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ABSTRACT

The mathematics necessary for an axiomatic statement of the laws of quantum
mechanics are introduced and developed. The axioms of quantum mechanical
systems are stated. A novel derivation of the projection valued measures associ-
ated with the position and momentum observables, as well as the Hamiltonian
operator for the quantum harmonic oscillator are provided. Using these projec-
tion valued measures, the familiar laws and probabilities of quantum mechanics
are shown to be equivalent to the abstract formulation in the axioms.
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1. INTRODUCTION

While sitting in the lectures of my undergraduate quantum mechanics course,
I could never shake this profoundly uneasy feeling. It wasn’t, as one might
expect, the strange physical ramifications of the theory, e.g. uncertainties and
entanglement. Rather, it was the non-rigorous and ambiguous statement of the
theory itself that bothered me. The level at which I was learning the theory
was not self-sufficient: propositions felt unjustified, definitions incomplete, and
my bearing on problems felt aimless. I finished the course unsatisfied, even
believing that the theorists themselves still had work to do on proving some of
their own propositions.

My confusion with quantum mechanics started when I was twelve years old.
I read once that scientists believed the universe to be random. I figured they just
saw that they couldn’t predict something, from which they must have concluded
that there was simply no method for predicting anything. I knew very little of
the intricacies of the theory of quantum mechanics, and I already thought myself
qualified to shut down decades of geniuses based on ten minutes of reading. As
it would turn out, the theory is almost predictive, but its nuances are subtle
and can only be understood once one has a complete grasp of the necessary
mathematics.

This paper sets out to address this issue as concisely as possible. In order to
even write down the equations, we must build up the definitions for the objects
we put on both sides of each equation. This includes all of the usual suspects:
Hilbert spaces, self-adjoint operators1, spectra, and unitary operators. This
innocuously short list sits atop a massive scaffolding of theorems and definitions.
For example, one might ask: is the operator Qψ = xψ self-adjoint? Well, as it
turns out, this is a malformed question. One must first understand the domain
upon which an operator may act before asking about any of its properties. It
is, in fact, even possible for an operator to not have a well-defined adjoint.
This issue, as well as numerous others, stems from the trouble of infinities:
general quantum mechanical problems are associated with infinite dimensional
Hilbert spaces. Linear operators on infinite dimensional Hilbert spaces can’t
always be defined on the entire Hilbert space, as they can with finite dimensional
Hilbert spaces. In fact, the position operator and momentum operator aren’t
even defined on the same dense domain, so when one writes down the famous
commutation relation [1]

1 Usually, the term “Hermitian” is used to describe the operators in quantum mechanics.
We avoid this term, so as to avoid ambiguity, as the way it is usually used looks more like our
definition for “symmetric”, which will be given in a later section.
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[Q,P ] = i~ (1.1)

for position and momentum operators Q and P, and reduced Planck’s con-
stant ~, one must be very careful to define what is even meant by [, ] for un-
bounded operators. Similarly, when ones solves the time independent Schrödinger
equation of a system, i.e. when given some potential function V, for particle of
mass m, one solves the equation

−~2

2m
ψ′′ + V ψ = Eψ (1.2)

for “energy eigenvalues” E and “functions” ψ, it will often be the case that
ψ doesn’t lie in the Hilbert space, or worse: sometimes ψ isn’t even a function
at all! Quantum mechanics is very often done this way. Case in point: Take the
position operator. It is often stated that the eigenvalues of the position operator
are the whole real line, with the eigenvalue x0 corresponding to the eigenvector
ψ(x) = δ(x − x0). This is simply not true by the standard definition of eigen-
vectors and eigenvalues for Hilbert spaces. What is true is that the spectrum
of the position operator is the whole real line. The spectrum of an operator in
infinite dimensions is a generalization of the notion of the set of eigenvalues of
an operator in finite dimensions, and reduces to the set of eigenvalues in the
finite dimensional case.

What is typically done, however, is speak rigorously of finite dimensional
problems and posit that most of the tricks work (with possibly some slight mod-
ifications) in the infinite dimensional case. For example, for certain operators,
like the harmonic oscillator Hamiltonian H, one may construct an orthonormal
basis of functions fn using just the eigenfunctions of H. Orthonormality here
means:

〈fn, fm〉 = 1 if n = m and 0 otherwise

When one wishes to discuss the position operator, it is often stated that the
eigenkets [1] of the position operator are orthogonal in a different way:

〈x|x′〉 = δ(x− x′) = ∞ if x = x′ and 0 otherwise

This definition turns out to be very useful for certain calculations, but now
a curious eye leads one to several questions: are these delta functions Hilbert
space elements? (Answer: No.) Does every operator have an orthonormal
basis? Can it always be checked for whether the number of elements in the
basis is countable or uncountable? Can an operator have a basis which is some
parts countable, and some parts uncountable? As it turns out, Dirac developed
a very tidy formalism for dealing with questions like this [2]. However, when
trying to prove most of his assertions, one is left wanting.

Our version of the operator decomposition is the spectral theorem, an indis-
pensable tool for stating most of the axioms of quantum mechanics. Equipped
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with the spectral theorem, we may confidently address every issue we may per-
sonally have or a critic may have for our theory, and go beyond simply saying
“it works”: we will know why it works, where it fails, and what the limitations
of our own language are.

In this vein, wouldn’t it be nice if there were several axioms which we could
call “quantum mechanics”? If there were a way could eliminate all ambiguity
and confusion and anchor our understanding to these several statements? As
it turns out, yes. We will start by stating these axioms, and explore them
in each proceeding section. This paper serves as a complete introduction to
the mathematics of quantum mechanics, and applies this rigorous formalism
to understand the measurement and time evolution of the quantum harmonic
oscillator for particles in R. The framework developed may be applied to any
system, but this serves as an illustrative and practical examples of the precise
statement of quantum mechanics.

We do not wish to motivate physically, or even logically, the rules of quantum
mechanics as they appear in the formalism. Why should the rules be derivable
from intuition? For example, one might say that we use Hilbert space to deal
with superpositions of states, e.g. energy eigenstates. However, the energy
states correspond to wave-functions, which are Hilbert space elements in the
first place. One could equivalently say that Hilbert space being the setting for
states does not care so much about the observer finding the system in a definite
energy eigenstate, or speaking of general states as superpositions of them. The
states of the system are independent of the basis chosen by the observer. The
latter perspective is the perspective we take: The rules, however they may be
thought about, derived, or formulated, are simply the rules. We study them as
they are mathematically, so that we may understand them unambiguously.

In each chapter, we will delve briefly into several areas of mathematics: e.g.
Hilbert spaces, analysis, and measure theory.

The second chapter of this paper will state the axioms of quantum mechan-
ics. The third chapter of this paper will focus on developing the central player
of quantum mechanics: Hilbert spaces. Every quantum mechanical system is
associated with a certain Hilbert space. States, observables, time evolution, and
measurement statistics of a system are all associated with operators acting on
the Hilbert space. The fourth chapter will thus focus on operators on a Hilbert
space and their spectra. The fifth chapter will provide a brief introduction to
measure theory necessary for the definition of Lebesgue integration and for the
development of the spectral theorem. The sixth chapter will introduce several
types of functions and spaces of functions necessary for quantum mechanics.
The seventh chapter will introduce the notion of projection valued measures
and state the spectral theorem. The eighth chapter will introduce observables
formally, and the ninth chapter will apply the machinery developed to the quan-
tum harmonic oscillator.

This work is largely based on a lecture series by Frederic P. Schuller [5]. Most
of the content is unchanged, but I have presented the material in a completely
different order, with more detail. A number of proofs of the propositions are
new, and I will call attention to these proofs. In particular, I have derived the
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form of projection valued measures of the position and momentum operators,
as well as the projection valued measure for the Hamiltonian of the quantum
harmonic oscillator.



2. THE AXIOMS

The axioms of quantum mechanics can be stated in the following way, and are
due to Schuller [5]. Every question about quantum mechanics may be answered,
directly or indirectly, according to the following axioms.

Axiom 1. Every quantum mechanical system is associated with a complex
Hilbert space H.

Axiom 2. The states of a quantum system H are represented by trace class
positive linear operators ρ : H −→ H such that

Trace ρ = 1 (2.1)

Axiom 3. Every observable quantity of a system is represented by a self-adjoint
operator A : DA −→ H.

Axiom 4. Given a quantum mechanical system H in the state ρ, the probability
of obtaining a measurement value in the set E ⊆ R for the observable A : DA −→
H is given by

Prob (E) = Trace (ρPA(E)) (2.2)

where PA is the unique projection valued measure such that

A =

∫
λdPA (2.3)

Axiom 5. (Unitary Dynamics) Given a quantum system H in the state ρ at
time t0, the state at any time t is given by

ρ(t) = U(t− t0)ρ(t0)U(t− t0)
−1 (2.4)

where U(t) = e
−iHt

~ (defined according to the spectral theorem) and H : DH −→
H is the Hamiltonian observable of the system.

Axiom 6. (Projective Dynamics) Given a quantum system H in the state ρ at
time t0, the state of the system after performing a measurement of the observable
A : DA −→ H is given by

ρ(t0 + ε) =
PA(E)ρ(t0)PA(E)

Trace(numerator)
(2.5)

where E is the smallest measurable set in which the value of the observable
necessarily existed.
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Now, there is a lot to be said about these axioms, and all of the definitions
necessary for their precise statement. In fact, the rest of this paper is devoted to
defining and exploring all of these axioms. However, I will make a few comments
before we really get into it.

First, sometimes I use language that would suggest the physical things are
their mathematical representation. Within the context of these axioms, we
assert this identification. However, the world in which we live is relativistic,
and this list of axioms does not take relativity into account. That is to say, if
there were a complete list of mathematical truths about reality, this isn’t it. It is,
however, a very rigid mathematical framework that, not only proves to be almost
always true (most systems we deal with have pretty low speed and mass), but
locks into place what we believe about the world in the absence of relativity and
quantum field theory, so that if those two ever achieve mathematical unification
and a precise mathematical formulation, we can unambiguously differentiate
them from our six axioms here.

In order to do quantum mechanics, one does not need all of this. There
are plenty of texts [1, 3, 4] that teach you how to solve all kinds of quantum
mechanical problems, and, at the end of the day, carrying around all of this
technical formalism gets a little exhausting. You will get the answer much
faster if you stick to the formalism of these standard texts during your day
job. On Sunday evenings with your colleagues, however, you can shut down
any questions they have about the foundations of quantum mechanics by listing
them these axioms.

Now that we have stated the axioms, we start from the ground up to build
up to them.



3. HILBERT SPACE

Hilbert space plays a central role in quantum mechanics. Just as an understand-
ing of Maxwell’s equations requires a thorough knowledge of vectors, a proper
treatment of quantum mechanics requires a thorough understanding of Hilbert
spaces, which this section aims to provide. In a sense, every quantum mechani-
cal problem is associated with some Hilbert space. Spin systems are associated
with the Hilbert space C2. Particles in space are associated with L2(R3), (some-
times referred to as the “square-integrable functions”). The state of a system,
the observable quantities of a system, and even the time evolution of a system
are represented by operators acting on the Hilbert space of the system. Hilbert
space is an incredibly rich and beautiful mathematical structure, and a rigorous
treatment of these quantum mechanical problems requires a very careful look
at that structure. Over the course of our discussion, definitions and theorems
will be stated exactly. Many proofs will be provided to give better familiarity
with these objects, and tricky and more technical proofs will be outsourced to
various references.

The definition of a Hilbert space is rather simple once the prerequisite terms
used in the definition are understood. It would not make much sense if we were
able to write something too detailed down without doing some heavy lifting
first. We start with the general notion of a vector space, and build our way up.

Definition 1. A vector space over a (scalar) field K is a tuple (V,+,·), where:

(a) V is a set

(b) + : V×V −→V is a binary addition operation

(c) · : K×V−→V is a scalar multiplication operation

and the tuple satisfies the following axioms:

(i) Commutativity: v + w = w + v

(ii) Associativity of addition: (v + w) + u = v + (w + u)

(iii) Neutral element: ∃0 ∈ V : v + 0 = v

(iv) Inverse: ∃ − v ∈ V : v + (−v) = 0

(v) Associativity of multiplication: c(dv) = (cd)v

(vi) Distributivity of scalar sum: (c+ d)v = cv + dv
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(vii) Distributivity of vector sum: c(v + w) = cv + cw

(viii) Unity: 1v = v

and v, w, u ∈ V, c, d ∈ K are all understood to be in the “for all” sense. A
“field” is just a set with addition, subtraction, multiplication, and division; the
precise definition does not concern us. A helpful mnemonic for the vector space
axioms is the meaningless phrase “CANI ADDU”. In quantum mechanics, we
are interested in vector spaces over C.

We will refer to the vector space tuple, in the following sections, simply by the
set “V”, when the operations are unambiguously understood; it simply becomes
cumbersome to carry around so many symbols.

Proposition 1. Cn := {(z1, ..., zn)|zi ∈ C} is a vector space over C, when
equipped with the addition operation z + w := (z1 + w1, ..., zn + wn), and the
scalar multiplication operation c · z = (cz1, ..., czn). These are referred to as
“point-wise” addition and multiplication.

Proof. While proving that something is a vector space, one must first prove that
the candidate operations land you back in the vector space. In the following
section we enumerate the axioms that require proof as in Definition 1.
(b) Let z, w ∈ Cn. Then z+w = (z1 +w1, ..., zn+wn). Since complex numbers
are closed under addition, each zi + wi ∈ C. Therefore z + w ∈ Cn.
(c) Similar to (b); left to the reader.
(i) Commutativity of vector addition follows from commutativity of addition of
complex numbers.
(ii - viii) Left to the reader. Hints: (iii) 0 := (0,...,0), (iv) Given z, what is a
candidate for −z?

Most of the proofs are trivial in the case of Cn. This is no coincidence; the
abstract vector space definition is based on the structure of Cn and Rn.

Definition 2. A subset W of a vector space V, i.e. W ⊆ V is said to be a
subspace if W is also a vector space.

Proposition 2. In order to show a subset W of V is a subspace, it suffices to
show:

(i) Closure under multiplication: λw ∈W for w ∈W , λ ∈ K

(ii) Closure under addition: w + u ∈W for w, u ∈W

(iii) 0 ∈W where 0 is the 0 of V .

Proof. All of the other structure is inherited from V, with the exception of (i)
here providing the additive inverse.
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A certain kind of subspace arises very naturally in the following way. Sup-
pose we have a vector space V, and a collection of vectors v1, ..., vn ∈ V . By
the vector space axioms, c1v1 + ...+ cnvn is still a vector. This kind of vector is
given the following name:

Definition 3. A linear combination of a collection of vectors v1, ..., vn is any
c1v1 + ...+ cnvn with each ci ∈ C.

Now, we consider all possible linear combinations of those vectors:

Definition 4. The span of a set of vectors S is the set of all finite linear
combinations of vectors in S. That is,

spanS :=
{ n∑

i

civi

∣∣∣ ci ∈ C, v1, ..., vn ∈ S.
}

Remark 1. In the case that S is a finite set, observe that

span{v1, ..., vn} := {c1v1 + ...+ cnvn | ci ∈ C} (3.1)

Proposition 3. The span of a collection of vectors v1, ..., vn ∈ V is a subspace
of V.

Proof. We go through the checklist in Proposition 2.

(i) Let v ∈ spanS. Then v = c1v1+...+cnvn. So λv = (λc1)v1+...+(λcn)vn ∈
spanS.

(ii) Let v, w ∈ spanS. Then v = c1v1 + ... + cnvn and w = d1v1 + ... + dnvn.
So v + w = (c1 + d1)v1 + ...+ (cn + dn)vn.

(iii) 0 = 0v1 + ...+ 0vn ∈ spanS.

If the spanS =W , we sometimes say S spans W.
Our notation for the span of a (possibly infinite) set is a little sloppy, but the
intuition is this. Consider S = a1, a2, ..., a17. To get something in the span of
S, just take any number of elements of S, like a1, a2, a4, a12 and form a linear
combination of those vectors. If you consider every combination of letters and
every possible choice of coefficients, that is the span. The reason we restrict
ourselves to finite subcollections is because in the case of infinite sets, we don’t
want to form infinite sums: we will run into a plethora of convergence issues.

Definition 5. A vector space V is said to be finite dimensional if there exists
a finite set S that spans V. If V is not finite dimensional, it is instead called
infinite dimensional.
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Consider the span of two vectors (1, 0, 0) and (0, 1, 0) in R3. This subspace is
the xy-plane. The xy-plane is also spanned by the vectors (1, 1, 0) and (1,−1, 0).

Now consider a collection of two vectors, v1, v2. If v1 is just a constant
multiple of v2, then this second vector is redundant in a sense: If I try to probe
the vector space by considering linear combinations of these two vectors, I don’t
get anything new than if I had just started with one of them. In the case of
three vectors v1, v2, v3, if v3 lies in the span of v1 and v2, it’s another redundant
vector. Often we wish to consider vectors which aren’t redundant in this sense.
We say a collection of vectors v1, ..., vn is independent if none of the vectors
are in the span of the other vectors. An equivalent condition is taken as the
definition:

Definition 6. A collection of vectors v1, ..., vn is said to be linearly independent
if the statement c1v1 + ...+ cnvn = 0 implies that all the ci = 0.

Now, if we have some vector space V , and we take an independent set of
vectors that span V , we have a very useful way of representing arbitrary vectors
by means of a basis:

Definition 7. A basis B = {e1, e2, ..., en} for a finite-dimensional vector space
V is a linearly independent set that spans V.

Remark 2. If B = {e1, ..., en} is a basis for V , then every vector v ∈ V can be
written as v = c1e1 + c2e2 + ...+ cnen.

The coefficients are a bit like coordinates, as they give us a way to speak of
abstract vectors more concretely.

One extremely important kind of function of vectors is an inner product.
The inner product provides a way to compare vectors:

Definition 8. An inner product (on a complex vector space) is a function
〈·, ·〉 : V × V −→ C satisfying five axioms:

(i) 〈f, f〉 ∈ R and ≥ 0

(ii) 〈f, f〉 = 0 iff f = 0

(iii) 〈f, g〉 = 〈g, f〉

(iv) 〈f, λg〉 = λ〈f, g〉 and 〈λf, g〉 = λ̄〈f, g〉

(v) 〈f, g + h〉 = 〈f, g〉+ 〈f, h〉 and 〈f + h, g〉 = 〈f, g〉+ 〈h, g〉

for f, g, h ∈ V and λ ∈ C.
Another very important function is that of one vector, which defines a notion

of ”length” for the vector.

Definition 9. A norm is a function ‖·‖ : V −→ R satisfying four axioms:

(i) ‖f‖ ≥ 0
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(ii) ‖f‖ = 0 ⇒ f = 0

(iii) ‖λf‖ = |λ|‖f‖

(iv) ‖f + g‖ ≤ ‖f‖+ ‖g‖ (Triangle Inequality)

for f, g ∈ V and λ ∈ C.
The norm and inner product are, in fact, closely related:

Proposition 4. ‖f‖ :=
√
〈f, f〉 is a norm. That is, inner products generate

norms.

Proof. Let V be an inner product space. Define the norm as above. This is well
defined because 〈f, f〉 is non-negative. We prove the norm axioms one by one:

(i) follows trivially.
(ii) Suppose ‖f‖ = 0. Then 〈f, f〉 = 0. But by (ii) of the inner product axioms,
f must be 0.
(iii) Left to the reader.
Before continuing to (iv), we shall prove the Cauchy-Schwarz inequality:

∀f, g ∈ V, |〈f, g〉| ≤ ‖f‖‖g‖ (3.2)

To prove this, let f, g ∈ V . Suppose further that g 6= 0: the proof is trivial for
g = 0. Then ∀λ ∈ C,

‖f − λg‖2 ≥ 0 (3.3)

. Let us expand the left hand side:

‖f − λg‖2 = ‖f‖2 − λ〈g, f〉 − λ̄〈f, g〉+ λλ̄‖g‖2.

Now, we proceed carefully: For any choice of f and g, the above statement is
true ∀λ ∈ C. Therefore, it is true for the very clever choice of λ = 〈f,g〉

‖g‖2 , which
is a complex number because g 6= 0 by assumption. Furthermore, by (i) and
(ii), ‖g‖ > 0. With this choice of λ, the inequality 3.3 becomes:

‖f‖2 − |〈f,g〉|2

‖g‖2 ≥ 0,

from which the Cauchy-Schwartz inequality follows. We are now prepared for
(iv).
(iv) Let f, g ∈ V . Then

‖f + g‖2 = ‖f‖2 + ‖g‖2 + 2Re〈f, g〉.

But for any complex number z, Re z ≤ |z|, so the above equation becomes (with
help of the Cauchy-Schwartz inequality):

‖f + g‖2 ≤ ‖f‖2 + ‖g‖2 + 2‖f‖‖g‖ = (‖f‖+ ‖g‖)2,

from which (iv) follows.
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Definition 10. An inner product space is a tuple of a vector space with an
inner product, i.e. (V,+, ·, 〈·, ·〉).

Proposition 5. Cn is an inner product space, when equipped with the inner
product

〈z, w〉 =
n∑
i=1

ziwi (3.4)

Definition 11. A normed vector space is a tuple of a vector space with a norm,
i.e. (V,+, ·, ‖·‖).

Corollary 1. Inner product spaces are normed vector spaces with respect to the
norm generated by the inner product.

We are at the gates of Hilbert space. Before proceeding, we make careful
note of our progress so far. We started by considering vector spaces over C in
their complete generality. This definition is too broad to make an immediate
analogy with Rn; some vector spaces don’t have norms, and the norm provides
us with a way to define the distance between two vectors: in the case1 of R3,
the number ‖x− y‖ is exactly the length of a string extended from the point x
to the point y. As we will see in the future, it will be very useful to require that
sequences of vectors which get arbitrarily close together (defined by the norm)
actually converge to an element of the space. To make this precise, we make
the following definitions2

Definition 12. A sequence fn in a normed vector space V is said to converge
to f ∈ V if: ∀ε > 0,∃N ∈ N:

‖fn − f‖ < ε whenever n > N

In this case, we write f = lim fn.

This is a very natural definition for convergence of an infinite sequence: if
you pick some positive number like ε = 0.1, then after a while every element of
the sequence will be within 0.1 of f. But it’s true for every positive number, so
the sequence gets and stays as close as you want to the limit f .

A slightly weaker condition for a sequence to “converge” is for it to be a
Cauchy sequence:

Definition 13. A sequence fn in a normed vector space V is said to be Cauchy
if: ∀ε > 0,∃N ∈ N:

‖fn − fm‖ < ε whenever n,m > N

1 The definition for real vector spaces is to replace C by R everywhere above and drop every
instance of a conjugation. The curious reader may verify that R3 is a normed vector space.

2 These definitions are usually given in terms of metric spaces. However, all normed vector
spaces are metric spaces with respect to the metric generated by their norms, and the proof
is immediate. As we are not interested in general metric spaces, we restrict our notions of
convergence etc. to normed vector spaces.
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Definition 14. A normed vector space V is said to be complete if every Cauchy
sequence converges to an element of the space.

In a sense, complete vector spaces are “filled out”. Take, for example, the ra-
tionals and the reals. There is a sequence of rationals that get closer and closer
to the real number

√
2, but the number

√
2 is not rational, so the rational num-

bers are not complete. The real numbers, however, are complete, which follows
from the construction of Dedekind cuts [7]. We will assume the completeness of
the reals for the following proposition:

Proposition 6. C is complete.

Proof. Let zn be a Cauchy sequence. Then zn = xn + iyn, and ∀ε > 0,∃N :

|zn − zm| < ε whenever n,m > N

But both |xn − xm| and |yn − ym| are less than |zn − zm|, so we have two real
Cauchy sequences xn and yn. But since R is complete, ∃x, y ∈ R such that
x = limxn and y = lim yn. Define z = x+ iy. Then:

|zn − z| ≤ |xn − x|+ |yn − y|

But both expressions on the right hand side can be made less than ε/2 for all n
some Nx and Ny, respectively. We therefore have

|zn − z| < ε whenever n,m > N := max(Nx, Ny)

Therefore lim zn = z ∈ C and so zn converges in C. But this true for any
Cauchy sequence, so C is complete.

Proposition 7. Cn and Rn are complete normed vector spaces.

Proof. The proofs use the same triangle inequality trick as for C. The details
are left to the reader.

Complete normed vector spaces turn up so often that they are named after
someone:

Definition 15. A Banach space V is a complete normed vector space.

When the norm is generated by an inner product, we end up with an ex-
tremely important object:

Definition 16. A Hilbert space H a complete inner product space.

Remark 3. Hilbert spaces are Banach spaces with norms generated by their
inner product.

That’s it. No fuss; no ambiguity: a Hilbert space is any vector space that
has an inner product, and the norm generated by the inner product space has
the nice property that Cauchy sequences converge. Now that we know what a
Hilbert space is, we can construct concrete examples of one.
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Corollary 2. Cn is a Hilbert space.

Now, so far, every vector space that we’ve considered was already a Hilbert
space. Are there vector spaces which aren’t normed, have no inner product, or
aren’t complete? If we’re talking about finite dimensional vector spaces over
a field which is complete, it is not hard to show that we can’t construct such
vector spaces. It is only when me move to infinite dimensions that we see being
a vector space does not guarantee an inner product or completeness (even over a
complete field like C). Let us attempt, then, to construct an infinite dimensional
Hilbert space from scratch. Let us try to generalize our definition of Cn to the
set of infinite complex sequences:

C∞ :=
{
(z1, z2, ...)

∣∣∣ zi ∈ C
}
. (3.5)

When equipped with the addition operation (z1, z2, ...)+(w1, w2, ...) = (z1+
w1, z2+w2, ...), and the scalar multiplication operation c(z1, z2, ...) = (cz1, cz2, ...),
the reader may verify that C∞ is a vector space according to Definition 1. Let’s
see if C∞ is a Hilbert space with a generalization of the usual inner product.
We’ll try to define:

〈z, w〉 :=
∞∑
n=1

ziwi (3.6)

If we try to define the norm with this candidate inner product, we see that
a harmless vector like ξ = (1, 1, ...) has ‖ξ‖ = 1+1+ ... = ∞, and we’re already
in trouble: ξ is infinitely far away from the origin!

So let’s try to pick a subset of C∞ of vectors that are not like ξ: the so-called
square-summable complex sequences, whose candidate norm does not blow up.
Amazingly, this naïve guess hits the target exactly: This set is a Hilbert space.

Theorem 1. The set of square summable complex sequences

`2 :=
{
x ∈ C∞

∣∣∣ ∞∑
n=1

|xi|2 <∞
}

(3.7)

is a Hilbert space, when equipped with the inner product in Equation 3.6.

Proof. We begin the proof by showing that `2 is a subspace of C∞. 0 = (0, 0, ...)
is trivially square-summable, so it remains to show that (i) and (ii) of Proposi-
tion 2 are true.
(i) Let x ∈ `2. We wish to prove that λx is also in `2. We inspect the sum

∞∑
i=1

|λxi|2 =

∞∑
i=1

|λ|2|xi|2 = lim
n→∞

n∑
i=1

|λ|2|xi|2 = lim |λ|2Sn (3.8)

But limSn converges to S =
∑

|xi|2. Therefore all we have to show is that
we can pull numbers out of convergent sequences, a fact that will be generally
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useful. Let µ be any complex number, and Sn any complex sequence (keeping
in mind that we need it for sums here). Then let ε be any positive number.
Then ∃N :

|Sn − S| < ε

|µ|
whenevern > N

Therefore

|µSn − µS| = |µ||Sn − S| < |µ| ε
|µ|

= εwhenevern > N

But that means:
limµSn = µS = µ limSn

and so complex numbers can be pulled out of convergent sequences, so x ∈ `2.
(ii) Let x, y ∈ `2. Then (x+ y)i = xi + yi, and we examine each term:

|xi + yi|2 = |xi|2 + |yi|2 + 2Re(xiyi) (3.9)

But if we look at |xi − yi|2 ≥ 0, we obtain

2Re(xiyi) ≤ |xi|2 + |yi|2. (3.10)

It then follows from Equations 3.9 and 3.10 that:

|xi + yi|2 ≤ 2(|xi|2 + |yi|2).

Therefore, because each term is point-wise ≤,
∞∑
n=1

|xi + yi|2 ≤
∞∑
n=1

2(|xi|2 + |yi|2) =
∞∑
n=1

2|xi|2 +
∞∑
n=1

2|yi|2 <∞

because of (i) and the fact that x, y ∈ `2 themselves. The sum can be broken
up because everything is non-negative. Therefore `2 is a vector space.
It remains to show `2 has an inner product and that it is complete. It gets ugly.

We define the inner product as in Equation 3.6:

〈x, y〉 :=
∞∑
i=1

xiyi

For this to be well defined, we must guarantee the sequence converges. It would
be nice to prove this directly, but as we will see here and in the future, it is
much easier to check the convergence of a sequence in a complete vector space
by checking the Cauchy criterion: the convergence follows from completeness.
Let us check if the sequence of partial sums is Cauchy (assuming n 6= m):

|Sn − Sm| =
∣∣∣ n∑
i=1

xiyi −
m∑
i=1

xiyi

∣∣∣ = ∣∣∣ max(n,m)∑
min(n,m)+1

xiyi

∣∣∣
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But by the triangle inequality for complex numbers we have

∣∣∣ max(n,m)∑
min(n,m)+1

xiyi

∣∣∣ ≤ max(n,m)∑
min(n,m)+1

|xiyi| =
max(n,m)∑
min(n,m)+1

|xi||yi|

How can we make this less than ε? Well we inspect the relation

(|xi| − |yi|)2 ≥ 0

from which we can conclude:

|xi||yi| ≤
1

2
(|xi|2 + |yi|2)

Therefore, because for each i this is a positive number, the inequality is preserved
in the sum:

max(n,m)∑
min(n,m)+1

|xi||yi| ≤
1

2

max(n,m)∑
min(n,m)+1

|xi|2 +
1

2

max(n,m)∑
min(n,m)+1

|yi|2

But because x and y are both square summable, the infinite sums converge, and
therefore both of those partial sums are Cauchy.3 Therefore, both of them can
be made less than any ε. This means the sequence of partial sums of the inner
product is Cauchy, and since C is complete, the infinite sum converges.

Now that we know the candidate inner product is well defined, we check the
inner product criteria.

(i) 〈x, x〉 ≥ 0
Every term in the infinite sum is nonnegative for any x, so the whole sum
is nonnegative for any x.

(ii) 〈x, x〉 = 0 =⇒ x = 0

Suppose there is some x that has
∑∞
i=0 |xi|

2
= 0. Since every term is

non-negative, every term would have to be zero. Therefore the x has to
be the zero vector.

(iii) 〈x, y〉 = 〈y, x〉
This is the same as checking: can the conjugation be pulled inside the
infinite sum? Well it can be pulled inside any finite sum, and the infinite
sum is the sequence of the finite sums, so this amounts to checking if for
any sequence lim zn = z we can conclude that lim zn = z. Observe that
for any complex number w, it is true that |w| = |w|, and therefore

|zn − z| = |zn − z| = |zn − z|

So whenever we can make the expression on the left less than ε, the one
on the right is automatically less than ε.

3 Cauchy is weaker than convergence, so converge always implies Cauchy. Completeness is
required to show Cauchy implies convergence
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(iv) 〈x, λy〉 = λ〈x, y〉 and 〈λx, y〉 = λ〈x, y〉
Constants can be pulled out of convergent infinite sums.

(v) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 and 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉
Infinite sums can be broken up if both sums are convergent.

So far, `2 is an inner product space. All that remains to show is its completeness.
Let xn be a Cauchy sequence in `2. Be careful with the notation here: something
like x7 itself is an infinite sequence of complex numbers, so we will denote the
elements of that sequence by x71, x

7
2, x

7
3, ... and similarly. Let’s stare at the

sequence of sequences for a while:

x11, x
1
2, x

1
3, x

1
4, x

1
5, x

1
6, ...

x21, x
2
2, x

2
3, x

2
4, x

2
5, x

2
6, ...

x31, x
3
2, x

3
3, x

3
4, x

3
5, x

3
6, ...

...

Each row is a square-summable sequence. Row by row, we have a Cauchy
sequence. Let’s pick just one column. That is, for any L, it’s always true that

|xnL − xmL | ≤ |xn − xm|

So we see that for each L the sequence xnL is Cauchy in C, and so that
sequence converges. We will denote this by limn→∞ xnL = xL. Therefore for we
define the candidate limit x of the xn’s according to this, by xL = limn→∞ xnL.
First we must check that this candidate is even in `2 so we can put it inside the
norm and check if it’s the limit. To check for its square-summability, we have
to be rather clever.
If we try to write something like

∞∑
i=0

|xi|2 =

∞∑
i=0

| lim
n→∞

xni |
2

we worry about all kinds of convergence issues and infinities. Instead, all we
have to do is bound x’s square sum above. To accomplish this, we use just about
the only fact we do know about x: the sequence defining it is Cauchy. Since
xn is Cauchy, then for any ε we can find an N that makes ‖xn − xm‖ < ε for
n,m > N . Now comes the first clever step: we make the choice ε = 1.4 Then
∃N :

‖xn − xm‖ < 1whenevern,m > N

But squaring both sides preserves inequality, so

‖xn − xm‖2 < 1whenevern,m > N

4 we could choose ε = anything, but we will just need a fixed positive real number to bound
the sum above.



3. Hilbert Space 22

But any xn − xm is still in `2 because `2 is a vector space. We know what the
norm-squared of a vector looks like:

‖xn − xm‖2 =

∞∑
i=0

‖xni − xmi ‖2 < 1whenevern,m > N

Now comes the second clever step: Each term in the infinite sum is non-negative,
so for any η ∈ N,

η∑
i=0

‖xni − xmi ‖2 ≤
∞∑
i=0

‖xni − xmi ‖2

So for any η, we have
η∑
i=0

‖xni − xmi ‖2 < 1whenevern,m > N

Now we fix η to be anything and fix n > N , and take the limit on m:

lim
m→∞

η∑
i=0

‖xni − xmi ‖2 ≤ 1whenevern > N

(When taking the limit, inequalities pick up an “or equals”.) Since η is fixed,
we can pull the limit inside the finite sum with ease, as well as inside the norm:

lim
m→∞

η∑
i=0

‖xni − xmi ‖2 =

η∑
i=0

‖xni − lim
m→∞

xmi ‖2 =

η∑
i=0

‖xni − xi‖2 < 1whenevern > N

For each i, we have from the reverse triangle inequality that:

‖xi‖2 − ‖xni ‖
2 ≤ ‖xni − xi‖2

And since each term is point-wise not bigger, we have the same in the sum:
η∑
i=0

‖xi‖2 − ‖xni ‖
2 ≤

η∑
i=0

‖xni − xi‖2 < 1whenevern > N

Now, we fix n = N + 1, rearrange, and take the limit on η:

lim
η→∞

η∑
i=0

‖xi‖2 ≤ 1 + lim
η→∞

η∑
i=0

‖xN+1
i ‖2

But since xN+1 is square-summable, the term on the right is finite and so:
∞∑
i=0

‖xi‖2 <∞
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So x ∈ `2.
To show x is in fact the limit, we use some similar techniques. First let us fix
an η. Observe that:

η∑
i=0

‖xni − xmi ‖2 ≤
∞∑
i=0

‖xni − xmi ‖2

for any choice of n and m. As well, for any ε > 0, we may find an N so that:
∞∑
i=0

‖xni − xmi ‖2 < ε2

4
whenevern,m > N

Which guarantees for any η that:
η∑
i=0

‖xni − xmi ‖2 < ε2

4
whenevern,m > N

Now if we take the limit on m we pick up an equals sign:

lim
m→∞

η∑
i=0

‖xni − xmi ‖2 ≤ ε2

4
<
ε2

2
whenevern > N

So pull the limit in for any choice of η and any choice of n > N . Then
η∑
i=0

‖xni − xi‖2 <
ε2

2
whenevern > N

But our choice of N guaranteed that any choice of η satisfies this inequality. So
taking the limit on η we pick up an equals sign:

∞∑
i=0

‖xni − xi‖2 ≤ ε2

2
< ε2 whenevern > N

The term on the left is just ‖xn − x‖2. Therefore we have ∀ε > 0, ∃N :

‖xn − x‖ < εwhenevern > N

And so x = limxn. Therefore, every Cauchy sequence converges in `2, and `2

is complete. So `2 is a complete inner product space: a Hilbert space.

3.1 Dense Subsets and Topology

Very frequently in dealing with Hilbert spaces, it will be impossible to define
linear operators on the entire Hilbert space. Instead, it will suffice to define
it on a very special kind of subset of the Hilbert space: dense subspaces. A
dense subset, loosely speaking, is a subset that has points basically everywhere
in the Hilbert space. They are useful because many such dense subsets are ones
which have extremely nice and workable properties, and often operators can be
defined simply on dense subsets, and then extended to the rest of the Hilbert
space.
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Definition 17. Given a Hilbert space H, a subset M ⊆ H is said to be dense
in H if ∀ψ ∈ H, ∃ψn ∈ M such that limψn = ψ. That is, every point in the
Hilbert space can be written as the limit of a sequence in the subset.

Some basic topological notions provide an easier way of talking about dense
subsets:

Definition 18. Given a normed vector space V, we define the neighborhood
with radius r around a point v0 by:

Nr(v0) =
{
v ∈ V

∣∣∣‖v − v0‖ < r
}

The neighborhoods around a point are surface-less solid spheres with their
centers at that point.

Definition 19. A deleted neighborhood Nr
′(v0) around a point v0 is a neigh-

borhood minus the point. That is,

Nr
′(v0) =

{
v ∈ V

∣∣∣0 < ‖v − v0‖ < r
}

Proposition 8. Let H be a Hilbert space, and let M ⊆ H. Then M is dense
in H iff ∀ψ ∈ H, it is true that every neighborhood of ψ contains a point from
M .

Proof. Suppose M is dense in H. Then we know ∃ψn ∈ M such that limψn =
ψ. So let Nε(ψ) be a neighborhood around ψ. Then clearly ∃N such that
‖ψn − ψ‖ < ε whenever n > N , so ψN+1 ∈ Nε(ψ). The converse is similar and
left to the reader.

Definition 20. Given a normed vector space V, a set F ⊆ V is said to be open
if every point has a neighborhood around it that’s still contained in the set. That
is, F is open if ∀v ∈ F, ∃r > 0: Nr(v) ⊆ F .

Definition 21. Given a normed vector space V, A set G ⊆ V is said to be
closed if Gc is open.

Definition 22. A limit point v0 of a set E is a point that contains points in E
that are arbitrarily close to it. That is, v0 is a limit point of E if ∀r > 0,∃v ∈
Nr

′(v0): v ∈ E. The collection of limit points of E is denoted by E′.

Proposition 9. If v is a limit point of M , then ∃vn ∈M with lim vn = v.

Proof. Let rn = 1/n. Then there has to be a vn within rn of v. Pick one for
each n, so that lim vn = v.

Definition 23. The closure of a set E is defined as E := E
⋃
E′.

Proposition 10. For any set E, E is closed.

Proof. The proof can be found in [7].
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Proposition 11. Given a Hilbert space H, a subset M ⊆ H is dense in H iff
M = H.

Proof. The proof is rather trivial, since the definition of denseness and closure
are not very different. Suppose M = H. We wish to show any point in H can be
written as the limit of a sequence in M. Suppose first that ψ is already inside of
M . Define ψn = ψ, and clearly limψn = ψ and ψn ∈M . Now suppose ψ /∈M .
Then since M

⋃
M ′ = H, ψ ∈M ′. Therefore ∃ψn ∈M with limψn = ψ.

3.2 An Infinite Dimensional Basis

If we were to guess at a basis for `2, an obvious candidate would be the infinite
collection e1 = (1, 0, 0, ...), e2 = (0, 1, 0, ...), e3 = (0, 0, 1, ...), .... However, our
definition of a basis only exists in finite dimensions, so we must first generalize
our notion of basis to include infinite dimensions. There are a few different ways
to do this. We define one way exactly like in finite dimensions:

Definition 24. A Hamel basis B for an infinite dimensional vector space V is
a linearly independent set with span(B) = V .

This definition is the exact same as a regular basis for finite dimensional
vector spaces. However, this notion is rather weak, as our candidate basis
above does not work. We may only form finite sums with a Hamel basis, but we
want an infinite sum to take care of infinitely many numbers in the sequence,
i.e. any v can be written as

∑∞
n=1 ciei. However, an infinite sum is a sequence

of partial sums, and partial sums are finite so they are in the span. This means
that v can be expressed as the limit of a sequence in the span, which is exactly
the condition for denseness.

Definition 25. A Schauder basis (B) for an infinite dimensional Banach space
V is a linearly independent set with span(B) = V . That is, the span of B is
dense in the whole space.

Definition 26. A Hilbert space is said to be separable if there exists a countable
dense subset. That is, ∃A, countable, with A = H.

Remark 4. From now on, when we say “basis”, we use the notion of the
Schauder basis. The Schauder basis is much more useful for quantum mechanics.

Remark 5. After careful inspection of the definition of a Schauder basis for
separable Hilbert spaces, one may see that it says if we have a Schauder basis
ψn, we may write for each ψ ∈ H that there exists coefficients cn such that

ψ =

∞∑
n=1

cnψn

In a sense, separable Hilbert spaces are not much more than countable sets.
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Proposition 12. If a Hilbert space H is separable, then there exists a countable
Schauder basis for the space.

Proof. Can be found in [9].

Proposition 13. `2 is separable.

Proof. find the proof

3.3 Closed Subspaces

Closed subspaces are of particular interest for operators, and a number of the-
orems will be useful.

Proposition 14. Given a separable Hilbert space H, a closed subspace M ⊆ H
is also separable.

Proof. If H is separable, then there exists a dense subset A ⊆ H such that A
is countable. Now, define the set B = M ∩ A. The B ⊆ A so that B must be
countable as well. Now, let ψ ∈M . We split this up into two cases: either ψ is
in A or it isn’t.

If ψ ∈ A, then ψ ∈ B so that if we define ψn = ψ we have the condition that
ψ can be written as the limit of a sequence.

Now, suppose ψ /∈ A. Then since H is separable ∃ψn ∈ A such that ψ =
limψn. Now, since M is a closed subspace, define (ψn)‖ in the usual way.
Because of the fact that ‖(ψn)‖ − ψ‖ < ‖ψn − ψ‖ we have lim(ψn)‖ = ψ. This
completes the proof.

3.4 Orthogonality

Orthogonality is a generalization of the notion of perpendicularity of ordinary
R3 vectors. The inner product allows us to define it in the obvious way:

Definition 27. Two vectors v, w in an inner product space are said to be
orthogonal, or perpendicular, if 〈v, w〉 = 0.

Definition 28. We say a collection of vectors {v1, v2, , , , } is orthonormal (ON)
if each 〈vi, vj〉 = 0 if i 6= j and 1 if i = j.

Definition 29. Given a Hilbert space H and a subset M ⊆ H, the orthogonal
complement of M is defined by:

M⊥ :=
{
ψ ∈ H

∣∣∣〈ψ, η〉 = 0∀η ∈M
}

That is, the elements of the orthogonal complement of M are the vectors that
are perpendicular to everything in M.

Proposition 15. Let H be a Hilbert space. Given a subspace A ⊆ H, A⊥ is
closed.
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Proof. In order to show A⊥ is closed, it only needs to be shown that A⊥ ⊆ A⊥.
So, let b′ ∈ A⊥. Then b′ = lim bn for bn ∈ A⊥. Therefore for any a ∈ A we have

〈b′, a〉 = 〈lim bn, a〉 = lim〈bn, a〉 = lim0 = 0

so b′ ∈ A⊥.

Proposition 16. Given a Hilbert space H, and closed linear subspace M , it is
true that

H =M
⊕

M⊥

where by
⊕

we mean that every element ψ ∈ H can be uniquely written as φ+η
for φ ∈M and η ∈M⊥.

Proof. Can be found in [6].

Lemma 1. Let H be a Hilbert space and let A ⊆ H be a subspace. Then

A⊥ = A
⊥

Proof. Inclusion from right to left holds trivially. To show inclusion in the other
direction, let b ∈ A⊥, and let α ∈ A. Then α = lim an for an ∈ A and

〈b, α〉 = 〈b, lim an〉 = lim〈b, an〉 = lim0 = 0

Proposition 17. Let H be a Hilbert space. Given a subspace A ⊆ H,

A⊥⊥ = A (3.11)

Proof. In order to show two sets are the same, we show inclusion in both direc-
tions. Let α ∈ A⊥⊥. Since H = A

⊕
A

⊥
= A

⊕
A⊥, we know α = a′ + b for

a′ ∈ A and b ∈ A⊥. But this means b = α− a′, so b ∈ A. Therefore b = 0, and
α = a′ ∈ A. Now, let a′ ∈ A, and let b ∈ A⊥. Then

〈a′, b〉 = 〈lim an, b〉 = lim〈an, b〉 = lim0 = 0

So a′ ∈ A⊥⊥. This completes the proof.



4. LINEAR OPERATORS

Linear operators are, so to speak, the name of the game for quantum mechanics.
Measurable quantities are called observables, and are represented by self-adjoint
linear operators. The values that can be measured given by the spectrum of that
observable. The time evolution of a system is governed by a family of unitary
operators parameterized by a time variable, and is generated by the self-adjoint
Hamiltonian operator of the system. This section aims to provide a backdrop
for all of these definitions and prove the main results.

Operators are sometimes called maps or transformations, but an operator is
just a new label for a function between vector spaces. The important part is
the linearity:

Definition 30. An operator T : V −→W is said to be linear if:

(i) T (v + u) = T (v) + T (u)

(ii) T (kv) = kT (v)

for v, u ∈ V and k ∈ C.

In other words, linear operators are general objects that satisfy the simple
axioms that regular scalar multiplication satisfies. In particular, given some
vector space V, the operator T defined by T (v) = kv is a linear for any k.

Proposition 18. If A : V −→W is a linear operator, then A(0) = 0.

Proof. Let v ∈ V . Then:

A(0) = A(v − v) = Av +A(−v) = A(v)−A(v) = 0

Proposition 19. The operator 0 : V −→W defined by 0v = 0 is linear.

Proof. Left to the reader. Hints: 0 + 0 = 0, k0 = 0.

Remark 6. We use the same symbol 0 to denote the scalar 0, the vector 0, and
the operator 0. When the possibility of ambiguity arises we shall write which 0
we mean, e.g. “the vector 0”.
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Frequently, we drop the (), and just write Tv to denote T (v).
Two operators T and S are said to be equal if their domains coincide, i.e.

DT = DS , and T (v) = S(v), ∀v ∈ DT . Often two operators will be basically
equal but one domain will be smaller:

Definition 31. We say S : DS −→W is an extension of T : DT −→W if:

(i) DT ⊆ DS

(ii) T (v) = S(v), ∀v ∈ DT .

In this case, we write T ⊆ S, and also say T extends S.

Remark 7. Two operators are equal if they are both extensions of each other.

Proposition 20. Given vector spaces V and W, the set of linear operators

L(V,W ) := {T : V −→W |T is linear}

is a vector space, when equipped with addition operation

(S + T )(v) := S(v) + T (v) (4.1)

and scalar multiplication operation

(kS)(v) := k(S(v)). (4.2)

When V = W, we sometimes just write L(V,W ) ≡ L(V ). Be very careful
with the definitions here. In the case of addition, the + on the left hand side
is different from + on the right hand side of Equation 4.1. The RHS + adds
vectors in the vector space. The LHS + adds operators in the set of operators
on that vector space. They are not independent, however: the vector space
structure imposed on L(V,W ) by the LHS + is inherited from the vector space
structure imposed on the vector space W by the RHS +. Similarly for scalar
multiplication.

This is a pretty interesting result: the set of linear operators between vectors
spaces is again a vector space. Can we make Hilbert spaces of operators? As it
will turn out, it will be of great utility to construct a Banach space of operators,
and so we try to make a Banach space instead. How can we do that? First,
we have to define a candidate norm. There are many ways to do this, but one
possibility is this: consider first the norm of a vector in R3. This is the length
of an arrow. Is there a length of an operator A? Well, first let us consider maps
from normed vector spaces V into normed vector spaces W, so that we have
good footing for defining a norm. Let us consider how much bigger A makes a
vector by examining the quantities

‖Av‖
‖v‖
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for any v 6= 0. This quantity depends heavily on the vector v. However, if this
quantity never gets bigger than some finite number, i.e. if

sup
v 6=0

‖Av‖
‖v‖

<∞ (4.3)

then A never makes v infinitely bigger than itself. In this case we call the
operator A bounded.

Definition 32. A is bounded if Equation 4.3 is true.

The set of bounded linear operators are nice to work with (especially in the
case of limits), and we give them a name.

Definition 33. The set of bounded linear maps between normed vector spaces
is denoted by

L(V,W ) :=
{
A ∈ L(V,W )

∣∣∣A is bounded
}

Proposition 21. L(V,W ) is a subspace of L(V,W ).

Whenever A is bounded, we define its norm by how big it makes vectors at
most:

Definition 34. The operator norm ‖ · ‖ : L(V,W ) −→ [0,∞) is defined by

‖A‖ := sup
v 6=0

‖Av‖
‖v‖

for normed vector spaces V and W.

Proposition 22. Let A ∈ L(V,W ). Then for any v ∈ V ,

‖Av‖ ≤ ‖A‖‖v‖ (4.4)

Proof. Recall that the operator norm is what the operator does to a vector at
worst. That is, for any v ∈ V , nonzero:

‖Av‖
‖v‖

≤ sup
v 6=0

‖Av‖
‖v‖

= ‖A‖

And so ‖Av‖ ≤ ‖A‖‖v‖ for any v 6= 0. But in the case v = 0, A is linear so
Av = 0, and equality holds. Therefore Equation 4.4 holds for all v.

Proposition 23. An equivalent definition of the operator norm is to only con-
sider vectors on the unit sphere of the domain. That is,

‖A‖ = sup
‖v‖=1

‖Av‖
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Proof. Define

α =
{‖Av‖

‖v‖

∣∣∣v ∈ V, v 6= 0
}

and
ω =

{
‖Av‖

∣∣∣v ∈ V, ‖v‖ = 1
}

In order to show supα = supω, we show that the two sets are equal. Let x ∈ ω.
Then x = ‖Av‖ for some v on the unit sphere. Then certainly v 6= 0, so

‖Av‖
‖v‖

= ‖Av‖ = x ∈ ω

It remains to show α ⊆ ω. Let x ∈ α. Then there’s some v ∈ V, v 6= 0 such
that x = ‖Av‖

‖v‖ . Consider the vector v′ = v
‖v‖ . Then ‖v′‖ = 1, and some quick

algebra reveals x = ‖Av′‖. Therefore x ∈ ω, so α ⊆ ω. This means the operator
norm can be calculated by looking at either sup: they’re the same set.

Proposition 24. The operator norm in Equation 34 is a norm on L(V,W ).
That is, it satisfies the norm axioms.

Proof. We go through the norm axioms one by one.

(i) ‖A‖ ≥ 0

The norm in W is always a non-negative quantity.

(ii) ‖A‖ = 0 iff A = 0

Let v ∈ V with ‖v‖ = 1. Then 0v = 0, and sup 0
1 = 0 so ‖0‖ = 0. Now

suppose ‖A‖ = 0. Then
sup

‖v‖=1

‖Av‖ = 0

so that ‖Av‖ ≤ 0 for each v. But norms of vectors in W are always ≥ 0, so
‖Av‖ = 0 for each vector. But a vector in W with 0 norm forces the vector
to be the 0 vector, again by the truth of the norm axioms assumed on W.
Therefore Av = 0 for each v ∈ V , so A is by definition the 0 operator.

(iii) ‖kA‖ = |k|‖A‖
Left to the reader. Follows from definition of sups and linearity.

(iv) ‖A+B‖ ≤ ‖A‖+ ‖B‖
Let A,B ∈ L(V,W ). Then A + B ∈ L(V,W ) because it’s a subspace.
Now, for any v ∈ V with ‖v‖ = 1,

‖A‖ ≥ ‖Av‖ = ‖[(A+B)−B]v‖ ≥ ‖(A+B)v‖ − ‖Bv‖

so that ∀v ∈ V with ‖v‖ = 1,

‖Bv‖ ≥ ‖(A+B)v‖ − ‖A‖
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Therefore the same is true in the sup:

‖B‖ ≥ ‖A+B‖ − ‖A‖

from which the triangle inequality follows.

So we have a normed vector space L(V,W ). Being normed does not guar-
antee completeness. Recall that completeness requires Cauchy sequences An to
converge to some A in the space with respect to the operator norm. If we inspect
Equation 34, how can we guarantee convergence of a Cauchy An? Well, when
an operator acts on a vector it lands in W , so it turns out to suffice for just the
codomain to be complete. The proof uses techniques which are reminiscent of
the `2 completeness proof:

Theorem 2. L(V,W ) is a Banach space, for normed vector space V and Banach
W.

Proof. It has already been shown that L(V,W ) is a vector space for normed V
and normed W, so it is certainly true for normed V and Banach W. Therefore
it remains to show completeness of L(V,W ).

Let An ∈ L(V,W ) be Cauchy. That is, ∀ε > 0,∃N :

‖An −Am‖ < εwhenevern,m > N

We want to find an operator A that is the limit of this cauchy sequence, so
we select a natural canditate. Define the operator A : V −→W by

Av = limAnv

Is this even well defined? That is, does the limit of the Anv’s always exist for
each v? Let us check. Take any v ∈ V , nonzero. Then we know

‖(An −Am)v‖ ≤ ‖An −Am‖‖v‖

But An is Cauchy, so ∀ε > 0,∃N :

‖An −Am‖ < ε

‖v‖
whenevern,m > N

Following the chain backwards we see therefore that the Anv sequence is Cauchy
in W. But W is complete by assumption, so limAnv exists in W. Therefore A
is well defined for all v. It remains to show that A is linear and bounded. Let
us first show linearity. Let v, w ∈ V . Then

A(v) +A(w) = limAnv + limAnw = limAn(v + w) = A(v + w)

Because each An and Am is linear and the sum of the limits is the limit of the
sum when each limit exists. Now let λ ∈ C. Then :

Aλv = limAnλv = limλAnv = λ limAnv = λAv
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because each An is linear and complex numbers can be pulled out of convergent
sequences. It remains to show A is bounded. Observe that ∃N :

‖An −Am‖ < 1whenevern,m > N

which implies that for any v such that ‖v‖ = 1,

‖(An −Am)v‖ < 1whenevern,m > N

Now we may take the limit on m:

‖(An −A)v‖ ≤ 1whenevern > N

But this is true ∀v on the unit sphere. This means AN+1−A is a bounded linear
operator. But L(V,W ) is a vector space, so we can multiply by −1 and add
other vectors. So A−AN+1 ∈ L(V,W ) and A−AN+1 +AN+1 = A ∈ L(V,W ).
Although we’ve coyly named this operator A and the sequence is An, we have
not yet shown it is the limit. Let ε > 0. Since An is Cauchy, ∃N :

‖An −Am‖ < ε

4
whenevern,m > N

But the operator norm is a sup, so pick any v ∈ V s.t. ‖v‖ = 1, and we have
that

‖(An −Am)v‖ < ε

4
whenevern,m > N

Taking the limit on m, we have:

‖(An −A)v‖ ≤ ε

4
<
ε

2
whenevern > N

But this is true ∀v on the unit sphere. So taking the sup, we have

‖An −A‖ ≤ ε

2
< εwhenevern > N

Which is the statement limAn = A. So L(V,W ) is a complete.

Corollary 3. L(H) is a Banach space for any Hilbert space H.

Proposition 25. Let A ∈ L(V,W ). Then for any convergent sequence vn ∈ V ,
A lim vn = limAvn.

Proof. Define v = lim vn. Let ε > 0. Then ∃N :

‖vn − v‖ < ε

‖A‖
whenevern > N

So we now look at the image of the vector difference

‖Avn −Av‖ = ‖A(vn − v)‖ ≤ ‖A‖‖vn − v‖ < εwhenevern > N

And so Av = limAvn.
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Often, operators are not defined on the entire Hilbert space H, but will be
defined on a dense subspace of H.

Definition 35. An operator A : DA −→ H is said to be densely defined if DA

is a subspace of H and DA = H. That is, every element of H can be written as
the limit of a sequence in DA.

Proposition 26. Let A : DA −→ H be a densely defined bounded linear opera-
tor. Then for any vn ∈ DA with lim vn = v exists in H, limAvn exists, even if
v /∈ DA.

Proof. ‖vn − vm‖ is Cauchy, so ∃N such that it can be made less than ε
‖A‖ .

Consider the sequence Avn ∈ H. Therefore

‖Avn −Avm‖ = ‖A(vn − vm)‖ ≤ ‖A‖‖vn − vm‖ < εwhenevern,m > N

Therefore Avn is a Cauchy sequence in a complete space H, so that limAvn
exists.

In particular, the position operator P and momentum operator Q will be
defined only on dense subsets of the Hilbert space of wave functions, which we
will discuss in detail in a later section. The question then arises: can either
of these operators be extended by writing something like Qψ = limQψn? The
answer is no, because as we will show Q and P are not bounded and Proposition
26 can’t be applied. The result is true for bounded operators, so we prove it
now:

Theorem 3. Let A : DA −→ H be a densely defined bounded linear operator.
Then A can be uniquely extended to a bounded linear operator A defined on the
whole space. That is, ∃!A ∈ L(H) : A ⊆ A. Furthermore, ‖A‖ = ‖A‖.

Proof. Since any v ∈ H can be written as v = lim vn for vn ∈ DA, we define
A : H −→ H by Av = limAvn. By Proposition 26, limAvn exists. It remains
to show A is linear and bounded. Let v, w ∈ H. Then

A(v) +A(w) = A lim vn +A limwn = limAvn + limAwn = limAvn +Awn

= limA(vn + wn) = A lim(vn + wn) = A(lim vn + limwn) = A(v + w) (4.5)

For scalar multiplication,

A(kv) = A(k lim vn) = A(lim kvn) = limAkvn = lim kAvn = k limAvn

= kA lim vn = kA(v) (4.6)

where in each case the sequences vn and wn are in DA and converge to v and
w respectively. To see boundedness, let v ∈ H, ‖v‖ = 1. Then v = lim vn, and

‖Av‖ = ‖ limAvn‖ = lim ‖Avn‖ ≤ lim ‖A‖‖vn‖
= ‖A‖ lim ‖vn‖ = ‖A‖‖ lim vn‖ = ‖A‖ (4.7)
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Therefore for any v s.t. ‖v‖ = 1, ‖Av‖ ≤ ‖A‖. Therefore the same is true in the
sup: supv 6=0 ‖Av‖ ≤ ‖A‖, so A is bounded. However, the normalized v ∈ DA

are also in H, so ‖A‖ ≤ ‖A‖. Therefore ‖A‖ = ‖A‖. So we have an extension
A ∈ L(H) that has the same norm as the original operator. We wish to establish
uniqueness. Suppose there were another extension B ∈ L(H). Then let v ∈ H.
We can find vn ∈ DA s.t. v = lim vn. Then by Proposition 25, Bv = limBvn.
But B extends A, so Bvn = Avn for each n. Therefore

Bv = limBvn = limAvn = Av.

Therefore B = A.

We conclude this section with a definition:

Definition 36. A densely defined linear operator A : DA −→ H is said to be
closed if the combination of statements

αn ∈ DA, limαn = α exists, limAαn = β exists

together imply that:
α ∈ DA, andAα = β

Proposition 27. Let A : DA −→ H be a closed operator. Then the operator
A− λ : DA −→ H is closed and if A is 1-1, A−1 : ranA −→ DA is also closed.

Proof. Let us first check closedness for A−λ. Take an αn ∈ DA with limαn = α
exists and lim(A − λ)αn exists. Since A is closed α ∈ DA, and limAαm = Aα
so

lim(A− λ)αn = limAαn − λαn = Aα− λα = (A− λ)α

since complex numbers can be pulled out of convergent sequences. Now let us
check for A−1 for 1-1, closed A. Let ωn ∈ ranA with limωn = ω exists and
limA−1ωn exists. Well for each n, ∃αn ∈ DA s.t. ωn = Aαn. Then limA−1ωn
= limαn =: α exists, and limωn = limAαn exists. Since A is closed, α ∈ DA,
and Aα = ω. Therefore ω ∈ ranA, and A−1ω = α.

4.1 Adjoints

The adjoint of an operator is akin to the complex conjugate of a number. In
the finite dimensional case, the adjoint A∗ of a matrix A can be defined as its
transpose conjugate. In the case of a matrix A : V −→ V , some linear algebra
verifies the fact that ∀u, v ∈ V :

〈u,Av〉 = 〈A∗u, v〉 (4.8)

In infinite dimensions, there is not an analagous way to immediately construct
the adjoint of an operator. Instead, we start our definition with 4.8.
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Definition 37. Let A : DA −→ H be a densely defined linear operator. The
adjoint A∗ of A is defined by

DA∗ =
{
ψ ∈ H

∣∣∣∃η ∈ H : ∀α ∈ DA, 〈ψ,Aα〉 = 〈η, α〉
}

(4.9)

And we define A∗ψ = η for ψ ∈ DA∗ .

We wish to show well definition. Let A : DA −→ H be a densely defined
operator and let ψ ∈ DA∗ . Suppose there is an η and a ζ that satisfy the
conditions in 4.9, i.e. A∗ψ = η and A∗ψ = ζ. Then ∀α ∈ DA,

〈η, α〉 = 〈ζ, α〉 =⇒ 〈η − ζ, α〉 = 0 ∀α ∈ DA

Which means η − ζ is perpendicular to a dense subset of H. Therefore η − ζ =
0 =⇒ η = ζ and well definition is established.

Definition 38. An operator is said to be self-adjoint if A = A∗. That is,
DA = DA∗ and Aψ = A∗ψ, ∀ψ ∈ DA.

A slightly weaker condition is for an operator to be symmetric:

Definition 39. A densely defined operator A : DA −→ H is said to be sym-
metric if ∀α, β ∈ DA,

〈α,Aβ〉 = 〈Aα, β〉

The reason symmetry is not taken as the definition of self-adjointness is
that DA is not, in general, the whole Hilbert space H. It’s usually just a dense
subset. The adjoint of an operator may be defined on vectors outside its original
domain.

Proposition 28. A densely defined operator A : DA −→ H is symmetric iff
A ⊆ A∗.

Proof. Suppose A is symmetric. Then every α ∈ DA satisfies the condition for
being in DA∗ , and in each case Aα = A∗α. Therefore A ⊆ A∗. Now suppose
A ⊆ A∗. Then every α ∈ DA satisfies the condition to be in DA∗ , and since
A∗α = Aα for each α ∈ DA. Therefore A is symmetric.

Corollary 4. Self adjoint operators are symmetric.

Definition 40. An operator is said to be essentially self-adjoint if A∗∗ is self-
adjoint.

4.2 Ranges and Kernels

Definition 41. The range of an operator A : DA −→ H is defined by

ranA :=
{
β ∈ H

∣∣∣β = Aα for someα ∈ DA

}
That is, the range of an operator is the set of vectors that the domain gets
mapped to.



4. Linear Operators 37

Remark 8. ranA ⊆ H. That is, the range is a subset of the codomain.

Definition 42. The null space (or kernel) of an operator A is the defined by:

N(A) = kerA :=
{
α ∈ DA

∣∣∣Aα = 0
}

Remark 9. N(A) ⊆ DA. That is, the null space is a subset of the domain. It
is the preimage of the 0 vector.

Proposition 29. (ranA)⊥ = N(A∗)

Proof. Let β ∈ (ranA)⊥. Then 〈β,Aα〉 = 0 and β ∈ DA∗ with A∗β = 0,
so β ∈ N(A∗). The converse is the same thing backwards and is left to the
reader.

Proposition 30. (A− λ)∗ = A∗ − λ

Proof. Left to the reader.

Remark 10. N(A− λ) = Eλ for λ ∈ Λ(A).

4.3 Projectors

Projectors show up in quantum mechanics to describe measurement results. In
essence, when an eigenvalue λ is measured for a system in the state ψ, the state
after measurement is the piece of ψ that was in the eigenspace corresponding to
λ. The reality is a little more complicated, as states are not vectors, but this is
the spirit of the process. The important intuition is that measuring λ changes
the state by projecting it onto the eigenspace.

(picture).

Definition 43. A linear operator P ∈ L(H,H) is said to be a projector if:

(i) P 2 = P

(ii) P∗ = P

Proposition 31. Let P : H −→ H be a projector. For any a ∈ ran (P ), Pa = a.

Proof. a = Pψ for some ψ ∈ H. Now, hit the equation with P on both sides.

Pa = P 2ψ = Pψ = a

Proposition 32. Let P : H −→ H be a projector. Then ‖P‖ ≤ 1.

Proof. Denote M = ran (P ). Let ψ ∈ H. Note that ψ = Pψ + (ψ − Pψ). We
will denote φ = Pψ and η = ψ − Pψ. Observe that Pη = Pψ − Pψ = 0. Now,

‖Pψ‖ = ‖P (φ+ η)‖ = ‖Pφ+ Pη|V ert = ‖φ‖ ≤ ‖φ+ η‖ = ‖ψ‖

so ‖P‖ ≤ 1.
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There is something very important about projectors:

Proposition 33. Given a projector P : H −→ H, the space M = ran (P ) is a
closed subspace.

Proof. Let a be a limit point of M . Then a = lim an = limPψn for ψn ∈ H.
But Pψn = Pan, so a = limPan. Now, since P is bounded and its domain is
all of H, limPan = P lim an = Pa. so a = Pa ∈ ran (P ).

4.4 Unitary Maps

Definition 44. A linear map U ∈ L(H,H) is said to be unitary if:

(i) ran (U) = H

(ii) ∀f, g ∈ H, 〈Uf,Ug〉 = 〈f, g〉

Proposition 34. For unitary maps, U∗ = U−1.

4.5 Spectra

The spectrum of an observable O tells you what possible values you can get
when you measure that observable. For example, consider the measurement of
a particle along the x-axis. The spectrum of the x-position operator will be
shown to be the whole real line, so that the particle can be found anywhere. It
is frequently (incorrectly) stated that these are eigenvalues, and that the delta
functions are eigenvectors. This notion can be made more precise, but we do
not explore that idea here. It will be shown that the position operator has no
eigenvalues, and therefore has no eigenfunctions. Delta functions are in fact
not even functions. We require a more general notion of the spectrum of an
operator, which contains more than just eigenvalues.

Definition 45. A number λ ∈ C is called an eigenvalue of a linear operator A
if ∃v ∈ DA, v 6= 0 s.t.

Av = λv (4.10)

In this case, v is called the eigenvector corresponding to λ.

Definition 46. We write Λ(A) to denote the set of eigenvalues of A.

Definition 47. We write Eλ to denote the set of eigenvectors corresponding to
λ.

Proposition 35. Eλ is a subspace of DA for each eigenvalue λ.

Proof. Left to the reader.

Linear operators act like multiplication, but in this case, eigenvectors really
see operators as multiplication by a number.
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Proposition 36. The eigenvalues of a symmetric operator are real.

Proof. Let A : DA −→ H be a symmetric operator. Let λ ∈ Λ(A). Then
∃v 6= 0: Av = λv. We examine the quantity

〈v,Av〉 = 〈v, λv〉 = λ〈v, v〉

Since A is symmetric, we have

〈v,Av〉 = 〈Av, v〉

and similar to above
〈Av, v〉 = 〈λv, v〉 = λ〈v, v〉

And therefore
λ〈v, v〉 = λ〈v, v〉

But v 6= 0, so λ = λ. Therefore Λ(A) ⊆ R.

Corollary 5. The eigenvalues of a self-adjoint operator are real.

Proposition 37. Given densely defined A : DA −→ H, the operator A − λ :
DA −→ H is 1− 1 iff λ /∈ Λ(A).

Proof. Suppose λ ∈ Λ(A). Then ∃v 6= 0: Av = λv. Therefore (A− λ)v = 0 and
v 6= 0, so A − λ is not 1 − 1. Therefore if A − λ is 1 − 1, λ can’t be in Λ(A).
Now suppose λ /∈ Λ(A). Then the equation Av = λv forces v = 0. Therefore
(A− λ)v = 0 =⇒ v = 0. Therefore A is 1− 1.

It is clear that when λ ∈ Λ(A), the operator A looks exactly like λ to the
vectors in Eλ. So the operator A − λ gets all messed up: to some vectors it
looks like the 0 operator, and therefore (A− λ)−1 does not exist. So we give a
name to the set of λ where A− λ is a very nice operator:

Definition 48. The resolvent set of an operator A is defined by:

ρ(A) :=
{
λ ∈ C : (A− λ)−1 exists and is inL(H)

}
(4.11)

Definition 49. The spectrum of an operator A is defined by:

σ(A) := ρ(A)c (4.12)

Any densely defined operator A thus splits up the complex plane into num-
bers that look A (the spectrum) and numbers that don’t (the resolvent set).

Corollary 6. Λ(A) ⊆ σ(A)

But how can an operator A look like a number λ without the λ being an
eigenvalue? Well, according to our definition, if it’s not an eigenvalue but is in
the spectrum, then (A− λ)−1 exists, but either its domain is not all of H or it
isn’t bounded. As we will show, both can’t happen at the same time.



4. Linear Operators 40

Proposition 38. For self-adjoint A : DA −→ H, λ ∈ Λ(A) iff ran (A− λ) 6= H

Proof. Suppose λ is an eigenvalue of A. Then

ran (A− λ) = ran (A− λ)
⊥⊥

= N([A− λ]∗)⊥ =

N(A∗ − λ)⊥ = N(A− λ)⊥ (4.13)

But λ is an eigenvalue, so ∃v 6= 0 ∈ N(A− λ), so N(A− λ) ⊃ 0. Therefore

ranA− λ = N(A− λ)⊥ 6= H

The prove of the converse is essentially the same steps backwards and is left to
the reader.

Proposition 39. Let A : DA −→ H be a densely defined operator. Then if
λ /∈ Λ(A) and λ ∈ σ(A), then either (A− λ)−1 is unbounded or ranA 6= H, but
not both.

Proof. Suppose λ ∈ σ(A) but is not an eigenvalue. Then one of the two condi-
tions stated have to be true, by the definition of the spectrum. Suppose both
were true. Then we would have a bounded linear operator defined on a dense
subset of H, and we can extend it to H. Then λ would be in the resolvent set,
a contradiction.

We characterize the spectrum of an operator into two types:

Definition 50. The point spectrum σp(A) is defined as:

σp(A) :=
{
λ ∈ C

∣∣∣ran (A− λ) 6= H
}

Definition 51. The continuous spectrum σc(A) is defined as:

σc(A) :=
{
λ ∈ C

∣∣∣ran (A− λ) 6= ran (A− λ)
}

The following theorem is quintessential to quantum mechanics: it’s why your
arms aren’t 2+ 3i feet long. The proof is based on one from [6], but the second
half is my own and avoids their use of proof by contradiction.

Theorem 4. Self-adjoint operators have real spectra.

Proof. Let A : DA −→ H be a densely defined self-adjoint operator. Let λ ∈ C
be a complex number that is not real, i.e. λ = ξ + iη, with η 6= 0. Then
λ /∈ Λ(A). Therefore A − λ is 1-1, so (A − λ)−1 : ranA −→ H exists. Let
g ∈ ran(A− λ). Then ∃f ∈ DA: g = (A− λ)f . We examine the quantity

‖g‖2 = 〈(A− λ)f, (A− λ)f〉 = 〈(A− ξ)f − iηf, (A− ξ)f − iηf〉
= 〈(A− ξ)f, (A− ξ)f〉+ 〈(A− ξ)f,−iηf〉+ 〈−iηf, (A− ξ)f〉+ 〈−iηf,−iηf〉

= ‖(A− ξ)f‖2 + ‖ηf‖2 − iη〈(A− ξ)f, f〉+ iη〈f, (A− ξ)f〉 (4.14)
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But A is self-adjoint, and ξ is a real number, so A− ξ is self-adjoint. Therefore
the cross terms cancel and we have

‖g‖2 = ‖(A− ξ)f‖2 + ‖ηf‖2 ≥ |η|2‖f‖2

So that ‖g‖ ≤ |η|‖f‖. But since f is the vector g came from, ‖g‖ ≤ |η|‖(A −
λ)−1g‖, so that ∀g ∈ ranA,

‖(A− λ)−1g‖
‖g‖

≤ 1

|η|

Since η 6= 0, and this is true ∀g, ‖(A− λ)−1‖ is bounded above by 1
|η| and (A−

λ)−1 is a bounded linear operator. Since λ is not an eigenvalue, ran (A− λ) = H,
and A − λ is 1-1. Since A is self-adjoint, it is closed, so we have a 1-1 closed
operator and therefore (A−λ)−1 is closed. Now let g ∈ H. Then ∃gn ∈ ranA−λ
with lim gn = g. By 26, lim(A−λ)−1gn exists. Therefore we have all the initial
conditions for a closed operator, and one of the results is that g ∈ ran (A− λ).
Therefore H ⊆ ran (A = λ). But ran (A − λ) ⊆ H by definition of A. So
ran (A− λ)−1 = H. Therefore (A− λ)−1 exists and is in L(H).

That means that if λ has any imaginary part, it has to be in the resolvent
set. Therefore σ(A) ⊆ R.

Proposition 40. The eigenvalues of a unitary operator U lie on the unit circle
in C. That is, for any λ ∈ Λ(U), |λ| = 1.

Proof. Let U : H −→ H be a unitary operator. Let λ ∈ Λ(U). Then ∃f 6= 0:
Uf = λf . Without loss of generality assume ‖f‖ = 1.

1 = 〈f, f〉 = 〈Uf,Uf〉〈λf, λf〉 = |λ|2〈f, f〉 = |λ|2

So λ is on the unit circle.

It is also true that σ(U) lies on the unit circle, but we do not prove that
here.

Proposition 41. If an operator B : DB −→ H is self-adjoint and its inverse
B−1 : H −→ DB exists in L(H), then B−1 is self-adjoint.

Proof.

DB−1∗ =
{
ψ ∈ H

∣∣∣∃η ∈ H : ∀α ∈ DB−1 , 〈ψ,B−1α〉 = 〈η, α〉
}

Take an ψ ∈ H. H = ranA, so ψ = Bφ for some φ ∈ DB , and therefore
B−1ψ = φ. Therefore

〈ψ,B−1α〉 = 〈Bφ,B−1α〉 = 〈φ,BB−1α〉 = 〈φ, α〉

So DB−1∗ = H and B−1∗φ = B−1φ. This completes the proof.
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4.6 The Trace

Proposition 42. For any ON basis en, and for any φ, ψ ∈ H, we have

〈φ, ψ〉 =
∞∑
n=1

〈φ, en〉〈en, ψ〉

Proof. Since en is an ON basis, we have

φ =

∞∑
n=1

〈en, φ〉en

and

ψ =
∞∑
m=1

〈em, ψ〉em

so that

〈φ, ψ〉 = 〈
∞∑
n=1

〈en, φ〉en,
∞∑
m=1

〈em, ψ〉em〉

= 〈 lim
N→∞

N∑
n=1

〈en, φ〉en, lim
M→∞

M∑
m=1

〈em, ψ〉em〉

= lim
N→∞

lim
M→∞

〈
N∑
n=1

〈en, φ〉en,
M∑
m=1

〈em, ψ〉em〉 (4.15)

But now we only have finite sums in the inner product, so they can be pulled
out:

= lim
N→∞

lim
M→∞

N∑
n=1

M∑
m=1

〈〈en, φ〉en, 〈em, φ〉em〉

= lim
N→∞

lim
M→∞

N∑
n=1

M∑
m=1

〈φ, en〉〈em, ψ〉〈en, em〉

= lim
N→∞

n∑
n=1

M∑
m=1

〈φ, en〉〈en, ψ〉 =
∞∑
n=1

〈φ, en〉〈en, ψ〉 (4.16)

Remark 11. The shorthand for this is to just write put I =
∑∞
n=1 |en〉〈en|

between 〈φ| and |ψ〉 in the inner product 〈φ|ψ〉.

The trace of an operator is an important tool. Before defining the trace, we
make a preliminary definition.
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Definition 52. We define a bounded linear operator A : H −→ H to be trace-
class if the quantity

∞∑
n=1

〈en, Aen〉

is finite for any ON basis en. For a trace-class operator A, we define the trace
of A to be

Tr(A) :=

∞∑
n=1

〈en, Aen〉

for an ON basis labeled {en}.

Proposition 43. The trace is basis independent; i.e. the trace is well defined.

Proof. Let en and fm be two ON bases. We wish to show
∞∑
n=1

〈en, Aen〉 =
∞∑
n=1

〈fm, Afm〉

We will denote the LHS by Tre(A) an the RHS by Trf (A).
Since en is an ON basis, we know that each fm can be written as

fm =

∞∑
n=1

〈en, fm〉en

So that

Trf (A) =

∞∑
m=1

〈 ∞∑
i=1

〈ei, fm〉ei, A
∞∑
j=1

〈ej , fm〉ej
〉

=

∞∑
m=1

∞∑
i=1

∞∑
j=1

〈ei, fm〉〈fm, ei〉〈ei, Aej〉

=

∞∑
i=1

∞∑
j=1

∞∑
m=1

〈ej , fm〉〈fm, ei〉〈ei, Aej〉

=

∞∑
i=1

∞∑
j=1

〈ei, Aej〉
∞∑
m=1

〈ej , fm〉〈fm, ei〉

=

∞∑
i=1

∞∑
j=1

〈ei, Aej〉δij =
∞∑
i=1

〈ei, Aei〉 = Tre(A) (4.17)

Definition 53. Given a bounded linear map A : H −→ H, A is said to be
positive if ∀f ∈ H,

〈f,Af〉 ≥ 0
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Definition 54. States of a system are said to be pure if there exists ψ ∈ H
such that

ρφ = 〈ψ, φ〉ψ

In this case, we denote ρ = ρψ.

Proposition 44. Given a pure state ρψ and self-adjoint operator A,

Tr(ρψA) = 〈ψ,Aψ〉

Proof.

Tr(ρψA) =
∑

〈ei, ρψAei〉 =
∑

〈ei, 〈ψ,Aei〉ψ〉 =∑
〈Aψ, ei〉〈ei, ψ〉 = 〈Aψ,ψ〉 = 〈ψ,Aψ〉 (4.18)

4.7 The Commutator

We finish the section with a brief discussion of the commutators of operators.
Many of the definitions here come from future sections.

Definition 55. For A,B ∈ L(H), we define the commutator of A and B to be

[A,B] := AB −BA

Definition 56. We say two bounded operators A,B ∈ L(H) commute if

[A,B] = 0

Definition 57. If A and B are unbounded self-adjoint operators, then we say
A and B commute if

[eitA, eisB ] = 0

for some t, s ∈ R.

Proposition 45. On the Schwartz space S(R), it holds true that ∀ψ ∈ S,

QPψ − PQψ = i~ψ

Proof. Can be found in [1].



5. MEASURE THEORY

We wish to talk about the Hilbert space of square-integrable functions. However,
the way we define “integrable” requires definitions from measure theory. We
will also need projection-valued measures, a generalization of the notion of a
measure, to talk about quantum measurement. The first type of measure we
wish to talk about is a way to assign a length to sets of real numbers, so that
we can integrate over them.

Definition 58. A σ-algebra σ for a set M is a collection of subsets of M
satisfying three axioms:

(i) ∅ ∈ σ

(ii) E ∈ σ =⇒ Ec ∈ σ

(iii) E1, E2, ... ∈ σ =⇒
⋃∞
n=1En ∈ σ

The subsets E ⊆M are said to be measurable sets.

Proposition 46. Let E be a collection of subsets of a set M . The set σ defined
by

σ =
⋂

E∈Ω, σ−alg

Ω

is also a sigma algebra. This is also called the smallest sigma algebra containing
E, or the σ-algebra generated by E, and is written σ(E).

Proof. Can be found in [8].

Proposition 47. If σ is a σ− algebra for M , then there exists an E such that
σ = σ(E).

Proof. Can be found in [8].

Definition 59. A measure is a function µ : σ −→ [0,∞] satisfying two axioms:

1. µ(∅) = 0

2. A1, A2, ... ∈ σ with Ai
⋂
Aj = ∅ for i 6= j (pairwise disjoint) implies that

µ(

∞⋃
i=1

Ai) =

∞∑
i=1

µ(Ai)
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5.1 Measuring R

Our primary task is to define a measure-based integral of complex number valued
wave-functions. Our first task, then, is to define a measure of line segments.

Take the line segment (3, 7). Clearly, if I were to measure the length of this
segment, I would find it to be 7− 3 = 4.

Definition 60. The length of an open interval I = (a, b) is defined to be

`(I) = b− a

In addition, we define that `([a, b)) = `([a, b]) = `((a, b]) = b− a.

Now consider a more complicated set, like A = (2, 3) ∪ (4, 5). Clearly the
size of A should be 2, but can we relate this to the length by a definition? What
if A were an extremely wonky set, like the set C = all rational multiple of e
between 3 and 5.3? Well, if I a roll of tape with numbers marking length, I
could place pieces of tape over small subsets of C. If I kept doing this until I
used enough tape to cover all of C, then the length of C is certainly no more
than the total length of tape I used. First we define a rigorous generalization of
our tape strategy:

Definition 61. Given a set E, an open cover O for E is a collection of open
subsets O = {Oα}α∈A such that

⋃
α∈AOα ⊇ E, where A is an indexing set for

O. That is, an open cover for E is a collection of open sets that cover all of E.

In particular, one may form open covers which are sequences of intervals,
like our tape example. Since we know the length of each piece of tape, then the
size of C should be how much tape we need at the very least to cover all of C.
This is called the Lebesgue outer measure.

Definition 62. The Lebesgue outer measure µ∗ : P(R) −→ [0,∞] by the equa-
tion

µ∗(E) = inf
{ ∞∑
k=1

`(Ik)
∣∣∣ ∞⋃
k=1

Ik ⊇ E
}

And each sequence Ik is understood to be a sequence of intervals.

This is an extremely clever way to assign “lengths” to sets which are much
more unwieldy than ordinary intervals. However, in order for our definition to
be sensible we must verify that the outer measure of a set agrees with its length.
First, we state a useful theorem without proof:

Theorem 5. (Heine-Borel) Any open cover for a closed, bounded subset of the
real axis contains a finite subcover. That is, given a closed, bounded M ⊆ R, then
for any open cover {Oα}α∈A of M, there exists a finite subcover O1,O2, ...,On

such that each Oi is one of the open sets in the cover.

Proposition 48. µ∗(I) = `(I) for open intervals I.
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Proof. First, we show µ∗(I) ≤ `(I). Pick the sequence I, ∅, ∅, .... This is an
open cover of I, so

∑∞
k=1 Ik = `(I) + `(∅) + ... = `(I) is in the set that µ∗ takes

the inf over. Therefore µ∗(I) ≤ `(I).
The converse is much trickier. To do this, we write I = (a, b) concretely. Let

ε > 0. Let Iε = [a + ε
2 , b −

ε
2 ] ⊆ (a, b). Let Ik be any open cover for I. Then

the sequence Ik is also an open cover of Iε. Now, by Theorem 5, we know that
there is a finite subcover J1, J2, ..., Jn of Ik for Iε such that each Ji was an Ik
for some k. So

∞∑
k=1

`(Ik) ≥
n∑
j=1

`(Jj)

But if you arrange the Jn in the right way it is easy to see that
n∑
j=1

`(Jj) > b− a− ε

But for any ε > 0, equality might hold in the infimum over all open interval
covers:

inf

∞∑
k=1

`(Ik) ≥ b− a− ε

And the same must hold ∀ε > 0, so that

inf

∞∑
k=1

`(Ik) ≥ b− a

But the left hand side is µ∗(I), and the right hand side is `(I). This completes
the proof.

Definition 63. A set E is said to be measurable if, for all A ⊆ R,

µ∗(A) = µ∗(A ∩ E) + µ∗(A ∩ Ec)

Proposition 49. If E is measurable, then Ec is measurable.

Proof. Follows immediately from the definition and the fact that Ecc = E.

Proposition 50. ∅ and R are measurable.

Proof. First we show that ∅ is measurable. Let A ⊆ R. Then

µ∗(A ∩ ∅) + µ∗(A ∩ ∅c) = µ∗(∅) + µ∗(A ∩ R) = µ∗(A)

Then by Proposition 49 ∅c = R is measurable.

Proposition 51. If E1, E2, ... is a countable sequence of measurable sets then
∪iEi is measurable.

Proof. Can be found in [8].
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Corollary 7. The collection of measurable sets of R is a σ-algebra.

Proposition 52. If E ⊆ F , then µ∗(E) ≤ µ∗(F ).

Proof. Let Ik be any sequence of open intervals that covers F . Then the open
cover Ik also covers E, because E ⊆ F . Therefore the set of open covers of E is
a subset of open covers of F , so that the inf over E is less than or equal to the
inf over F . i.e., µ∗(E) ≤ µ∗(F ).

Proposition 53. Given measurable E,F ⊆ R, the following equality holds:

µ∗(E ∪ F ) + µ∗(E ∩ F ) = µ∗(E) + µ∗(F )

Proof.

µ∗(E ∪ F ) + µ∗(E ∩ F ) = µ∗[(E ∪ F )∩ F ] + µ∗[(E ∪ F )∩ F c] + µ∗(E ∩ F ) =
µ∗(F ) + µ∗(E ∩ F c) + µ∗(E ∩ F ) = µ∗(E) + µ∗(F ) (5.1)

Corollary 8. µ∗(E ∪ F ) ≤ µ∗(E) + µ∗(F )

Proposition 54. If E1, E2, ... is a countable sequence of disjoint measurable
sets then

µ∗
( ∞⋃
i=1

Ei

)
=

∞∑
i=1

µ(Ei)

Proof. Can be found in [8].

Corollary 9. The restriction of the Lebesgue outer measure to the set of mea-
surable sets is a measure, and we denote it by µ : σ −→ [0,∞].

Proposition 55. Let µ : σ −→ [0,∞] be a measure. Let F ∈ σ. Then the
function µ|F : σ −→ [0,∞] defined by

µ|F (E) = µ(E ∩ F )

is also a measure.

Proof. We verify both measure axioms.

(i) Claim: µ|F (∅) = 0

Proof: µ|F (∅) = µ(∅ ∩ F ) = µ(∅) = 0.

(ii) Claim: µ|F (
⋃∞
i=1Ei) =

∑∞
i=1 µ|F (Ei)

Proof:

µ|F (
∞⋃
i=1

Ei) = µ(F ∩
∞⋃
i=1

Ei) = µ(

∞⋃
i=1

F ∩Ei) =
∞∑
i=1

µ(F ∩Ei) =
∞∑
i=1

µ|F (Ei)
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5.2 Measure-based integration

Integration is, among physicists, an “uncountably” infinite sum of infinitesimal
objects. Mathematically, however, this is done with limits. In the case of real
valued functions defined on the real axis, Riemann integration is the most ob-
vious approach. It allows for easy calculation with antiderivatives according to
the fundamental theorem of calculus. In order to see the connection between
Riemann integration and measure theory, and in particular how the Riemann
integral generalizes to the Lebesgue integral, we first precisely define the Rie-
mann integral. First, we need to break up the interval to make all of the little
rectangles.

Definition 64. Given a, b ∈ R, we define a partition P of the interval [a, b] to
be any ordered n + 1-tuple of real numbers (x0, x1, ..., xn) satisfying a = x0 <
x1 < ... < xn = b. We define the symbol ∆xi := xi − xi−1.

Definition 65. We define the norm of a partition P to be

‖P‖ = max∆xi

over all of the ∆xi’s in that partition.

Definition 66. Given a partition P = (x0, x1, ..., xn), we define a tagged par-
tition Ṗ to be any set of ordered pairs ([xi−1, xi], ti) such that ti ∈ [xi−1, xi]

Now, if we have any function f : [a, b] −→ C, we can add up the “area” of
the rectangles generated by a given partition and the function to approximate
the “area” under the function.

Definition 67. Given a tagged partition Ṗ, we define the Riemann sum of f
with respect to Ṗ to be:

S(f, Ṗ) =

n∑
i=0

f(ti)∆xi

Definition 68. Let f : [a, b] −→ C. We say that f is integrable if ∃L such that
∀ε > 0, ∃δ > 0:

‖S(f, Ṗ)− L‖ < εwhenever ‖P‖ < δ

In other words,
lim

‖Ṗ‖→0
S(f, Ṗ) = L

In this case, we define the Riemann integral of f over [a, b] by∫ b

a

f(x)dx := L

The use of the partition makes it easy to see how differentiation is useful in
integration of functions with continuous derivatives. If f = dF

dx for some F , then
if we add up a lot of f(t)dx’s we get the sum of all the dF ’s, obtaining that the
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integral is F (b) − F (a). However, take the function φ : [0, 1] −→ R defined by
φ(x) = 1 if x ∈ Q and φ(x) = 0 otherwise. Consider also the function ψ defined
on the same interval but is instead 0 on the rationals and 1 on the irrationals.
What is the area under these functions? The Riemann integral has no way to
interpret such functions. The Lebesgue integral, however, does. The reason is
that instead of working with just partitions, the idea is that you’re allowed to
break up the set you’re integrating over in any way that you want.

Definition 69. We say a function s : R −→ R is simple if it has a finite range,
i.e. s(R) = {s1, ..., sn}. We denote the preimage of si by Ai.

Remark 12. ψ and φ as defined above are simple.

Definition 70. The Lebesgue integral of a simple function s with respect to the
measure µ is defined by: ∫

R
s dµ :=

n∑
i=1

siµ(Ai)

Compare this with Definition 67.

Proposition 56.
∫
φdµ = 0 and

∫
ψ dµ = 1

Proof.
∫
φdµ = 1µ(Q) + 0µ(I) = 0. Similarly for ψ.

In the case that we don’t want to integrate over the whole real line, we can
restrict the integration domain to just a measurable subset.

Definition 71. Let s be a simple function and Ω a measurable subset. The
integral of s over Ω is defined by:∫

Ω

s dµ :=

n∑
i=1

siµ(Ai ∩ Ω)

Definition 72. Let f : R −→ [0,∞] be a nonnegative measurable function. The
Lebesgue integral of f is defined by the equation:∫

f dµ := sup
0≤s≤f

∫
s dµ

A nonnegative measurable f is said to be integrable if
∫
f dµ is finite.

Definition 73. Let f : R −→ R be a measurable function. A measurable f is
said to be integrable if |f | is integrable.

Definition 74. Let f : R −→ R be an integrable function. The Lebesgue integral
of f is defined by the equation:∫

f dµ :=

∫
f+ dµ+

∫
f− dµ
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where f+ and f− are defined by

f+(x) = max(f(x), 0) and f−(x) = max(−f(x), 0)

That is, f+ is positive when f is positive and 0 when f is negative, and f− is
negative when f is negative and 0 when f is positive. (include picture)

Definition 75. Let f : R −→ C be a measurable function. f is said to be
integrable if |f | is integrable.

Definition 76. Let f : R −→ C be integrable. The Lebesgue integral of f is
defined by the equation:∫

f dµ =

∫
Re(f) dµ+

∫
Im(f) dµ

Remark 13. For complex valued functions, the Lebesgue integral is defined by
the real-valued real and imaginary component functions. The integrals of the
real valued functions are defined by the nonnegative f+ and f− functions, whose
integrals are defined by the simple functions.

Proposition 57. Let µ : σ −→ [0,∞] be a measure. Let F ∈ σ. Then for any
measurable function f , ∫

F

f dµ =

∫
f dµ|F

Proof. Follows from the way integrals over measurable subsets are defined.

Proposition 58. Let µ be a measure, and f an integrable function. Then

Φ(E) :=

∫
E

f dµ

is a measure.

Proof. Can be found in [8].



6. FUNCTIONS ON THE REAL LINE

L2 is a Hilbert space of functions, and most quantum mechanical problems live
in L2. However, we can make spaces of functions which have considerably less
properties:

Proposition 59. The set of functions Ω =
{
f : R −→ C

}
, equipped with

scalar multiplication operation (z · f)(x) = z · (f(x)) and addition operation
(f + g)(x) = f(x) + g(x) is a vector space over C.

Notice that Ω here is a very big set. It contains all the real valued functions.
It contains the square-integrable functions. It contains literally every possible
function you could come up with, subject to the restriction that it takes in real
numbers and outputs complex numbers.

The reason it contains so many functions is that we’ve said so little about
the functions it contains. As a result of this, it immediately becomes very
difficult to prove anything nontrivial about Ω. The theory of linear operators
on Ω would not be particularly fruitful. Intricate structure of a space arises from
cleverly chosen requirements for elementhood. If I give you a vector space V and
ask you to prove something about it, you’re going to have a considerably more
difficult time than if I told you it was a normed vector space, because there’s
no way of establishing any sort of convergence for sequences or operators. If I
give you a Banach space, you’re going to have an even easier time establishing
convergence of sequences, as only the Cauchy requirement is necessary. With a
Hilbert space, you may make use of the inner product while proving a result.
The more you say about a collection, the less things you have in your collection,
so more structure arises.

Moving back down to L2, we will see that in many cases we already have
many pathological functions, and so very often L2 is not worked with directly.
Instead, we very often talk about the Schwartz space, a subspace of L2.

While constructing these spaces, we often start from the bottom up. The
atoms of functional analysis are the aptly named simple functions.

Definition 77. A function s : M −→ N is said to be simple if it has a finite
range ran s = {s1, ..., sn} The set of measurable simple functions s : M −→ N
by S(M.N).

Proposition 60. S(R,C) is a vector space over C, equipped with the addition
operation (s+ t)(x) := s(x) + t(x), (ks)(x) = ks(x).
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Proposition 61. S(R,C) is a normed vector space, when equipped with the
infinity norm

‖s‖∞ = sup |s(x)|

Proof. First, we note that for any simple s, since the range is finite the sup |s(x)|
is always just the max|s(x)|.

(i) ‖s‖ ≥ 0

Proof: Each |s(x)| is a non-negative number so the same is true in the
max.

(ii) ‖s‖ = 0 =⇒ s = 0

Proof: If the max|s(x)| = 0, then since |s(x)| ≤ max|s(x)| for each x and
|s(x)| ≥ 0 for each x we have that |s(x)| = 0 for each x so that s(x) = 0
for each x.

(iii) ‖λs‖ = |λ|‖s‖
Proof: ‖λs‖ = max|λs(x)| = max|λ||s(x)| = |λ|max|s(x)| = |λ|‖s‖.

(iv) ‖s+ t‖ ≤ ‖s‖+ ‖t‖
Proof: |s(x)| ≤ ‖s‖, and |t(x)| ≤ ‖t‖. So

|s(x) + t(x)| ≤ |s(x)|+ |t(x)| ≤ ‖s‖+ ‖t‖

so that in taking the max we obtain the desired result.

Definition 78. The set of bounded measurable functions is defined by:

B(R,C) :=
{
f : R −→ C

∣∣∣‖f‖∞ <∞ , f is measurable
}

Proposition 62. B(R,C) is a Banach space, equipped with the usual addition,
scalar multiplication, and infinity norm.

Proof. The vector space proof is left to the reader. The norm follows the same
proof with sup facts. (might fill in later) Proof of Banach: Let fn ∈ B be
Cauchy. Let ε > 0 Since fn is Cauchy ∃N : ‖fn − fm‖ < ε whenever n > N .
But, for each x, |(fn − fm)(x)| ≤ ‖fn − fm‖. Therefore ∀x, fn(x) is a Cauchy
sequence in C. Since C is complete, fn(x) converges for each x. Define the
function f(x) = lim fn(x). We wish to show that f ∈ B and f = lim fn
according to the infinity norm. Choose ε = 1. Then ∃N :

‖fn − fm‖ < 1whenevern,m > N

Then for all x,
|fn(x)− fm(x)| < 1whenevern,m > N
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Now since the limit exists pointwise, we take the limit on m:

|fn(x)− f(x)| ≤ 1whenevern > N

We choose n = N + 1 to make the above inequality true. We then have, by the
reverse triangle inequality:

|f(x)| − |fN+1(x)| ≤ 1

Rearranging and taking the sup on both sides we have

sup |f(x)| ≤ 1 + ‖fN+1‖

But since fN+1 is bounded (also need measurability) we have f ∈ B. The
same ε

4 trick works here as it did for the bounded linear maps to verify that
f = lim fn.

The proof of the following proposition was developed independently.

Proposition 63. S(R,R) is dense in B(R,R).

Proof. We need to show that for each f ∈ B we can find a sequence sn ∈ S such
that lim sn = f with respect to the infinity norm. Of course, in the context of
the infinity norm, this means we have to make sup |f(x)−sn(x)| < ε for n > N ,
which means the function sn has to converge pointwise to f , all using the same
N. To do this, consider an f . Since f ∈ B, it must be true that |f(x)| ≤ ‖f‖.
Therefore let N = inf f(x) and M = sup f(x). Therefore, ran f ⊆ [N,M ]. For
the simple function sn, we break up the domain into

Ai = f−1
[
N + (i− 1)

M −N

n
,N + (i)

M −N

n

)
for i = 1, ..., n

and define sn(x) = N + (i− 1)M−N
n for x ∈ Ai. (Note to self: Missing the very

top here. Should have closed bracket.) Since f is measurable, the preimage
of each interval is measurable. This construction looks miles more complicated
than it actually is. The simple idea is, break up length of the range into n little
pieces, then break up the domain into the things that get mapped to each of
those pieces. Then define a simple function to be mapped to the bottom of each
of those pieces in the range.

Now, let x ∈ R. Then for any n, ∃j s.t. 1 ≤ j ≤ n and f(x) ∈ Aj . Observe
that the inequality

‖f(x)− sn(x)‖ ≤ 1

n

follows from the fact that f(Aj) has length 1
n . Separately, observe that 1

n <
1
N

when n > N . At last, let ε > 0. Let N = 2
ε . Then for any x,

‖f(x)− sn(x)‖ ≤ ‖f(x)− sN (x)‖ ≤ 1

N
=
ε

2
whenevern > N
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Since our choice of N satisfies the desired inequality for all x, we take the sup
on both sides and get that

‖f − sn‖ ≤ ε

2
< εwhenevern > N

Therefore f = lim sn. But this is true for any f ∈ B(R,R). Therefore S(R,R)
is dense in B(R,R).

Proposition 64. S(R,C) is dense in B(R,C).

Proof. Uses the same trick as before, except instead of sn mapping the line
into n intervals, it maps the line into an nxn grid of the plane with side length
2‖f‖.

Definition 79. The set of square integrable functions (with respect to the mea-
sure µ) from R to C is defined by

L2(R, µ) :=
{
f : R −→ C

∣∣∣ ∫ |f |2 dµ <∞
}

Remark 14. If µ is the Lebesgue measure, L2(R, µ) is just denoted L2(R), or
sometimes just L2.

This set is, unfortunately, not a Hilbert space. For consider the function
ξ(x) = 0 if x 6= 0 but ξ(x) = 1 if x = 0. This function is not zero, but its
square integral is 0, so we will run into trouble with the norm axioms if we’re
not careful. To avoid this, we define an equivalence relation.

Definition 80. We define an equivalence relation ≡ for L2(R) in the following
way: f ≡ g if ∃M with µ(M) = 0 such that

f(x) = g(x)∀x ∈ R\M

And we denote the set of elements that are equivalent to some f by [f ].

Proposition 65. If f ≡ g, then
∫
f dµ =

∫
g dµ and

∫
|f |2 dµ =

∫
|g|2 dµ.

Proof. Let M be the set where f and g perhaps differ. Then∫
f dµ =

∫
M

f dµ+

∫
Mc

f dµ =

∫
Mc

g dµ =

∫
M

g dµ+

∫
Mc

g dµ =

∫
g dµ

Definition 81. Let L2 be defined as above. The set of equivalence classes of
square integrable functions is defined by

L2(R) := { [f ] |f ∈ L2}
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Now, when dealing with equivalence classes of functions, we should tech-
nically be careful to define something like [f ] + [g] =: [a + b], where we are
allowed to pick any a ∈ [f ] and b ∈ [g], and then check that such operations are
well-defined, but in practice, one never really has to be worried about this, and
as long as we understand that if we somehow end up with a function like ξ, we
just talk about it as the 0 function. In the following definition we omit mention
of equivalence classes.

Theorem 6. L2(R) is a Hilbert space when equipped with function addition and
scalar multiplication and the inner product

〈f, g〉 :=
∫
f∗g dµ

Proof. Can be found in [9].

As we have previously discussed, L2 is sometimes hard to work with con-
cretely. The following space is immensely useful for quantum mechanical oper-
ators:

Definition 82. The Schwartz space of R is defined by

S(R) :=
{
f ∈ C∞

∣∣∣ sup |xαDβf(x)| <∞
}

Proposition 66. S(R) is dense in L2(R).

Proof. Can be found in [9].

Proposition 67. The Schwartz space is invariant under the position and mo-
mentum operators.

Proof. Can be found in [9].



7. SPECTRAL MEASURES

The time evolution of a quantum system is generated by the Hamiltonian op-
erator of the system. The time evolution operator can be written down by the
equation

U(t) := exp
−iHt
~

This should remind the reader of Schrödinger’s equation. For if we cheat, we
may observe that the equation

i~DtΨ(t) = HΨ(t)

is kind of like a first order differential equation in t, so if we solve for Ψ(t) we
obtain

Ψ(t) = e
−iHt

~ Ψ(0)

However, we have no means to define something like eoperator yet. The tool
that is used to deal with this is the spectral theorem. We want to write

A =

∫
λP (dλ)

So that in effect A acting on a vector ψ acts like projecting the state into a
state corresponding to measuring the quantity being between λ and λ+ dλ and
then multiplying that by λ, and then summing over all possible measurement
values on the real line. First, however, we must define the projection valued
measure:

Definition 83. A function P : σ(OR) −→ L(H,H) is said to be a projection
valued measure if it satisfies the three axioms:

(i) P (E) is a projector for each E ∈ σ

(ii) P (R) = idH

(iii) P (∪Ei)ψ =
∑(

P (Ei)ψ
)

for any ψ ∈ H, and for a sequence of disjoint
measurable sets Ei

Another tool useful for the construction of this PVM is a complex valued
measure:
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Definition 84. A function µ : σ(OR) −→ C is said to be a complex valued
measure if it satisfies two axioms:

(i) µ(∅) = 0

(ii) µ(∪Ei) =
∑
µ(Ei) for a sequence of disjoint measurable sets Ei

Remark 15. The axioms for real valued measures are the same for complex
valued measures. The only difference is the codomain.

First, we observe some properties of a PVM. Notice that they mirror the
properties of a real valued measure.

Proposition 68. A PVM has the following properties:

(i) P (∅) = 0H

(ii) P (Ec) = 1H − P (E)

(iii) P (E ∪ F ) + P (E ∩ F ) = P (E) + P (F )

(iv) P (E ∩ F ) = P (E)P (F )

Proof. Can be found in [9]

Proposition 69. Let P be a PVM. For any ψ, φ ∈ H, the function µψ,φ :
σ(OR) −→ C determined by the equation:

µψ,φ(E) = 〈ψ, P (E)φ〉

is a complex valued measure.

Proof. P (∅) = 0 so µψ,φ = 0, and the countable additivity follows trivially from
the additivity for P.

Proposition 70. Let P be a PVM. For any ψ ∈ H, the function µψ : σ(OR) −→
R determined by the equation:

µψ(E) = µψ,ψ(E)

is a real valued measure.

Proof. The fact that µψ is a measure follows immediately from the fact that
µψ,ψ is a measure. It remains to show that it is real valued. Let E ∈ σ. Then

µψ(E) = µψ,ψ(E) = 〈ψ, P (E)ψ〉 = 〈P (E)∗ψ,ψ〉 =

〈P (E)ψ,ψ〉 = 〈ψ, P (E)ψ〉 = µψ,ψ(E) = µψ(E) (7.1)

With these tools, we begin our construction of integrals over a PVM.
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Definition 85. For simple measurable functions s : R −→ C, we define the
integral of s over P according to the equation:∫

s dP :=

n∑
i=1

siP (Ai)

Remark 16. This is exactly analogous to the ordinary Lebesgue integral for
wave functions.

Proposition 71. For any simple function s ∈ S(R,C) and any ψ ∈ H, the
relation

‖
∫
s dP ψ‖2 =

∫
|s|2 dµψ

holds.

Proof.

‖
∫
s dP ψ‖2 = 〈

n∑
j=1

sjP (Aj)ψ,

n∑
i=1

siP (Ai)ψ〉 =

〈ψ,
n∑
j=1

n∑
i=1

sjsiP (Aj)
∗P (Ai)ψ〉 = 〈ψ,

n∑
i=1

|si|2P (Ai)ψ =

n∑
i=1

|si|2〈ψ, P (Ai)ψ〉 =
∫

|s|2 dµψ (7.2)

Proposition 72. The operator
∫
dP : S(R,C) −→ L(H) defined by the equa-

tion:
(

∫
dP )(s) :=

∫
s dP

is a bounded linear map with operator norm ‖
∫
dP‖ = 1.

Proof. Before starting the proof, we make careful note of the fact that we’re
defining a linear map that maps simple functions into more linear maps on a
Hilbert space, so as not to lose track of which linearity we are talking about
where.

Now, let s ∈ S(R,C). Then
∫
s dP is a finite sum of constant multiples of

projectors, which are bounded linear maps, so that the resulting map is again
a bounded linear map from H to H. Now, we calculate linearity. Let s and t
be simple functions with ranges s1, ..., sn, and t1, ..., tm with preimages labeled
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Ai and Bj respectively. Now we calculate∫
s dP +

∫
t dP =

n∑
i=1

siP (Ai) +

m∑
j=1

tjP (Bj) =

n∑
i=1

m∑
j=1

siP (Ai ∩Bj) +
m∑
j=1

n∑
i=1

tjP (Bj ∩Ai) =

n∑
i=1

m∑
j=1

(si + tj)P (Ai ∩Bj) =
∫
s+ t dP (7.3)

Therefore the map
∫
dP is linear. To show boundedness, let ψ ∈ H, and let s

be any simple function. The by Proposition 71, we have

‖
∫
s dP ψ‖2 =

∫
|s|2 dµψ ≤

∫
‖s‖2 dµψ = ‖s‖2

∫
dµψ = ‖s‖2‖ψ‖2 (7.4)

And equality holds when s is a constant function, because then each |s(x)|2 =
‖s‖2. Therefore, for any s ∈ S(R,C) and any ψ ∈ H.

‖
∫
s dP ψ‖ ≤ ‖s‖‖ψ‖

And equality holds when s is constant.
Let R > 0. Consider the family of simple functions SR which have ‖s‖ = R.

Let sR be the constant function sR(x) = R. Then for any s ∈ SR,

‖
∫
s dP ψ‖ ≤ ‖s‖‖ψ‖ = ‖

∫
sR dP ψ‖

Now consider any simple function s 6= 0. Clearly it belongs to SR for some
R > 0, so that when looking at the operator norm, we only need to take the
sup over positive constant simple functions.

‖
∫
dP‖ = sup

R>0

‖
∫
sR dP‖
‖sR‖

= sup
R>0

sup
ψ 6=0

‖
∫
sRdPψ‖

‖sR‖‖ψ‖
=

sup
R>0

sup
ψ 6=0

R‖ψ‖
R‖ψ‖

= sup sup 1 = 1 (7.5)

Corollary 10. Since S(R,C) is dense in B(R,C), we have by the BLT theorem
that the bounded linear transformation

∫
dP can be extended to all B(R,C).

Remark 17. For any bounded measurable f , the integral of f over P is defined
by the equation ∫

f dP := lim

∫
sn dP

for f = lim sn, where the lim here uses the norm of B(R,C).
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We now move to general measurable functions which are not necessarily
bounded. We note that these integrals will encompass unbounded operators,
and it is with general measurable functions where the integral can only be
defined on a dense subset.

Definition 86. For any measurable function f : R −→ C, we first define the
set

D∫
f dP :=

{
ψ ∈ H

∣∣∣ ∫ |f |2 dµψ <∞
}

Before defining the integral, we approximate f by a sequence of bounded
measurable functions:

fn = f ◦ χAn

where An =
{
x ∈ R

∣∣∣ |f(x)| < n
}

and then we define the operator
∫
f dP :

D∫
f dP −→ H by the equation:(∫

f dP
)
ψ := lim

(∫
fn dPψ

)
The proof of the following proposition was developed independently, but is

similar to the proof of [8] using resolutions of the identity. I believe this proof to
be the cleanest, especially for the spectral theorem defined in terms of PVMs.

Proposition 73. The operator defined in Definition 86 is a densely defined
linear operator, with maximal domain.

Proof. First, we show well-definition of the operator for any ψ in the domain.
In the L2(µψ) norm, we have

‖fn − f‖2 =

∫
|fn − f |2 dµψ =

∫
F cn

|f |2 dµψ = Φ(F cn)

Where Φ is a measure defined in the obvious way. Observe that
∞⋃
n=1

Fn = R

so that
∞⋂
n=1

F cn = ∅

We have therefore that

0 = Φ(∅) = Φ(

∞⋂
n=1

F cn) = limΦ(Fn) = lim ‖fn − f‖2
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So that lim fn = f in L2(µψ). Since L2(µψ) is a Hilbert space, fn is Cauchy in
L2(µψ) for free. Moving back to the operators, we can use this:∥∥∥∫ fn dPψ −

∫
fm dPψ

∥∥∥2 =
∥∥∥∫ fn − fm dPψ

∥∥∥2 =∫
|fn − fm|2 dµψ = ‖fn − fm‖L2(µψ) (7.6)

So that the
∫
fn dPψ is Cauchy in the regular L2. Since L2 is complete, the∫

fn dPψ converges. Therefore
∫
f dP is well defined for ψ in its domain.

We show now that the domain is dense. Let ψ ∈ H. Define ψn = P (Fn)ψ.
Observe that

µψn(E) = 〈ψn, P (E)ψn〉 = 〈P (Fn)ψ, P (E)P (Fn)ψ〉 =
〈ψ, P (Fn)P (E ∩ Fn)ψ〉 = 〈ψ, P (E ∩ Fn)ψ〉 = µψ(E ∩ Fn) (7.7)

so that by proposition, any integral with respect to µψn amounts to an integral
over Fn with respect to µψ. That is,∫

|f |2 dµψn =

∫
Fn

|f |2 dµψ =

∫
|fn|2 dµψ =

‖
∫
fn dPψ‖2 ≤ ‖fn‖2‖ψ‖2 ≤ n2‖ψ‖2 <∞ (7.8)

so that each ψn ∈ D∫
f dP . In fact, these ψn’s approach ψ.

ψ = Iψ = P (

∞⋃
n=1

Fn)ψ = limP (Fn)ψ = limψn

So that the domain is dense in H.
Linearity is left to the reader, and follows from the properties of limits.
To prove that the domain is maximal, observe that if

lim

∫
fn dPψ =: φ

exists, then the quantity

lim ‖
∫
fn dPψ‖2 ≤ (1 + ‖φ‖2) <∞

But from measure theory we have∫
|f |2 dµψ = Φ(R) = limΦ(Fn) = lim

∫
|fn|2 dµψ = lim ‖

∫
fn dPψ‖2

so that f is µψ square-integrable, i.e. the ψ in the domain coincide with the ψ
for which the limit exists.
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Proposition 74. For any measurable function f : R −→ C, the following
properties hold:

(i)
( ∫

f dP
)∗

=
∫
f dP

(ii)
∫
(αf + g) dP ⊇ α

∫
fdP +

∫
g dP

(iii)
∫
f · g dP ⊇

∫
f dP ◦

∫
g dP

In the case that f and g are bounded, equality holds for (ii) and (iii).

Proof. We shall only prove (i); the proof of the others can be found in [9].
In order to prove the general case, we build up again from the case that the
function is simple and measurable.

(∫
s dP

)∗
=

( n∑
i=1

siP (Ai)
)∗

=

n∑
i=1

siP (Ai)
∗ =

n∑
i=1

siP (Ai) =

∫
s dP (7.9)

Now suppose f is bounded and measurable, with f = lim sn. Then f = lim sn.
Now, let ψ, φ ∈ H. Then

〈
(∫

f dP
)∗
ψ, φ〉 = 〈ψ,

∫
f dPφ〉 = 〈ψ, lim

(∫
sn dP

)
φ =

〈ψ, lim
(∫

sn dPφ
)
〉 = lim〈

∫
sn dPψ, φ〉 = 〈lim

(∫
sn dPψ

)
, φ〉 =

〈lim
(∫

sn dP
)
ψ, φ〉 = 〈

∫
f dPψ, φ〉 (7.10)

But this holds for all ψ, φ ∈ H, so the operators at the beginning and end must
be equal. Now we move to measurable f . Define fn as usual. Since |f |2 = |f |2,
clearly D∫

f dP = D∫
f dP . Now let ψ ∈ D( ∫

f dP

)∗ and φ ∈ D∫
f dP Then

〈
(∫

f dP
)∗
ψ, φ〉 = 〈ψ,

(∫
f dP

)
φ〉 = 〈ψ, lim

(∫
fn dPφ

)
〉 =

lim〈ψ,
∫
fn dPφ〉 = lim〈

(∫
fn dP

)∗
ψ, φ〉 =

lim〈
∫
fn dPψ, φ〉 = 〈lim

(∫
fn dPψ

)
, φ〉 = 〈

∫
f dPψ, φ〉 (7.11)

Now that we have a complete theory of the integration of functions with
respect to PVMS, we state the following proposition:
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Proposition 75. Given a PVM P, the operator A : DA −→ H defined by

A =

∫
idR dP

is a self-adjoint operator.

Proof. idR = idR.

Theorem 7. (Spectral theorem) For every self-adjoint operator A : DA −→ H,
there exists a unique PVM P such that:

A =

∫
idR dP

Proof. Can be found in ??

We detail the construction of P given A to make Theorem 7 true. In effect,
instead of starting with P and building the µ measures, we start with A, and
work backwards to build P.

Proposition 76. Given a self-adjoint operator A : DA −→ H, then the measure
µψ : σ(OR) −→ R can be solved for according to an integral:

µψ(−∞, λ] :=
1

π
lim
δ→0+

lim
ε→0+

∫ λ+δ

−∞
Im 〈ψ, (A− t− iε)−1ψ〉dt

From this, the measure µψ,φ : σ(OR) −→ C can be easily rewritten in terms of
the polarization identity:

µψ,φ(E) :=
1

4

[
µψ+φ − µψ−φ + iµψ−iφ − iµψ+iφ

]
(E)

From this, the PVM can be reconstructed P : σ(OR) −→ L(H) according to the
equation:

〈ψ, P (E)φ〉 := µψ,φ(E)

Proof. The proof can be found in ??.

But what does a PVM look like? It helps to look at the µψ’s instead to get
a feel for how the PVM sees everything up to a number λ.

Proposition 77. The PVM for the map I : H −→ H is given by P (E) = I if
1 ∈ E and P (E) = 0 otherwise.

Proof. We start by computing µψ for a given ψ, as per Proposition 76:

µψ(−∞, λ] =
1

π
lim
δ→0+

lim
ε→0+

∫ λ+δ

−∞
Im〈ψ, [I − (t+ iε)I]−1ψ〉dt

But observe that [I − (t+ iε)I]−1 is just (1− t+ iε)−1I. We can thus pull the
real number 〈ψ,ψ〉 out from under the “Im”, the integral and all the limits to
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get it out of the way. In addition, for any z 6= 0, it is true that 1
z = z

|z|2 , so we
have

µψ(−∞, λ] =
1

π
‖ψ‖2 lim

δ→0+
lim
ε→0+

∫ λ+δ

−∞

ε

(1− t)2 + ε2
dt

=
1

π
‖ψ‖2 lim

δ→0+
lim
ε→0+

[
− arctan

(1− t

ε

)]λ+δ
−∞

=
1

π
‖ψ‖2 lim

δ→0+
lim
ε→0+

[
arctan

(1− t

ε

)]−∞

λ+δ

=
1

π
‖ψ‖2 lim

δ→0+
lim
ε→0+

π

2
− arctan

(1− (λ+ δ)

ε

)
(7.12)

Consider the case λ < 1. Then we can find a small enough δ so that λ+ δ < 1
still, i.e. 1 − (λ + δ) > 0. Then clearly as ε gets smaller and smaller from the
right, the quantity arctan(...) in the final equation above gets closer and closer
to π

2 , so the whole thing just becomes zero. Then taking the limit on delta, we
see that

µψ(−∞, λ] = 0 if λ < 0

if λ ≥ 1, however, then for any positive δ λ + δ > 1, so that 1 − (λ + δ) < 0.
In this case, as ε gets closer to 0, the arctan(...) term becomes −π

2 . Taking the
limit on δ from the right preserves the positivity of the term inside of arctan so
that:

µψ(−∞, λ] = ‖ψ‖2 if λ ≥ 0

Then polarize. It then follows that, whenever E ∈ σ(OR) contains the number
1,

〈φ, P (E)ψ〉 = 〈φ, ψ〉

But subtracting the right side from the left one sees that P (E) is in this case
the identity. If we now suppose E does not contain 1, then for each ψ it holds
that

0 = 〈ψ, P (E)ψ〉 = 〈ψ, P (E)2ψ〉 = 〈P (E)ψ, P (E)ψ〉 = ‖P (E)ψ‖2

so that each P (E)ψ must be the zero vector.

But what is special about the point 1? Well, it’s the only number of the
spectrum of I. This is the fundamental characteristic of these PVMs.

While we have not yet fully characterized the position and momentum opera-
tors, the reader may assume the position operators have the ordinary properties
that are asserted in most textbooks, i.e.Qψ(x) = xψ(x).

7.1 The Position Operator

What is the PVM for the position operator Q: S(R) −→ S(R)? Well, let ψ
in S. Then (Qψ)(x) = xψ(x). Therefore for any complex number µ, we have
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(Q− µ)ψ(x) = (x− µ)ψ(x). If µ ∈ C\R, then it is in the resolvent so it has an
inverse, given by

((Q− µ)−1ψ)(x) =
1

x− µ
ψ(x)

Plugging this into the µψ formula, we obtain

µQψ (−∞, λ] =
1

π
lim
δ→0+

lim
ε→0+

∫ λ+δ

−∞
Im 〈ψ, (Q− (t+ iε))−1ψ〉dt

=
1

π
lim
δ→0+

lim
ε→0+

∫ λ+δ

−∞
Im

∫
ψ∗(x)[(Q− (t+ iε))−1ψ](x)µ(dx) dt

=
1

π
lim
δ→0+

lim
ε→0+

∫ λ+δ

−∞
Im

∫
1

x− (t+ iε)
|ψ(x)|2 µ(dx) dt

=
1

π
lim
δ→0+

lim
ε→0+

∫ λ+δ

−∞

∫
Im 1

x− (t+ iε)
|ψ(x)|2 µ(dx) dt

= − 1

π
lim
δ→0+

lim
ε→0+

∫ λ+δ

−∞

∫
ε

(x− t)2 + ε2
|ψ(x)|2 µ(dx) dt (7.13)

Then we exchange the integral signs, and evaluate:

= − 1

π
lim
δ→0+

lim
ε→0+

∫ [
arctan

(x− t

ε

)]λ+δ
−∞

|ψ(x)|2 µ(dx)

= − 1

π
lim
δ→0+

∫
lim
ε→0+

[
arctan

(x− t

ε

)]λ+δ
−∞

|ψ(x)|2 µ(dx) (7.14)

But using similar techniques as for the identity, we obtain

= lim
δ→0+

∫
(−∞,λ+δ)

|ψ|2dµ

But using the fact that this integral is a measure over the set it integrates over,
we can take the limit to get inclusion, so for the case of a general set, we have

µQψ (E) =

∫
E

|ψ(x)|2 dx

Of course it’s the integral of |ψ|2, we’re talking about the probability of mea-
suring the particle in the set E while the system is in the state ψ. That is,

Prob(E) = Tr(PQ(E)ρ) = 〈ψ, PQ(E)ψ〉 =
∫
E

|ψ(x)|2 dx

7.2 The Momentum Operator

The momentum operator P and the position operator Q are the most important
observables. Any observable found in an equation is usually a function of P and
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Q. What is the PVM for the momentum operator P? It turns out, we’ve already
done all the hard work when we did the calculation for Q, as they are related by
the Fourier transform. For notational convenience, we denote the momentum
operator as M for the time being.

M = UQU−1

So we observe the quantity

(M − zI)−1 = (UQU−1 − zI)−1

Using the fact that I commutes with any operator and that UU−1 = I, we have
that the above

= (UQU−1 − U(zI)U−1)−1 = (U(Q− zI)U−1)−1 = U−1(Q− zI)−1U

so that for any ψ ∈ S we have

〈ψ, (M − z)−1ψ〉 = 〈ψ,U−1(Q− z)−1Uψ〉 = 〈Uψ, (Q− z)−1Uψ〉

But this is exactly the quantity appearing in the formula for µMψ . Therefore
given ψ ∈ S and E ∈ σ we have

µMψ (E) = µQUψ(E)

and
PM (E) = U−1PQ(E)U

But restated, this is just

〈ψ, PM (E)ψ〉 =
∫
E

|ψ̂(p)|2dp

Where ψ̂ is the usual Fourier transform of ψ. This is again of course what we
should arrive at: The probability of finding the value of the momentum in the
set E is the integral of ψ̂ over E in momentum space.

7.3 Multiplication Operators

Now we move to the case of operators defined by the multiplication of a function,
i.e. given g : R −→ R and H = L2 we define G : DG −→ H defined by
(Gψ)(x) = g(x)ψ(x). Then one may verify that for any z ∈ C\R

((G− z)−1ψ)(x) =
1

g(x)− z
ψ(x)

But this is just the same as for the operator Q with x replaced by g(x). Following
the same steps in the case of the position operator, one obtains

µψ(−∞, λ] = ... = − 1

π
lim
δ→0+

lim
ε→0+

∫ [
arctan

(g(x)− t

ε

)]λ+δ
−∞

dx

=

∫
g−1(−∞,λ]

|ψ(x)|2 dx (7.15)
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And by the same method for Q we thus obtain

〈ψ, PG(E)ψ〉 =
∫
g−1(E)

|ψ(x)|2 dx

Corollary 11. For the potential energy operator V we have

〈ψ, PV (E)ψ〉 =
∫
V −1(E)

|ψ(x)|2 dx

7.4 Operators which are Unitarily Equivalent to Multiplication

The momentum was a special case of an operator which is unitarily equivalent
to the the multiplication by the function f(x) = x. Moving to the general case,
let G : DG −→ H be a self-adjoint operator generated by g : R −→ R and B
be an operator which is unitarily equivalent to G, i.e. there exists a unitary U
such that B = UGU−1. Then for any E ∈ σ(OR),

PB(E) = U−1PG(E)U

or in other words,

〈ψ, PB(E)ψ〉 =
∫
g−1(E)

|Uψ(x)|2dx

7.5 PVMs for Pure Point Spectra

Proposition 78. If an operator B : DB −→ H is self-adjoint and its inverse
B−1 : H −→ DB exists in L(H), then B−1 is self-adjoint.

Proof.

DB−1∗ =
{
ψ ∈ H

∣∣∣∃η ∈ H : ∀α ∈ DB−1 , 〈ψ,B−1α〉 = 〈η, α〉
}

Take a ψ ∈ H. H = ran (A), so ψ = Bφ for some φ ∈ DB , and therefore
B−1ψ = φ. Therefore

〈ψ,B−1α〉 = 〈Bφ,B−1α〉 = 〈φ,BB−1α〉 = 〈φ, α〉

So DB−1∗ = H and B−1∗φ = B−1φ. This completes the proof.

Lemma 2. Let A : DA −→ H be a densely defined self-adjoint operator with
σ(A) 6= R. Let t ∈ R \ σ(A). Then for each ψ ∈ H,

lim
ε→0

(A− t− iε)−1ψ = (A− t)−1ψ
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Proof. Define B = A− t for shorthand. For any ε > 0, we have

‖(B − iε)−1‖ = sup
ψ∈H\{0}

√
〈(B − iε)−1ψ, (B − iε)−1ψ〉

〈ψ,ψ〉

= sup
φ∈DB\{0}

√
〈φ, φ〉

〈(B − iε)φ, (B − iε)φ〉
= sup
φ∈DB\{0}

√
〈φ, φ〉

〈Bφ,Bφ〉+ ε2〈φ, φ〉

≤ sup
φ∈DB\{0}

√
〈φ, φ〉

〈Bφ,Bφ〉
= sup
ψ∈H\{0}

√
〈B−1ψ,B−1ψ〉

〈ψ,ψ〉
= ‖B−1‖ (7.16)

Let ψ ∈ H. Define φ(ε) = (B − iε)−1ψ. We wish to show then that

lim
ε→0

φ(ε) = φ(0)

Observe that for each ε > 0 we have

(B − iε)(φ(ε)− φ(0)) = −iεφ(0) = −iεB−1ψ

so that

‖φ(ε)− φ(0)‖ = ‖(B − iε)−1(B − iε)(φ(ε)− φ(0))‖
≤ ‖(B− iε)−1‖‖(B− iε)(φ(ε)−φ(0))‖ = ‖B−1‖‖− iεB−1ψ‖ ≤ ε‖B−1‖2‖ψ‖2

(7.17)

from which it follows that
lim
ε→0

φ(ε) = φ(0)

This completes the proof.

Proposition 79. If a set E does not contain any of the spectrum of A, then
∀ψ ∈ H,

lim
ε→0+

∫
E

Im 〈ψ,RA(t+ iε)ψ〉dt = 0

Proof. Let t ∈ E. Then certainly t is real, so that A−t is a self-adjoint operator.
Since t ∈ ρ(A) by assumption, we also have that (A − t)−1 is defined on the
whole Hilbert space H. Therefore, (A− t)−1 is self-adjoint. Therefore given any
ψ ∈ H, the quantity

〈ψ, (A− t)−1ψ〉 ∈ R

Since σ(A) ⊆ R, we have for free any ε ≥ 0 that (A − (t + iε))−1 is defined on
the whole space, and by Lemma 2 we have that for each ψ

lim
ε→0

(A− (t+ iε))−1ψ = (A− t)−1ψ

so that
lim
ε→0

〈ψ, (A− (t+ iε))−1ψ〉 = 〈ψ, (A− t)−1ψ〉



7. Spectral Measures 70

Since the latter quantity is in R, we have

Im lim
ε→0

〈ψ, (A− (t+ iε))−1ψ〉 = 0

We can swap the imaginary part with the limit, and integrate the zero function
of t over E: ∫

E

lim
ε→0

Im〈ψ,RA(t+ iε)ψ〉 dt = 0

But since the limit exists, we may pull it out of the integral. This completes
the proof.

We now move to the case where λ ∈ σpp(A) but ψ ∈ N(A−λ)⊥ = ran(A−λ).
We use the symbol ∆ := ran (A− λ) ∩DA to lighten the notation.

Proposition 80. ran (A− λ) is a closed subspace of H.

Corollary 12. ran (A− λ) is a Hilbert space.

Proposition 81.
H = ran (A− λ)⊕N(A− λ)

And any ψ ∈ H can thus be written ψ = ψ‖ + ψ⊥ for ψ‖ ∈ ran (A − λ) and
ψ⊥ ∈ N(A− λ).

Proof. Since ran (A−λ) is closed, and ran (A−λ)⊥ = N(A−λ), we are done.

Lemma 3. For any φ ∈ DA, φ‖ ∈ ∆.

Proof. Since φ ∈ DA and φ⊥ ∈ N(A − λ) ⊆ DA, φ‖ = φ − φ⊥ ∈ DA by
closure.

Lemma 4. ran (A− λ)|∆ = ran (A− λ)

Proof. Inclusion from left to right holds trivially. Now, let ψ ∈ ran (A − λ).
Then ψ = A − λφ for φ ∈ DA. Since φ ∈ H,φ = φ‖ + φ⊥. Since φ‖ ∈ DA we
can use linearity of (A− λ) to establish that

(A− λ)φ = (A− λ)(φ‖ + φ⊥) = (A− λ)φ‖

But since φ‖ ∈ ∆ we have that ψ ∈ ran (A − λ)|∆. Therefore inclusion holds
both ways and the sets are equal.

Proposition 82. The operator (A− λ)|∆ :−→ ran (A− λ) is 1-1 and onto.

Proof. Suppose that
(A− λ)φ1 = (A− λ)φ2

for φ1, φ2 ∈ ∆. Then
A(φ1 − φ2) = λ(φ1 − φ2)

So φ1 − φ2 ∈ N(A− λ). But φ1 and φ2 are in ran (A− λ), so φ1 − φ2 = 0. So
φ1 = φ2.

Onto-ness follows from Lemma 4.
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Corollary 13. The linear operator [(A− λ)|∆]−1 : ran (A− λ) −→ ∆ exists.

Proposition 83. ∆ is dense in ran (A− λ).

Proof. Let ψ ∈ ran (A − λ). Since DA is dense in H, we have ∃ψn ∈ DA such
that limψn = ψ. Since (ψn)‖ ∈ ∆, and for each n it holds that

‖(ψn)‖ − ψ‖ ≤ ‖ψn − ψ‖

it follows that lim(ψn)‖ = ψ.

Proposition 84. The operator (A− λ)|∆ : ∆ −→ ran (A− λ) is self-adjoint.

Proof. We use ∆∗ to denote the domain of the adjoint.

∆∗ =
{
ψ ∈ ran (A− λ)

∣∣∣∃η ∈ ran (A− λ) : ∀φ ∈ ∆, 〈ψ, (A− λ)φ〉 = 〈η, φ〉
}

Since regular A − λ : DA −→ H is self-adjoint, we have that (A − λ)|∆ is
symmetric. Therefore ∆ ⊆ ∆∗. It remains to show then that ∆∗ ⊆ ∆. Observe
that ∀α ∈ DA, α = α‖ + α⊥, so that:

(A− λ)α = (A− λ)α‖

and therefore for any ξ ∈ H,

〈ξ, (A− λ)α〉 = 〈ξ, (A− λ)α‖〉

Now let ψ ∈ ∆∗. Then ∃η ∈ ran (A− λ) : ∀φ ∈ ∆,

〈ψ, (A− λ)φ〉 = 〈η, φ〉

But now let α ∈ DA. Then

〈ψ, (A− λ)α〉 = 〈ψ, (A− λ)α‖〉 = 〈η, α‖〉

But since η ∈ ran (A− λ) and α⊥ ∈ N(A− λ), we have

= 〈η, α‖〉+ 0 = 〈η, α‖〉+ 〈η, α⊥〉 = 〈η, α‖ + α⊥〉 = 〈η, α〉

so that reading just the left and right end of this equation chain we obtain

〈ψ, (A− λ)α〉 = 〈η, α〉

But this η must work ∀α ∈ DA. Therefore ψ ∈ DA∗ . But A is self-adjoint, so
ψ ∈ DA. Therefore if ψ ∈ ∆∗ it must be in ran (A − λ) and it must also be in
DA. So ψ ∈ ∆.

Corollary 14. (A− λ)|∆ and its inverse are closed.

Corollary 15. (A− λ)|−1
∆ is bounded.
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Proof. Closed graph theorem. Can be found in [6].

Lemma 5. For any ε > 0, (A− λ− iε)(∆) = ran (A− λ).

Proof. Let ψ ∈ LHS. Then ψ = (A − λ)φ − iεφ. Since φ ∈ ∆, we have
φ ∈ ran (A− λ), so iεφ stays in the range, So ψ ∈ RHS.

Now, let ψ ∈ RHS. Then ψ = (A − λ − iε)φ for some φ ∈ DA. But
φ = φ‖ + φ⊥, and so

ψ = (A− λ− iε)φ‖ + iεφ⊥

But (A−λ−iε)φ‖ ∈ ran (A−λ), and iεφ⊥ ∈ N(A−λ). Since the decomposition
is unique, φ⊥ = 0, and ψ = (A− λ− iε)φ‖. Since φ‖ ∈ ∆, ψ ∈ LHS.

Proposition 85. For any ψ ∈ ran (A− λ),

lim
ε→0

(A− λ− iε)−1ψ = (A− λ|∆)−1ψ

Proof. Lemma 2

Proposition 86. Let λ ∈ σ(A) for A with only pure point spectrum. (clean up
this notation. Choose a and b such that λ is the only eigenvalue in (a, b). Let
ψ ∈ ran (A− λ). Then

lim
ε→0

∫ b

a

Im 〈ψ, (A− t− iε)−1ψ〉 dt = 0

Proof. See Propositions 79 and 85

Proposition 87. Let λ ∈ σ(A) for self-adjoint A with only pure point spectrum.
Let λ ∈ σ(A). Let ψ ∈ N(A− λ). Then

µψ = ‖ψ‖2χ{λ}

Proof. Follows analagously to the proof for the PVM of the identity.

Proposition 88. Let λ ∈ σ(A) for self-adjoint A with only pure point spectrum.
Let ψ ∈ H. Suppose a and b are chosen such that λ is the only eigenvalue in
(a, b). Then

µψ(a, b) = ‖Pλψ‖2

Proof. Let ψ ∈ H. Then ψ = ψ‖+ψ⊥, for ψ‖ ∈ ran (A−λ) and ψ⊥ ∈ N(A−λ).
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Now,

µψ(a, b) = lim
ε→0

∫ b

a

〈ψ, (A− t− iε)−1ψ〉dt

= lim
ε→0

∫ b

a

〈ψ‖ + ψ⊥, (A− t− iε)−1(ψ‖ + ψ⊥)〉dt

= lim
ε→0

∫ b

a

〈ψ‖, (A− t− iε)−1ψ‖〉+ 〈ψ⊥, (A− t− iε)−1ψ⊥〉

= lim
ε→0

∫ b

a

〈ψ‖, (A− t− iε)−1ψ‖〉+ lim
ε→0

∫ b

a

〈ψ⊥, (A− t− iε)−1ψ⊥〉

= ‖ψ⊥‖2 = ‖Pλψ‖2 (7.18)

Proposition 89. Suppose A : DA −→ H is a self-adjoint operator with only
pure point spectrum and eigenvalues which can be written as an increasing
sequence λ1, λ2, ... which is not bounded above. Then

PA(E) =
∑
λ∈E

Pλ

Proof. Let ψ ∈ H. Break up the real line into intervals I1 = (−∞, λ1], Ik =
(λk−1, λk] for k = 2, 3, .... First, we will show that

∞⋃
k=1

Ik = R,

Inclusion from left to right holds trivally. To show inclusion in the other di-
rection, let x ∈ R. Then since the λk sequence is increasing and not bounded
above, we have that ∃N : λN > x whenever n > N . Let M be the smallest
integer that satisfies this condition. Then x ∈ (λM−1, λM ]. Therefore x ∈ LHS.
To calculate an arbitrary P(E) then, we may intersect E with the whole real
line:

〈ψ, PA(E)φ〉 = µψ,φ(E) = µψ,φ(E∩R) = µψ,φ(E∩(
∞⋃
k=1

Ik)) = µψ,φ(

∞⋃
k=1

(E∩Ik))

=

∞∑
k=1

µψ,φ(E ∩ Ik) =
∑
λ∈E

〈ψ, Pλφ〉 = 〈ψ,
( ∑
λ∈E

Pλ

)
φ〉 (7.19)

Proposition 90. Suppose a quantum system H is in the state ρψ. Suppose an
observable A : DA −→ H has eigenvalues satisfying the conditions in Proposition
89, with eigenvectors ψn forming an ON basis, so we can write ψ =

∑∞
n=1 cnψn.

Then the probability of measuring the observable in the set E ⊆ R is given by

Prob (E) =
∑
λn∈E

|cn|2 (7.20)
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Proof.

Prob (E) = Trace (PA(E)ρψ) = 〈ψ, PA(E)ψ〉 = 〈ψ,
( ∑
λn∈E

Pλn

)
ψ〉

= 〈ψ,
∑
λn∈E

cnψn〉 =
∑
λn∈E

cn〈ψ,ψn〉 =
∑
λn∈E

|cn|2 (7.21)

Proposition 91. If a quantum system with Hamiltonian H is in a pure state
ρψ initially, then after time t it will be in state ρUtψ.

Proof. According to Axiom 5, the state after time t will be

ρt = UtρψU
∗
t

Now, let φ ∈ H. Then

ρtφ = UtρψU
∗
t φ = Ut〈ψ,U∗

t φ〉ψ = 〈ψ,U∗
t φ〉Utψ = 〈Utψ, φ〉Utψ = ρUtψφ



8. OBSERVABLES AND TIME EVOLUTION

How, then, does one construct the operators associated with observables quan-
tities in nature? A naïve strategy is this: consider first our motive to define a
position operator associated with my coordinate x. If I have a wave function,
the most obvious guess of “multiplying” the position operator with a wave func-
tion is to multiply the coordinate value by the wave function. That is, Qψ(x)
should be xψ(x). In order to use many of my theorems, however, I require that
Q should be self-adjoint. As we may recall, self-adjointness is a consequence
of the domain of definition of an operator. How do we define the domain of
definition? In the case of a particle on the real line, we will have the Hilbert
space of the particle (at first ignoring spin) is H = L2(R). Suppose first we
could define Q on the whole Hilbert space. Observe that the function f defined
by f(x) = 1/x for x > 1 and f(x) = 0 otherwise is in L2(R). Now, Qf(x) = 1
for x > 1, and so ‖Qf‖2 =

∫∞
1

1dx = ∞, so Qf doesn’t even land in H. This
position operator with domain as the entire Hilbert space thus does not have
range in H. The appearance of an unwanted infinity for ‖Qf‖ is a harbinger
of the fact that the correctly defined position operator will be unbounded. For
now, we toss out this Q as our candidate.

We instead approach the construction of observables from a different perspec-
tive. It is not necessarily the most intuitive approach, but it is very convenient
in that it guarantees that the domain is self-adjoint.

his approach is to define our observables as the generators of a special one
parameter abelian group of unitary operators on the Hilbert space of the system.

The following theorem is a beautiful way to obtain the observables with their
domains for free. We do not provide its proof, but it can be found in (reference).

Theorem 8. (Stone’s theorem) Let {Ut|t ∈ R} be a strongly continuous one-
parameter unitary group. Then there exists a self-adjoint operator A : DA −→ H
such that ∀t ∈ R,

Ut = eitA

and the operator A : DA −→ H is given by

DA = {ψ ∈ H| lim
ε→0

− i
ε
(Uε(ψ)− ψ) exists}

and
Aψ = −i lim

ε→0

U(ε)ψ − ψ

ε

Proof. Can be found in ??.
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Corollary 16. There is a one to one correspondence between unitary groups of
the type describe in Theorem 8 and self-adjoint operators on a Hilbert space.

8.1 Momentum

From classical mechanics, we know that momentum is the generator of trans-
lations. In quantum mechanics for particles on the real line, we define the
momentum operator as the generator of the group of translations.

Definition 87. The group of translations {UPt }t∈R is defined by

UPt ψ(x) = ψ(x− t)

Definition 88. The momentum operator P : DP −→ H is defined as the
generator of UPt , in units such that ~ = 1.

Proposition 92. On the Schwartz space S, it is true that

Pψ = −iψ′

8.2 Position

The position operator is defined similarly as the generator of a unitary group
of transformations on the Hilbert space. It is perhaps not as intuitive as for
momentum, but it’s what we want:

Definition 89. The group of phases {UQt }t∈R is defined by

UQt ψ(x) = eitxψ(x)

Remark 18. Each Ut effectively winds up a wave function ψ, with larger values
of the parameter t corresponding to tighter and tighter coils.

Definition 90. The position operator Q : DQ −→ H is defined as the generator
of UQt .

Proposition 93. On the Schwartz space S, it is true that

Qψ(x) = xψ(x)

Proof. Can be found in [9].

8.3 The Fourier Transform

The Fourier transform shows up in a perhaps unprecedented way in quantum
mechanics. Often, it is used to talk about the ”frequency distribution” of a time
series signal. As nature would have it, position and momentum distributions in
quantum mechanics follow the same rule, which we shall state precisely in the
next section.
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Definition 91. The Fourier operator F : L2(R) −→ L2(R) is defined for
ψ ∈ mathcalS(R) by

F (ψ)(x) :=
1√
2π

∫
R
f(y)e−ixydy

It can be shown that this is a unitary operator and then can be extended to the
whole Hilbert space. The proof of this can be found in [9]

8.4 The relationship of the position and momentum operators

The position and momentum operators are related by a Fourier transform.

Proposition 94. Let P : DP −→ H denote the momentum operator, Q :
DQ −→ H denote the position operator, and U : H −→ H denote the Fourier
tranform operator. Then

P = UQU−1 (8.1)

Proof. Can be found in [9].

8.5 Time Evolution

There is one self-adjoint operator in particular which we do not define as the
generator of an already defined group, but is defined a priori, and determines an
extremely important one parameter group. This operator is the Hamiltonian,
and the one parameter group generated by the Hamiltonian is the group of time
evolution operators.

Definition 92. The group of time evolution operators is given by

Ut = e
−iHt

~

where e−iHt
~ is defined according to the spectral theorem for unbounded operators.

Proposition 95. If a quantum system with Hamiltonian H is in a pure state
ρψ initially, then after time t it will be in state ρUtψ.

Proof. According to Axiom 5, the state after time t will be

ρt = UtρψU
∗
t

Now, let φ ∈ H. Then

ρtφ = UtρψU
∗
t φ = Ut〈ψ,U∗

t φ〉ψ = 〈ψ,U∗
t φ〉Utψ = 〈Utψ, φ〉Utψ = ρUtψφ



9. THE HARMONIC OSCILLATOR

Now that we have developed a complete formalism for dealing with quantum
mechanical systems, we may apply it to a simple quantum mechanical system
that has widespread applications. One may recall from classical mechanics that
the Hamiltonian of the harmonic oscillator is

H(p, q) =
p2

2m
+

1

2
mωq2

One would like to translate a classical H into a quantum mechanical system by
the following transformation:

q −→ Q, p −→ P

in order to write down the operator equation:

H =
P 2

2m
+

1

2
mωQ2 (9.1)

This is, in spirit, what we do. However, there are two substantial technical
considerations we must take care of. Equation 9.1 is in fact incorrect.

In the first place, we must worry about domain. The domains of the P and
Q operators are different, and the domains of P 2 and Q2 differ even more, so
we could take care to make sure define the domain of H to be the intersection of
the domains of the squares, but we have no reason to believe this would make
H self-adjoint. To take care of this, we use the Schwartz space. First we denote
the restrictions of the position and momentum operators to the Schwarz domain
by Q̃ and P̃ . Now, since we know the Schwarz space is invariant under Q and
P , may define the operator

H̃ :=
P̃ 2

2m
+

1

2
mωQ̃2 (9.2)

Now, having restricted ourselves to the Schwartz space, we make note of the issue
with the well-definition of this transformation from a classical Hamiltonian to
a quantum Hamiltonian. First, consider any two classical Hamiltonians H(p,q)
and H’(p,q). Consider now the Hamiltonian

H ′′(p, q) = H ′(p, q) +
(pq − qp)

i~
(H(p, q)−H ′(p, q))

Now, define as previously the quantum analogues, this time adding a hat
above each one to distinguish them from their classical counterparts. We would
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have in the classical case that H = H ′′, so that if such a mapping were well-
defined, Ĥ = Ĥ ′′. But Ĥ ′′ = Ĥ ′, so Ĥ = Ĥ ′. Therefore all quantum hamiltoni-
ans generated in this way are equal. As to why someone would so pathologically
add this, we are not concerned. The important takeaway is that it presents in-
consistencies, and we therefore cannot trust this technique religiously.

The misstep in logic here was that H and H ′′ are not mapped to the same
quantum Hamiltonian, despite being equivalent as functions. Therefore, we do
not wish here to motivate the transition from quantum to classical, we only
start with the operator Equation 9.2 and try to build a self-adjoint Hamiltonian
from it.

It can be shown that H̃ is symmetric, and by solving the eigenvalue problem
one obtains a sequence of eigenvalues for H,

En = (n+
1

2
)~ω, n = 0, 1, 2

with eigenvectors

ψn = Hn

(√mω

2~
x
)

exp
(√mω

2~
x
)

when Hn(ξ) is the nth Hermite polynomial. It can also be shown the that ψn’s
above form an orthonormal basis. This proof can be found in [1]

Theorem 9. If the eigenvectors of a symmetric operator A : DA −→ H form
an orthonormal basis, then A is essentially self-adjoint.

Corollary 17. H̃ as defined above is essentially self-adjoint.

We then define the quantum harmonic oscillator Hamiltonian H as the unique
self-adjoint extension of H̃.

9.1 Measurement Statistics of a Pure State

Suppose we have a particle in a harmonic potential in the pure state ρψ.

9.1.1 Position and Momentum

We restate the following two results for completeness. Although we have already
provided the proof of these statements, we will restate the general result for a
specific case. If a particle in the quantum harmonic oscillator is in the pure
state ρψ, then the probability of measuring the particle’s position as being in
the set E is

Prob(E) =

∫
E

|ψ(x)|2dx

and the probability of obtaining a momentum value in E is:

Prob(E) =

∫
E

|ψ̂(p)|2dp

where ψ̂ is the Fourier transform of f .
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9.1.2 Energy

Let E be a measurable subset of the real line. According to Axiom 4, the
probability of measuring the energy as being in the set E is

Prob(E) = Tr(ρψPH(E)) = 〈ψ, PH(E)ψ〉 =
∑
λi∈E

|ci|2

Thus, all of the ordinary probability rules that used to seem separate are all
contained in the statement of Axiom 4.

9.2 Time Evolution

From Propostion 91, we know that if a system starts in state ρψ, then the pure
state after time t is given by ρUtψ. So, let ψ =

∑
cnψn where ψn is the basis of

eigenfunctions for the harmonic oscillator. Then

Utψ = e
−iHt

~ ψ = e
−iHt

~
∑
n

cnψn =
∑
n

cne
−iHt

~ ψn =
∑
n

cn

∫
e

−iλt
~ dP ψn =

∑
n

cne
−iEnt

~ ψn

(9.3)

Thus, the ordinary time evolution that may be found in [1] for the Harmonic
oscillator can be viewed as a consequence of Axiom 5.



10. CONCLUSION

I would like to reiterate the statement that much of the understanding devel-
oped here is not spectacularly useful for practical calculations of most quantum
mechanical systems. We have seen how long it takes to prove the equivalence
between our theory and the usual approach.

However, for a student interested in truth, this development of the axioms
is paramount. We can finally say that there are unambiguous laws of quantum
mechanics. Furthermore, if we want to go back to the usual approach, we
understand what it really is that we are saying about a system, and we know
where we’re making shortcuts and where we’re stating the truth.

In the future, I hope to write a paper to explore the sixth axiom of projective
dynamics, especially in the context of quantum computers.

There is a certain beauty in stating the laws of the universe so generally
and carefully, which cannot be appreciated when making ad-hoc modifications
to theorems depending on such things as the type of spectrum of an operator.
I hope the reader will find that this paper demonstrated this beauty effectively,
and will aid them in their desire to understand the inner-workings of the uni-
verse.
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