain
ways. Figure 1 shows an example of what these commands may look like.
The simple computer commands shown in the example, also called computer

code, tell a computer to find a picture of a pizza and then display it to me.
(Readers familiar with programming will recognise these commands as being
pseudocode.)

Figure 1: Commands to a computer

1.2 Why Abbreviate Code?

In more complex commands, certain portions of commands may get repetitive
to write. For example, if I wanted to tell a computer to display many di�erent
things, I could write the commands shown in Figure 2a. (This example also
illustrates a di�erent language for writing computer commands, i.e. one that
requires underscores between words in a command.) However, as we can see,
the display A Picture of a portion of each command is repeated. This gets
laborious to write, and clutters the code.

Instead of writing that portion each time, I may choose to abbreviate it
the second time onwards, provided the computer will still understand what
I am trying to say. As in the code in Figure 2b, I have abbreviated the
display A Picture of a command, after the first time, to truncated versions
of the vital words: disp for ”display” and pic for ”picture”.

5

(a) Commands to display many objects (b) Abbreviating those commands

Figure 2: An example of shortening long computer commands

1.3 Why automatically resolve abbreviations?

To programmers and readers of my code who have encountered the full-form
command display A Picture of a Pizza, the usage of disp pic Bottle will be
understandable. It generally will not require a leap of understanding for one
to connect that the latter is simply an abbreviated version of the former
command, and to be carried out on a bottle rather than a pizza. However,
out of the relevant context, one can be flummoxed as to the meaning and
significance of the words disp and pic. This might be the case if they skipped
right to the portion of the code where the abbreviation was used and missed
the usage of the full-form. They might resort to doing a Google search or
asking a friend for assistance on resolving what an abbreviated command
means in context.

Computer programs generally have lots of abbreviated code, like the ex-
ample we have seen. For programmers working on large projects with hun-
dreds of lines of code, it becomes infeasible to manually look up the meanings
of each unfamiliar abbreviation here and there. Here is where techniques
to automatically resolve the expansions/meanings of abbreviations in code,
come in.

1.4 Two Types of Abbreviations

My techniques find resolutions for two types of abbreviations, explained be-
low.

True Abbreviations The first type of abbreviation is that which corre-
sponds textually with its long-form, in that all of the characters in the abbre-
viation are present in the long form. Examples include ‘UI’ (User Interface),

6

‘evt’ (event), and ‘BMP’ (Bitmap). These can be further classified into sev-
eral classes, such as acronyms, where each letter of the abbreviation stands
for a whole word in the long form; and dropped-letter short forms, which are
formed by removing any characters except the first character from the long
form. ‘UI’ is an acronym, while ‘evt’ and ‘BMP’ are examples of dropped-
letter short forms.

For convenience, I will use the term acronym to denote all abbreviations
that correspond textually with their long-forms, whether or not they are
truly acronyms as per the definition of acronym above.

Domain Terms The second type of abbreviation is that which corresponds
textually either little or not at all with its long form, but is nonetheless used
as a shorthand way of representing something. Examples include using the
go-to terms x and y in an algebra equation to stand in for real-world objects
such as apples and oranges; or using a combination of alphabetical characters
and numericals, such as t0 and t1, to denote concepts such as a start-time
and end-time.

I call these types of abbreviations Domain Terms.

1.5 Background Terminology

Regular Expressions A Regular Expression is a technique that allows
programmers to easily instruct computers to perform the otherwise-
complicated task of searching through lines of text for sequences of
characters, such as certain words or a combination of special charac-
ters and punctuation. The simple regular expression shown in Figure
3a indicates that I want to find all occurrences of the characters to

used between one and three times successively (denoted by the nota-
tion {1, 3}) in some given lines of text. In other words, I want to find
all occurrences of the character sequences to; toto; or tototo.
Figure 3b shows the results, in yellow highlighting, of applying this reg-
ular expression to a set of sentences. We see that the regular expression
found all occurrences of our search terms regardless of the characters’
casing (upper/lower) or their placement throughout the text. The regu-
lar expressions used in this paper are more complex, but are still simply
used to locate sequences of words or characters in a similar manner.

7

(a) A simple regular expression (b) After applying the regular expression

Figure 3: An example of regular expression searching

Parts of Speech Tagging Parts of Speech tagging in Computer Science is
the process of having computers automatically identify the di�erent
parts of speech that exist in language. Figure 4 shows some of the
most common parts of speech that exist in the English language, and
identifies them as used in a simple sentence.

Figure 4: Parts of Speech as used in natural English language

Given that the user guides accompanying computer code are written in
plain English, the process of searching these user guides for expansions
to abbreviations is greatly enhanced when the computer is able to filter
out certain words based on which part of speech they belong to. For
example, words belonging to the Article part of speech, such as ‘a’ or
‘the’, are unlikely to be good candidates for expansions, because they
are often ignored when abbreviations are formed.

2 Background

Significant work has been done hitherto to expand abbreviations. A large
part of this work has sought to expand abbreviations in natural language text
for the better understanding of the text [14, 16, 3, 15]; while other work has
tried to expand abbreviation in schemas [11]. Much computer science-focused
work has sought to expand abbreviations found in source code [8, 10].

Techniques vary, but they broadly follow the following structure:

8

1. Preprocessing: This variously consists of obtaining the text in which
to search for abbreviations/expansions; and either automatically or
manually curating and preparing the lists that will be used to filter
and validate abbreviations/expansions in later steps.

2. Abbreviation Identification: This consists generally of scanning the
source text for abbreviations that will be expanded in further steps.
The abbreviations may be tokenized, i.e. they may be broken up into
parts for separate processing or to focus on specific segments of the
scanned abbreviations. This is also the step where abbreviations may
be filtered through blacklists such reject lists/stop lists.

3. Expansion Search: In this step the search is conducted for possi-
ble expansions for the abbreviations from step 2. The list of possible
expansions is passed to the next step.

4. Expansion Pruning: In this step, various optimisations and tech-
niques are used to disregard weak expansions.

5. Expansion Selection: In this step, a heuristic is used to select one
expansion out of a list of very eligible candidates.

Di�erent steps have been taken to preprocess the target text to make
parsing abbreviations more e�cient. These include replacing non-alphabetic
characters with spaces and multiple spaces with a single space [16]; disre-
garding lines of text that are all uppercase [14].

The target text is then parsed for abbreviations to expand. The first
step may be to divide parsed abbreviations into small constituent parts for
analysis [1, 4, 2, 5, 12]. Di�erent papers have used di�erent definitions of
what constitutes an acronym. These include defining an acronym candidate
as an upper-cased word from 3 to 10 characters in length [14].

Finally, the acronyms are often filtered further so that a search is only
conducted for those terms that are actually considered acronyms. This in-
cludes using a reject list that contains words that bear characteristics to
acronyms but are not acronyms, such as regular words that commonly ap-
pear in upper-case simply as a font stylisation [14].

Di�erent novel techniques have been used to perform the search for ex-
pansions. This includes using compression [16]; computing features from
alignments in candidate abbreviations [3]; using Machine Learning and Neu-
ral Network techniques to train a connectionist network to expand abbre-
viations correctly [11]; using a combination of edit distance, reuse factor,
abbreviation factor, and domain and general significance measures to proxy

9

for the strength of an expansion [15]; assigning a precedence to di�erent types
of words and ranking expansion candidates based on which of the types of
words they are comprised of [14].

Many have identified the context of an acronym as being an important
search area for its expansion [16]. Some went further to divide up the context
into the context preceding the acronym and that following the acronym [14].

Expansions are filtered using various techniques. These include the appli-
cation of a learning algorithm to determine the applicability of a particular
expansion based on characteristics such as the proportion of adjacent letters
in the expansion [8]; restricting expansions such that each word in the expan-
sion contributes to only upto six consecutive letters making up the acronym
[16]; discarding long forms that are shorter than the abbreviation [13].

One method of filtering expansions involves curating blacklists against
which to check expansions. Blacklisting techniques include a stoplist for
excluding ubiquitous words from expansions. Alternatively, whitelists include
databases of commonly-used or previously-expanded acronyms.

Many have also curated their own whitelists and blacklists of abbrevia-
tions and expansions against which they verify or invalidate found abbrevi-
ations or expansions. These include whitelists of valid dictionary words or
lists of natural-language words and phrases extracted from the code [1].

From a filtered list of possible expansions, various techniques have been
employed to select one expansion. These techniques include selecting the
shortest long form that matches the short form [13, 7].

Abbreviation expansion has applicability in many scenarios, including in
schema-matching [11]; in a hypertext context to link documents which are
related to each other [14]; in the form of a tool that would provide acronym
expansions instantly for reading government documents that contain a large
number of acronyms [14].

The field of resolving the meanings of domain terms is largely unexplored.
Doing a search on Google Scholar [6] for “domain term” or “domain abbre-
viation” yields no useful results.

Some notable di�erences exist between abbreviation expansion of domain
term resolution, such as that abbreviations usually denote the same long
form across multiple usages, whereas domain terms are very locally-scoped,
and may be used to denote separate things in di�erent contexts, even within
the same paper.

Nevertheless, some techniques that have been used on abbreviation ex-
pansion in the past may assist in domain term resolution. These include

10

using syntactic cues [9] and an “adjacency to parentheses” rule [13], both
techniques that have been used in prior research to strengthen the confi-
dence in acronym expansions.

Even though there is no existing literature to indicate where domain term
resolution would be applicable, we can estimate areas in which it might be
useful. For one, we can estimate that domain term resolution techniques
would benefit all abbreviation expansion attempts, by filtering expansions
using non-textual-based techniques.

3 Approach

3.1 Overview of the Process

The process of matching an abbreviation with its resolution follows the steps
outlined below and in Figure 5:

Figure 5: Overview of the abbreviation resolving process

1. Find usages of the given abbreviation in documentation
2. Search the scope of each usage for resolutions

(a) Technique #1: Search for acronym-expansions assuming the ab-
breviation is an acronym

(b) Technique #2: Search for context-aided resolutions regardless of
the type of abbreviation

3. Aggregate all resolution matches together and assign weights based on
confidence in the match

11

In Sections 3.3 and 3.4 below, I explain in detail the two resolution-search
techniques that I use simultaneously. Table 1 towards the end of this section
contains a summary of my di�erent techniques/rules and their applicability.

3.2 Search Area

A key part of my approach is to search for resolutions in the documentation
that accompanies source code. Both my acronym-expansion and context-
based search techniques are tailored to run specifically on published source
code documentation in HTML format. Searching for resolutions in the doc-
umentation has tended to be largely overlooked in the state of the art.

3.3 Acronym-Expansion Technique

My acronym-expanding technique searches for expansions to abbreviations
by searching for consecutive words that begin with the letters that form the
abbreviation in question. This search is implemented using regular expres-
sions constructed using the letters that make up the abbreviation.

The technique works on acronyms as defined in Section 1.4, with the
exception that it does not work for single-letter acronyms. Examples of
single-letter acronyms include l which commonly stands for ‘length’ or ‘liter’,
depending on context; and g which may stand for ‘gravity’ or ‘grams’. My
acronym-expanding technique tends to match too many false positive possible
expansions for single-letter acronyms, e�ectively rendering the search useless.
Thus, single-letter acronyms benefit more from the context-based technique,
described in Section 3.4.

The acronym-expansion technique follows the following steps:

1. Get a list of possible abbreviations. This step is required when

running the algorithm for testing; see Section 3.5 for details. The al-
gorithm will never be able to tell for sure what is an abbreviation and
what is not. However, there are some rules I can put in place to get
as accurate a list of abbreviations as possible out of all the words con-
tained in the document.
The steps consist of:
(a) Get a list of words, defining a word as all alphabetical characters

that follow (i) Whitespace, (ii) Punctuation, or (iii) Parentheses;
(b) Filter out valid dictionary words

12

(c) Filter out plurals of uppercase words (e.g. UIs, BMPs);
(d) Filter out single-letter words and words of length greater than 3

letters.
2. Get initial list of expansions. An initial list of expansions is found

by first doing a character-by-character expansion search, implemented
with regular expressions, for sequences of words that each start with
consecutive letters in the acronym. This expansion search is done in
two parts:
(a) Searching in regular sentences. In regular sentences where

words may be separated by both whitespace and punctuation, I
search for expansions by allowing individual words in an expansion
to be separated by any one of the following: (i) An unlimited
number of whitespace characters except newline characters, (ii) a
single hyphen, or (iii) a single underscore. The arbitrary amount
of whitespace is to allow for varying amounts of spacing between
words for formatting purposes; the hyphen or underscore is to
allow hyphenated or underscore-separated words (also knows as
snake-case formatting) to be considered as separate words that
can be part of an expansion.

(b) Searching in camel-cased words. In camel-cased terms, I
parse individual words at the natural word boundaries created
by camel case.

3. Filter the list of expansions. The expansions derived from Step 2
are filtered using di�erent rules, to derive a list of hopefully high-quality
expansions, from which a final expansion will eventually be selected.
These rules are:

• Checking that each word in an expansion is an actual

word. For every expansion in the initial list, the algorithm that
checks that each word in the expansion is either: (i) An English
word, by checking whether the word is in the words.dict list, or
(ii) a commonly-used proper noun used in English, by checking
whether the word is in the properNouns.dict list.

• Limiting words in expansions to >2 characters in length.

This is to eliminate insignificant words that are not often included
in the acronyms, and by extension, if they are present in a possible
expansion, the expansion is likely incorrect.

13

• Ensuring words in expansions are not stop words. Similar
to the rule above, this rule filters out words in expansions that
are stop words, and thus also unlikely to be part of a correct
expansion, by checking that words are not in the my.stop stop
word list.

• Checking that expansions are either nouns or adjectives.

This rule aims to build on the stop words / insignificant words
rules above, exploiting a characteristic in expansions that words
usually belong to only the Nouns or Adjectives parts of speech.

3.4 Context-based Search Technique

The context-based search technique uses grammar- and punctuation-based
clues to locate resolutions within the scope of an abbreviation. Mimicking
an intelligent search as a human would perform it, this technique searches
the immediate to near scope of the abbreviation for English words, phrases
and punctuation that tend to precede or follow the resolution for a neigh-
boring abbreviation, and subsequently use these clues to zero in on potential
resolutions.

This technique is e�ective on both types of abbreviations, but is partic-
ularly useful for domain terms. This is because by their very definition as
outlined in Section 1.4, domain terms have no hope of being expanded by my
acronym-expansion technique, or any other approaches in the predominantly
acronym-expansion-based state of the art.

The context-based technique is also useful in cases where, even if the
acronym-expansion technique matches an acronym with its correct expan-
sion, the context-based technique gives a more meaningful expansion. For
example, in the sentence fragment “Let p be the number of post o�ces,” the
acronym-expansion technique might match p to expand to “post o�ces”, but
the context-based technique, using the Variable-Definition rule defined below,
matches “the number of post o�ces” – a much more contextual expansion.

Below, I outline the rules that comprise the context-based search tech-
nique.

3.4.1 Parts of Speech rule

Many resolutions just precede the terms they define. For example, in Figure
6, there is a clear explanation that x is a “private key”. Thus, when we find

14

that x is an abbreviation to be expanded, I can search in the abbreviation’s
preceding vicinity for resolutions.

Figure 6: Example Part-of-Speech (Noun Phrase) Resolution

The parts-of-speech rule looks for resolutions of the above form, and filters
them by ensuring they conform to either of the two common parts-of-speech
patterns that such resolutions usually exhibit:

• Standalone nouns. The first kind is where the resolution is a single,
standalone noun, found in a phrase of the form determiner–noun–abbreviation;

• Noun Phrases. The other kind is where the resolution is a noun
phrase, found in a phrase of the form determiner–adjective–noun–abbreviation.
My parts-of-speech rule currently only supports noun phrases of the
aforementioned structure, with a two-word noun phrase.

3.4.2 Description List rule

The description-list rule takes advantage of the description list formatting
type that exists in HTML, for use in formatting data consisting of a term
and a corresponding definition, and to be rendered in such a way that this
term-definition distinction is easily recognizable by readers. Figure 7 below
shows an example of a description list as it appears on a page of Java SE
Documentation, that uses the description-list HTML feature to display it in
this format.

Owing to the description-lists feature being used solely for the purpose
of describing/defining terms, this makes a description list contained in a

15

Figure 7: Example Description-List Formatting in HTML

documentation page an ideal candidate for parsing the definitions to the
terms it contains. Figure 8 shows a snippet of the HTML code underlying the
description list shown above. My technique parses this underlying HTML,
identifying a description list by searching for the <dl> tag, then identifying
each term and its definition by using the <dt> and <dd> tags, respectively.

Definitions for terms found in description lists tend to be high in accuracy.

3.4.3 Variable Definition rule

The Variable Definition rule leverages statements in documentation of the
form “Let p be the number of post o�ces in the area”. Such sentence structure
is very easily parsed by automated methods, because they are arguable the
most explicit definition of a term to mean something, thus yielding high-
accuracy term and expansion results.

3.5 For Testing: Finding Abbreviations in Documen-

tation as a Proxy

My abbreviation-resolution techniques can be run in two ‘modes’: Actively,
to search for resolutions for a given abbreviation/domain term (or list thereof)

16

Figure 8: Underlying HTML Code for a Description List

by searching documentation; or Passively, usually for testing purposes, whereby
an abbreviation-identifying search is first done on the documentation to get
a list of abbreviations/domain terms to resolve, and then the techniques are
run.

3.6 Consolidating and Ranking Expansions

The resolutions matched by the two techniques above are consolidated and
ranked using an order of priority, formulated based on the accuracy of each
technique’s/rule’s resolutions matched. The consequence of this priority is
that the resolutions matched by a higher-priority technique will be considered
higher-likelihood candidates for actual consideration than those matched by
techniques with lower priorities. The order of priority goes as follows, in
decreasing order:

1. Description List rule
2. Variable Definition rule
3. Parts of Speech rule
4. Abbreviation-Expansion technique

17

Rule
Works

on
Acronyms

Works
on

Domain
Terms

Example Occurrence
(Term in

:::::
wavy

::::::::::
underline,

Expansion in underline,
Key Identifying Characteristics in bold,
“...” indicates that term and expansion

may be located far apart.)
Acronym-Expansion X

:::::
AES ... Advanced Encryption Standard

Parts of Speech X X the destination array
:::
buf

Description List X X Phrase Meaning

:::::::
carShd car to be shared

Variable-Definition X X Let
::
t0 be the experiment start time.

Table 1: Summary of Approaches

4 Evaluation

4.1 Overview

In evaluating the work that has been done so far, I would ideally seek to
answer the question: “To what extent do my techniques resolve the meanings
of abbreviations and terms as well as a human can?” However, the current
state of this research does not present the techniques as a one-stop solution
for expanding all abbreviations and domain terms that may be present in a
piece of code or documentation. Thus, it would be more accurate to evaluate
the e�ectiveness of my techniques on only those abbreviations/domain terms
present in the contexts that each technique is targeted to handle, or in other
words that each technique should theoretically be able to handle.

With this in mind, I seek to answer the following revised, more targeted
question:

To what extent does each technique resolve the mean-

ings of those abbreviations/domain terms that it should

theoretically be able to resolve, as well as a human can?

18

4.2 Defining the Metrics

With the evaluation research question as defined in Section 4.1 in mind, I
define the following metric for evaluating the performance of my techniques:

Recall: The percentage of abbreviations/domain terms that each
technique is able to correctly resolve, out of all the abbreviation-
s/domain terms it should theoretically be able to resolve.

4.3 Evaluation Setup

Figure 9: Evaluation Setup

I evaluated my approach by individually assessing the e�ectiveness of the
following major components:

1. Abbreviation-Expansion technique
2. Description-List rule
3. Variable-Definition rule
4. Parts-of-Speech rule

The assessment consisted of the following steps, as illustrated in Figure 9:

1. First, for each component, a sample population was picked, consisting
of abbreviations or domain terms (where applicable) that the compo-
nent’s techniques should theoretically be able to expand. For example,
an ideal sample population for component 4 (the parts-of-speech rule)
would be 30 instances of abbreviations/domain terms whose resolutions
can be arrived at using the strategies that we aimed to encompass in
the parts-of-speech rule.

2. Next, simultaneously:
(a) Each component’s computer program was run on its sample pop-

ulation;

19

(b) I manually populated a ‘model set’ (or gold set) of each sample
population’s abbreviations/domain terms, and the best resolution
I was able to determine for them.

3. Finally, the recall was calculated by comparing the resolutions derived
from Step 2a against all the resolutions in the gold set.

The results of the assessment are discussed in Section 4.4. In Section 4.5, I
suggest some relatively-straightforward enhancements to the techniques that
would significantly increase the recall achieved. Finally, in Section 4.6, I
outline some major enhancements that can inch the recall closer to 100% on
the sample population.

4.4 Results

The recall achieved by running the assessment for each of the four compo-
nents is graphed in Figure 10. Each of the four labeled bars corresponds to
a plot of the recall achieved by each of the four components being evaluated.
The y-axis quantifies this recall.

As we see, the acronym-expansion technique has the highest recall of all
the components evaluated. The description-list rule comes in second with a
recall of over 50%, and the variable-definition and parts-of-speech rules tie for
third at around 42%. For a possible explanation of the acronym-expansion
technique’s significantly higher recall rate over the recall rates of the three
context-based rules, see Section 4.5.3.

4.5 Easy-to-Implement Improvements

When creating the gold set by hand, I noticed that there were a significant
number of cases in which the present techniques failed to correctly resolve
the terms at hand because of relatively easy-to-rectify shortcomings. I de-
tail these possible improvements in this section, and predict the gains on
performance that we can hope to achieve following their implementation.

Note: No minor improvements can be made to either the acronym-expansion

technique or the parts-of-speech rule to increase their recall on the sample

population.

20

Figure 10: Results of the Evaluation

4.5.1 Improvements to the variable-definition rule

In Figures 11a and 11b, we see two resolutions that the current iteration of the
variable-definition rule returned. In both cases, the general text is correct,
but the rule simply overran the bounds for the correct resolution. In both
cases, the resolution should have ended at the first semicolon encountered.

In Figures 11c and 11d, we see multiple variable definitions listed using a
single “let” keyword. In 11c, the three variable definitions are formatted in
a standard comma-delimited list, and in 11d, the two variable definitions are
separated by the “and.” Both these standard list formats should be accounted
for when searching for variable definitions.

4.5.2 Improvements to the description list rule

In Figure 12, we see a resolution that the current iteration of the description-
list rule returned. Similar to the lessons learned with regards to the variable-
definition rule’s figures 11a and 11b above, the resolution should have termi-
nated at the end of the first line, thus: “A descriptive message to be placed
in the dialog box.”

21

(a)

(b)

(c)

(d)

Figure 11: Instances of the sample population where the Variable-Definition
rule failed to correctly resolve terms.

Figure 12: An instance of the sample population where the Description-List
rule failed to correctly resolve terms.

22

4.5.3 Predicted Performance Gains post Improvements

The predicted gains in recall that we would achieve by implementing the
above suggested improvements are graphed in Figure 13. Each of the four
labeled bars corresponds to a plot of the recall predicted to be achieved by
each of the four updated components; the y-axis quantifies this recall.

Some of the bars have two shades. The lower shaded segment depicts
the actual, measured recall of the techniques in their current form, as il-
lustrated earlier in Figure 10. The upper shaded segment depicts the gains
in recall that are achieved by the implementation of the above suggested
improvements.

As we see, following implementation of the suggested minor improve-
ments to the variable-definition and description-list rules, their recall rises
significantly. The description-list rule achieves 100% recall on the sample
population, and the variable-definition rule achieves over 75% recall. Unfor-
tunately, no small improvements can be made to improve the recall of the
acronym-expansion technique and the parts-of-speech rule.

For those wondering whether there is an explanation for the acronym-
expansion technique’s significantly higher actual, measured recall rate over
the actual, measured recall rates of the three context-based rules, I can-
not comment on any specific reason that that is the case. However, after
looking at the data in Figure 13, we may reasonably presume that minor
improvements to the acronym-expansion technique, of the likes of those sug-
gested in the preceding sections for the variable-definition and description-list
rules, were simply incorporated earlier on in the development of the acronym-
expansion rule.

4.6 Major Advancements

With the goal of eventually getting the techniques to reach a 100% recall, in
this section I outline some of the challenging enhancements that will need to
be implemented in order to inch the techniques closer to perfect performance.
The discussion of how these enhancements would be implemented, and how
to account for edge cases, is beyond the scope of this paper.

23

Figure 13: Predicted results following implementation of suggestions.

4.6.1 Major Improvements to the abbreviation-expansion tech-

nique

In Figure 14, we see the acronym “NIO,” and its correct expansion, “non-
blocking I/O.” This expansion is unique in several ways: First, there is a word
(“blocking”) between two of the words in the expansion; Second, part of the
acronym (“IO”) is an abbreviated form of a widely-used acronym, I/O, which
expands to “Input/Output.” A future iteration of the acronym-expansion
technique will not only have to take into account possible non-abbreviated
words like “blocking” between words in the actual expansion, but will also
have to decide whether to expand “IO” to the acronym “I/O,” or to its full
expansion, “Input/Output,” which would likely require a recursive expanding
process. Regardless, the current technique is far away from considering “non-
blocking I/O” a legitimate expansion for “NIO.”

In Figure 15, we see the acronym “JAX,” and its correct expansion, “Java
API for XML.” The improvements required to correctly resolve this expan-
sion are similar to those for the “NIO” example above: Deciding whether
to retain or expand acronyms within the expansion (in this case, “API” and

24

(a) (b)

Figure 14: Instance 1 of the sample population where the Acronym-
Expansion technique would require major enhancements to correctly resolve
the acronym.

(a) (b)

Figure 15: Instance 2 of the sample population where the Acronym-
Expansion technique would require major enhancements to correctly resolve
the acronym.

“XML”); and allowing for non-abbreviated words interspersing the abbrevi-
ated words in the expansion (in this case, “for”).

4.6.2 Major Improvements to the variable-definition rule

In Figure 16a, we see a special case of the variable-definition rule: An equals-
sign is used to assign the meaning “newType.parameterType(i)” to the
variable “T0”. A future iteration of the variable-definition rule should take
into account statements of the form “Let x = y,” in addition to the existing
“Let x be y.”

In Figure 16b, we see a case of variable definition that is unique in several
ways: One, that the terms “T0” and “T1” are assigned their meanings in a
sentence of structure “Let a and b be x and y, respectively”; Two, they are
assigned two di�erent meanings each, with the assumption that the reader
will infer, using context, which meaning to substitute. A future iteration of
the rule should take these quirks into account.

4.6.3 Major Improvements to the description-list rule

Following the implementation of the improvements suggested in the previous
sections, the description-list rule was able to achieve a 100% recall. Thus, I
have no major improvements to suggest for this rule.

25

(a)

(b)

Figure 16: Instances of the sample population where the Variable-Definition
rule would require major enhancements to correctly resolve the terms de-
scribed.

Figure 17: An instance of the sample population where the Parts-of-Speech
rule would require major enhancements to correctly resolve the terms de-
scribed.

4.6.4 Major Improvements to the parts-of-speech rule

In Figure 17, we see an example of two terms, “invokeExact” and “invoke,”
both labeled “methods.” The correct parts-of-speech resolution would be to
resolve each term as being a “method;” however this requires recognizing
that both terms are bound to the plural noun phrase “methods.” A future
iteration of the parts-of-speech rule would take this into account, including
if the resolution “methods” applied to a list of, say, comma-delimited terms.

5 Conclusions and Future Work

5.1 Conclusion

In this thesis, I have presented a technique for resolving the meanings of
terms in source code. For programmers unfamiliar to pieces of source code,
resolving the meanings of terms and short forms used in the code can be
invaluable compared to the time it can take to look up those meanings.
Additionally, in some specialized domains, the meanings of short forms may
not be well documented online, and would force the programmer to have to
look up usages of the terms in the documentation.

26

In the future, these techniques would be most useful in the form of a
ready-to-use tool that programmers can summon instantly to use within
their favourite Integrated Development Environment (IDE).

In the meanwhile, however, the techniques need certain improvements, as
discussed in the next section.

5.2 Future Work

• Using online/existing databases of information to search for resolutions
to commonly-used short-forms, and also resolutions to acronyms that
are simply proper nouns like company names; diseases; chemicals, etc.
This does not necessarily mean we should not perform our own search
for these abbreviations, because in certain contexts, a commonly-used
short form may be used within a local scope to stand for something
completely di�erent from the generally-used meaning.
For example, in the java/util/Formatter Java documentation page, the
term ‘OS’ stands for ‘output stream’, not the almost universally-used
meaning ‘operating system’.

• My techniques at this point do not search the documentation accom-

panying individual bits of source code, but instead search only the ex-
isting documentation out there. Additionally, they are currently only
designed to search through Java documentation. In the future, they
can be tailored to run on documentation pages for more programming
languages and also be integrated to search for resolutions in a piece of
code or or software’s accompanying documentation.

• As was seen in Section 4, the approaches in their current form tend
to match many terms that are not actual candidates to be expanded,
such as numbers, strings, data types and truth values. Improvements
can be made to the approaches’ accuracy of matching term candidates
that should be expanded.

27

References

[1] Giuliano Antoniol, Gerardo Canfora, Gerardo Casazza, Andrea De Lu-
cia, and Ettore Merlo. Recovering traceability links between code and
documentation. IEEE transactions on software engineering, 28(10):970–
983, 2002.

[2] Bruno Caprile and Paolo Tonella. Restructuring program identifier
names. In icsm, pages 97–107, 2000.

[3] Je�rey T Chang, Hinrich Schütze, and Russ B Altman. Creating an
online dictionary of abbreviations from medline. Journal of the American
Medical Informatics Association, 9(6):612–620, 2002.

[4] Florian Deissenboeck and Markus Pizka. Concise and consistent naming.
Software Quality Journal, 14(3):261–282, 2006.

[5] Henry Feild, David Binkley, and Dawn Lawrie. An empirical com-
parison of techniques for extracting concept abbreviations from iden-
tifiers. In Proceedings of IASTED International Conference on Software
Engineering and Applications (SEA’06), 2006.

[6] Inc. Google. Google scholar.

[7] Emily Hill, Zachary P Fry, Haley Boyd, Giriprasad Sridhara, Yana
Novikova, Lori Pollock, and K Vijay-Shanker. Amap: automatically
mining abbreviation expansions in programs to enhance software mainte-
nance tools. In Proceedings of the 2008 international working conference
on Mining software repositories, pages 79–88. ACM, 2008.

[8] Dawn Lawrie, Henry Feild, and David Binkley. Extracting meaning
from abbreviated identifiers. In Seventh IEEE International Working
Conference on Source Code Analysis and Manipulation (SCAM 2007),
pages 213–222. IEEE, 2007.

[9] Youngja Park and Roy J Byrd. Hybrid text mining for finding abbre-
viations and their definitions. In Proceedings of the 2001 conference on
empirical methods in natural language processing, 2001.

[10] James Pustejovsky, José Castano, Brent Cochran, Maciej Kotecki,
and Michael Morrell. Automatic extraction of acronym-meaning pairs

28

from medline databases. Studies in health technology and informatics,
(1):371–375, 2001.

[11] L Ratinov and Ehud Gudes. Abbreviation expansion in schema match-
ing and web integration. In Proceedings of the 2004 IEEE/WIC/ACM
International Conference on Web Intelligence, pages 485–489. IEEE
Computer Society, 2004.

[12] Juergen Rilling and Tuomas Klemola. Identifying comprehension bot-
tlenecks using program slicing and cognitive complexity metrics. In 11th
IEEE International Workshop on Program Comprehension, 2003., pages
115–124. IEEE, 2003.

[13] Ariel S Schwartz and Marti A Hearst. A simple algorithm for identifying
abbreviation definitions in biomedical text. In Biocomputing 2003, pages
451–462. World Scientific, 2002.

[14] Kazem Taghva and Je� Gilbreth. Recognizing acronyms and their defi-
nitions. International Journal on Document Analysis and Recognition,
1(4):191–198, 1999.

[15] Wilson Wong, Wei Liu, and Mohammed Bennamoun. Integrated scoring
for spelling error correction, abbreviation expansion and case restoration
in dirty text. In Proceedings of the fifth Australasian conference on Data
mining and analystics-Volume 61, pages 83–89. Australian Computer
Society, Inc., 2006.

[16] Stuart Yeates, David Bainbridge, and Ian H Witten. Using compression
to identify acronyms in text. arXiv preprint cs/0007003, 2000.

29

Listings

1 Abbreviation-Expansion technique 30
2 Parts-of-Speech rule . 38
3 Description-List rule . 41
4 Variable-Definition rule . 43

Appendix A Techniques Source Code

A.1 Abbreviation-Expansion technique

Listing 1: Abbreviation-Expansion technique
import os, sys, re, html2text, itertools, csv, helpers, pandas

as pd
from tabulate import tabulate
from operator import itemgetter
from collections import OrderedDict

def getText(match, group=0):
return match[group]

def getExpnStr(acronymExpnMatch):
cleans the acronym-expansion-match�s groups
then joins them using spaces to get the full string of the

expansion
expnGroups = [group.strip().lower() for group in

acronymExpnMatch.groups()]
return � �.join(expnGroups)

def stripApos(string):
return ��.join((char for char in string if char is not "�"))

def filterDupes(matchList, stringGetter = getText):
Filter out duplicates IN PLACE
frequencyPairs = countMatches(matchList, stringGetter)
index = 0
for index, pair in enumerate(frequencyPairs):

30

matchList[index] = pair[0]
del matchList[index+1:]

def countMatches(matchList, stringGetter = getText, ignorecase
= False):

""" Takes any list of matches and returns a consolidated
list of [match, frequency] pairs.

-- Takes an optional stringGetter function that will
return a different string for a match than the default
function getText. Useful when the specific type of
matches passed must be consolidated on a match-string
that is not necessarily the 0th-group string."""

matchStrUniques, matchUniques = [], []
for match in matchList:

mStr = stringGetter(match)
if mStr.lower() not in matchStrUniques: # match is fresh

matchStrUniques.append(mStr.lower())
matchUniques.append([match, 1])

else: # match is a duplicate
index = matchStrUniques.index(mStr.lower())
matchUniques[index][1] += 1

return matchUniques

def filterCheckEachSegment(matches, cond, extraParams=()):
valid_matches = []
for match in matches: # for all passed matches

allGroupsPass = True
for group in match.groups():

if not cond(group, *extraParams): # evaluate the
condition for each segment

allGroupsPass = False
break

if allGroupsPass:
valid_matches.append(match) # if all segments of current

match are valid
return valid_matches

def nonWordOccursAsParamVar(nonWord, text):

31

paramVarMatches = list(re.finditer(r�(?<= \n)[a-zA-Z0-9_.]+ [
a-zA-Z0-9_.]+\([a-zA-Z0-9_,.]*[a-zA-Z0-9_.]+ %s(,[a-zA-
Z0-9_.,]+)?\)(?=\n\n)� % nonWord, text))

if paramVarMatches:
paramTypes = set()
for pvMatch in paramVarMatches:

pvTypeMatch = re.search(r�[a-zA-Z_]+(?= %s(,|\)))� %
nonWord, pvMatch[0])

paramTypes.add(pvTypeMatch[0])
return paramTypes

else:
return None

def main():
file_NWs = [] # master non-word store
expns = [] # master expn store
Populate list of files to analyse
try:

allFiles = helpers.getFileList(sys.argv[1])
except IndexError:

print(�\tUsage: python3 script_getXYZ.py [...[/relative/
path/to/file]] (OR) [absolute/path/to/file]�)

sys.exit()
Parse and analyse each file
for filePath in allFiles:

dirPath, fileName = os.path.split(filePath)
print(�------- FILE :�, fileName)
print(�(1)\tGetting Non-Words...�)
STEP 1: STRIP HTML
with open(filePath, �r�) as f:

text = helpers.stripHTML(f.read())
print(text) # debug

STEP 2: IDENTIFY WORDS AND THEN GET NON-WORDS
Step 2-(a) Get all WORDS
all_words = list(re.finditer(r""" # match words as all

alphabetical characters that follow (1) whitespace (2)

32

punctuation (3) brackets
(?<=[\s,.?!(){}]) # Lookbehind assertion for whitespace/

punctuation/bracket
[a-zA-Z]+ # All following alphabetical characters
(�[a-zA-Z]+)? # Optional apostrophe with more

alphabetical characters following
""", text, re.VERBOSE))

Step 2-(b) Get a list of non-words
try: # use cache of non-words from previous run, if

specified and one exists
if sys.argv[2] == �-u�:

with open(�non_word_cache�, �r�) as cache:
cached_non_words = [entry.split(�\t�) for entry in

cache.read().split(�\n�)] # list of tuple-pairs
cached_non_words = [non_word[1] for non_word in

cached_non_words if non_word[0]==filePath] # list
of the current file�s non-words

if len(cached_non_words) == 0:
raise ValueError # the non-word cache is empty

non_words = [word for word in all_words if getText(
word) in cached_non_words] # check against cache
but maintain non-words as being regex match
objects

else:
raise ValueError

except: # freshly derive a list of non-words by checking
for absence in the chosen dictionary

with open(�AMAP Downloads/modified/all_five_lists.dict�)
as g:

amapDict = g.read().split(�\n�) # open and store the
dictionary

amapDict = [word.lower() for word in amapDict] # clean up
dictionary casing

non_words = [word for word in all_words if (
not (getText(word)[:-1].isupper() and getText(word)

[-1]==�s�) # weed out plurals of uppercase non-
words (e.g. UIs, BMPs)

33

and len(getText(word)) > 1 and len(getText(word)) < 4 #
length is either 2 or 3 letters

and stripApos(getText(word)).lower() not in amapDict #
word is not a valid dictionary word

)]
filterDupes(non_words) # filter out duplicates
file_NWs += [[fileName, getText(non_word)] for non_word in

non_words] # add to master non-word list
for non_word in non_words:
print(getText(non_word))
print(len(non_words))

filter nw by scope
for x in range(1):

print(�(2)\tGetting Expansions...�)
STEP 3: Assuming the non-words are acronyms, search

for their expansions.
for non_word in non_words:

valid_matches = []
nw = getText(non_word)

Approach 2(a): Word boundaries
lb = r�(?<![a-zA-Z])� # lookbehind -ve for word

boundary
expn = r"""

(%s # first letter of acronym
[a-zA-Z]+) # one or more alphabet characters

"""
island = r�(?:[\t\r\f\v]+|-|_)� # non-cap group,

islands as arbitrary num of whitespace characters
except newline, or hyphen, or underscore

la = r�(?![a-zA-Z])� # lookahead -ve for word
boundary

if len(nw) == 2: # acronyms of length 2
expr = lb + expn + island + expn + la
matches_1 = re.finditer(expr % (nw[0], nw[1]), text,

re.VERBOSE | re.IGNORECASE)

34

elif len(nw) == 3: # of length 3
expr = lb + ((expn + island) * 2) + expn + la
matches_1 = re.finditer(expr % (nw[0], nw[1], nw[2]),

text, re.VERBOSE | re.IGNORECASE)
elif len(nw) == 4: # of length 4

expr = lb + ((expn + island) * 3) + expn + la
matches_1 = re.finditer(expr % (nw[0], nw[1], nw[2],

nw[3]), text, re.VERBOSE | re.IGNORECASE)

Approach 2(b): Camelcased expansions
nw_uc = nw.upper()
print(nw_uc)
first = r"""

((?:(?<![a-zA-Z])%s # first letter of expansion,
either as lowercase at a word boundary...

|%s) # ... or as uppercase wherever in a line
[a-z]+) # followed by one or more LOWERCASE

alphabetical characters
"""

rest = r"""
(%s # first letter only as UPPERCASE
[a-z]+) # followed by one or more LOWERCASE

alphabetical characters
"""

if len(nw) == 2: # acronyms of length 2
expr = first + rest
matches_2 = re.finditer(expr % (nw.lower()[0], nw_uc

[0], nw_uc[1]), text, re.VERBOSE)
elif len(nw) == 3: # of length 3

expr = first + rest + rest
matches_2 = re.finditer(expr % (nw.lower()[0], nw_uc

[0], nw_uc[1], nw_uc[2]), text, re.VERBOSE)
elif len(nw) == 4: # of length 4

expr = first + rest + rest + rest
matches_2 = re.finditer(expr % (nw.lower()[0], nw_uc

[0], nw_uc[1], nw_uc[2], nw_uc[3]), text, re.
VERBOSE)

35

matches = itertools.chain(matches_1, matches_2) # chain
both b

valid_matches = matches # XXX: DO NOT COMMENT OUT

STEP 4: Validate each possible expansion...
Filter (a): Check each segment against a dictionary
with open(�AMAP Downloads/modified/words+proper.dict�)

as h:
checkDict = h.read().split(�\n�) # open and store the

dictionary
checkDict = [word.lower() for word in checkDict] #

clean up dictionary casing
valid_matches = filterCheckEachSegment(valid_matches,

lambda group, checkDict: group.lower() in checkDict,
(checkDict,))

Filter (b): Expansions must be of > 2 chars in
length?

valid_matches = filterCheckEachSegment(valid_matches,
lambda group: len(group) > 2)

Filter (c): Expansions must not be stop words (i.e.
in my.stop)

with open(�AMAP Downloads/my.stop�) as h:
stopWords = h.read().split(�\n�)

valid_matches = filterCheckEachSegment(valid_matches,
lambda group, stopWords: group.lower() not in
stopWords, (stopWords,))

Filter (d) : Parts of speech filtering
Expansions must be either nouns or adjectives
with open("Parts of Speech files/Ashley Bovan�s lists/

nouns/91K nouns.txt", �r�) as nouns, open("Parts of
Speech files/Ashley Bovan�s lists/adjectives/28K
adjectives.txt", �r�) as adjs:

nouns_adjs = nouns.read().split(�\n�) + adjs.read().
split(�\n�)

36

nouns_adjs = [word.lower() for word in nouns_adjs]
valid_matches = filterCheckEachSegment(valid_matches,

lambda group, nouns_adjs: group.lower() in
nouns_adjs, (nouns_adjs,))

STEP 5(a): Consolidate matches for current non-word
expns_counts = countMatches(valid_matches, getExpnStr)

STEP 5(b): Add current non-word�s expansions to
master list

expns.extend([[dirPath, fileName, nw.lower(),
getExpnStr(expn_count[0]), expn_count[1]] for
expn_count in expns_counts])

print(��)

Save list of non-words to an external file for quick
cached access next time

new_lines_to_write = [filePath + �\t� + getText(non_word)
for non_word in non_words]

old_lines_to_rewrite = []
try:

with open(�non_word_cache�, �r�) as cache: # there is an
existing non-word cache

old_lines_to_rewrite = [line for line in cache.read().
split(�\n�) if line.split(�\t�)[0]!=filePath] # only
let other files� cached non-words remain, so the

current file�s nw�s can be freshly added
except:

pass
with open(�non_word_cache�, �w�) as cache: # create a new

file / overwrite the existing one
cache.write(�\n�.join(new_lines_to_write) + �\n� + �\n�.

join(old_lines_to_rewrite))

if __name__ == �__main__�:
main()

37

A.2 Parts-of-Speech rule

Listing 2: Parts-of-Speech rule
from bs4 import BeautifulSoup as BeauSoup
import helpers, os, sys, re, time, signal
from itertools import chain

global counter

def parseWordListFile(filePath):
return {word.lower() for word in open(filePath, �r�).read().

split(�\n�) if word and not word.startswith(�#�)}

def handler(signum, frame):
print(�pass�, counter.getCount())
raise Exception(�Timeout in file %s� % (counter.getCount()))

def main():
try:

allFiles = helpers.getFileList(sys.argv[1])
except IndexError:

raise

SETUP
t0 = time.time()
signal.signal(signal.SIGALRM, handler)
global counter
counter = helpers.FileCounter(total = len(allFiles), marker =

500)
Read in pos lists, ignoring commented-out words
DTs = parseWordListFile("Parts of Speech files/modified lists

for my use/DT for rule_pos.txt")
AJs = parseWordListFile("Parts of Speech files/Ashley Bovan�s

lists/adjectives/28K adjectives.txt")

38

ONs_Hill = parseWordListFile("Parts of Speech files/modified
lists for my use/O_N sorted.txt")

ONs_TE = parseWordListFile("Parts of Speech files/modified
lists for my use/Nouns_TE_sorted.txt")

possible_non_nouns = set(chain(*[parseWordListFile(filePath)
for filePath in [os.path.join("Parts of Speech files/Hill�
s lists/lists (originals)", fileName) for fileName in [�AJ
.txt�, �AV.txt�, �EN.txt�, �EN-IRR.txt�, �event_words.txt�
, �ING.txt�, �V.txt�]]]))

all_potential_nouns = set(chain(ONs_Hill, ONs_TE,
possible_non_nouns))

for filePath in allFiles:
try:

signal.alarm(5)
dirPath, fileName = os.path.split(filePath)
soup = BeauSoup(open(filePath, �r�).read(), �html.parser�

)

for i_em in filter(lambda match: len(match.string) <= 15,
filter(lambda match: match.string is not None,

soup.find_all([�i�, �em�, �code�]))):

typePl2 = ��
Step (1a.)
prev_text = ��
current_prev_elem = i_em
while not re.search(r�\w+\W+\w+\W*$�, prev_text) or

prev_text == ��: # while re.search doesn�t match, OR
(for the first iteration) prev_text is an empty

string
current_prev_elem = current_prev_elem.previous_element
prev_text = str(current_prev_elem) + prev_text

Step (1b.)
match = re.search(r�(\w+)\W*$�, prev_text)
if match:

word3 = match[1]
if word3.lower() in ONs_Hill_and_TE:

39

Step (1c.)
match = re.search(r�(\w+)\W+\w+\W*$�, prev_text)
if match:

word2 = match[1]
if word2.lower() in DTs:

Step (1c-ii.) WE HAVE A MATCH
dataFile.addLine([f�{word2.lower()} {word3.upper

()} {i_em.string}�, filePath])
elif word2.lower() in AJs:

typePl2 = �adj�
elif word2.lower() in ONs_Hill_and_TE:

typePl2 = �noun�
if typePl2 == �adj� or typePl2 == �noun�:

Step (1c-i-a)
while not re.search(r�\w+\W+\w+\W+\w+\W*$�,

prev_text) or prev_text == ��: # while re.
search doesn�t match, OR (for the first
iteration: prev_text is an empty string)

current_prev_elem = current_prev_elem.
previous_element

prev_text = str(current_prev_elem) + prev_text
Step (1c-i-b)
match = re.search(r�(\w+)\W+\w+\W+\w+\W*$�,

prev_text)
if match:

word1 = match[1]
if word1.lower() in DTs:

Step (1c-i-c) WE HAVE A MATCH
dataFile.addLine([f�{word1.lower()} {word2.

upper()} {word3.upper()} {i_em.string}�,
filePath])

counter.increment()
except (KeyboardInterrupt, EOFError):

sys.exit()
except Exception as ex:

40

print(�%s: %s, %s� % (type(ex).__name__, ex.args[0] if ex
.args else ��, helpers.PathConv.toShort(filePath)))

t1 = time.time()
print(�Total time:�, t1-t0)

print(�\nSTRONG POS TAG MATCHES\n�)
dataFile_strong.finish()
print(�\nMODERATE-STRENGTH POS TAG MATCHES\n�)
dataFile_mod.finish()
print(�\nWEAK POS TAG MATCHES\n�)
dataFile_weak.finish()

if __name__ == �__main__�:
main()

=

A.3 Description-List rule

Listing 3: Description-List rule
from bs4 import BeautifulSoup as BeauSoup
import helpers, os, sys, re

def parseLineSegments(line):
term, path = line
return {�term�:term, �path�:path}

def main():
try:

allFiles = helpers.getFileList(sys.argv[1])
allFiles = helpers.getFileList(�.../java/awt/BasicStroke

.html�)
except IndexError:

raise

41

counter = helpers.FileCounter(total = len(allFiles), marker =
500)

dataFile = helpers.DataFileOps(notes = �Finding definitions
for terms defined in tabular or definition-lists format�,
shortHandNote = �tbl�, preserveTrailingWhitespace = True,
filterDupes = False)

DLs = 0
totalDLs = 0
totalDLfiles = 0

for filePath in allFiles:
try:

dirPath, fileName = os.path.split(filePath)
soup = BeauSoup(open(filePath, �r�).read(), �html.parser�

)

for dl in soup.find_all(�dl�, compact=True):

DTs, DDs = dl.find_all(�dt�), dl.find_all(�dd�)

for i in range(len(DTs)):
dt = str(DTs[i]).replace(str(DDs[i]), ��)
if i < len(DTs)-1:

dd = str(DDs[i]).replace(str(DTs[i+1]), ��)
else:

dd = str(DDs[i])

DLs = len(soup.find_all(�dl�, compact=True))
totalDLs += DLs
if DLs > 0:

totalDLfiles += 1
dataFile.addLine([f�{dt}, {dd}�,filePath])

counter.increment()
except (KeyboardInterrupt, EOFError):

sys.exit()

42

except Exception:
print(Exception.args)

print(f�{totalDLs} TOTAL DLs in {totalDLfiles} TOTAL FILES�)
dataFile.finish()

if __name__ == �__main__�:
main()

A.4 Variable-Definition rule

Listing 4: Variable-Definition rule
import sys, helpers, re, string

def parseLineSegments(line):
term, path = line
return {�term�:term, �path�:path}

def main():
try:

allFiles = helpers.getFileList(sys.argv[1])
except IndexError:

raise

toPrint = ��

counter = helpers.FileCounter(total = len(allFiles), marker =
500)

dataFile = helpers.DataFileOps(notes = "Finding the y for an
emphasized/italicized �x� in sentences like \"Let x be y\"
", shortHandNote = �let-be�)

print(�1.X.3�)
for filePath in allFiles:

try:
matches = list(re.finditer(r"""

(Let|let)

43

\s+
(|<i>)?

\s*
(?P<var>\w+)

\s*
(|</i>)?

\s+
be

\s+
(?Pz<def>the((?!((

(Let|let)
\s+

(|<i>)?
\s*

\w+
\s*

(|</i>)?
\s+

be
\s+

.+
|\.\s|:))).)+)
""", helpers.stripHTML(open(filePath, �r�).

read()), re.DOTALL | re.VERBOSE))

if matches: toPrint += f�------- FILE : {filePath[47:]}\n
�

for match in matches:
res = ��.join([ch if ch not in string.whitespace

else � � for ch in match[2]])
toPrint += f�(Let) {match[1]} (be) {res}\n�
thisLine = f"(Let) {match[�var�]} (be) {match[�def�]}"
print(thisLine)
toPrint += f�{thisLine}\n�
dataFile.addLine([f"(Let) {match[�var�]} (be) {match[�

def�]}",filePath])
counter.increment()

except Exception:

44

pass

dataFile.finish()
print(toPrint)

if __name__ == �__main__�:
main()

45

	Acknowledgements
	Introduction
	What is Computer Code?
	Why Abbreviate Code?
	Why automatically resolve abbreviations?
	Two Types of Abbreviations
	Background Terminology

	Background
	Approach
	Overview of the Process
	Search Area
	Acronym-Expansion Technique
	Context-based Search Technique
	Parts of Speech rule
	Description List rule
	Variable Definition rule

	For Testing: Finding Abbreviations in Documentation as a Proxy
	Consolidating and Ranking Expansions

	Evaluation
	Overview
	Defining the Metrics
	Evaluation Setup
	Results
	Easy-to-Implement Improvements
	Improvements to the variable-definition rule
	Improvements to the description list rule
	Predicted Performance Gains post Improvements

	Major Advancements
	Major Improvements to the abbreviation-expansion technique
	Major Improvements to the variable-definition rule
	Major Improvements to the description-list rule
	Major Improvements to the parts-of-speech rule

	Conclusions and Future Work
	Conclusion
	Future Work

	Techniques Source Code
	Abbreviation-Expansion technique
	Parts-of-Speech rule
	Description-List rule
	Variable-Definition rule

