
Automatic Summarization of Source Code for Novice Programmers

Wyatt Olney
Drew University, 2016

ABSTRACT
The process of generating part-of-speech information is a well established problem

in the field of computer science. A wide variety of taggers exist, and have been
trained to use english text, and extract this information automatically. However,
these taggers are traditionally only used for parsing information from traditional

written English, such as news articles. Many of these taggers are evaluated on the
Wall Street Journal corpus, which consists of many such articles. However, natural

language artifacts also appear in the corpus of software source code, such as in
method names. This thesis proposes a methodology for comparing these taggers on
source code artifacts, and evaluating their overall accuracy. Additionally, a potential

application of part-of-speech tagging source code is presented in this thesis.
Specifically, a tool for novice programmers is developed and shown how this could
be improved using this linguistic information to generate better, and more detailed
summaries for novices, by extracting information from method names. These types
of summaries would allow beginning programmers to learn how to read and work
with code written by others. This is a major component of learning to work with

code, especially with the collaborative nature of many modern software projects. By
generating summaries automatically, the daunting appearance of production level

source code becomes easier to broach and understand for a novice.

Automatic Summarization of Source Code
for Novice Programmers

by
Wyatt Olney

An Honors Thesis
Submitted in Partial Fulfillment of the

Requirements for the Degree of Bachelor in Arts with
Specialized Honors in Computer Science

at Drew University
May 2016

Copyright by

Wyatt Olney

2016

ACKNOWLEDGMENTS

I would like to thank Dr. Emily Hill for her guidance and assistance in her role as
primary advisor to this thesis. Furthermore, I would like to thank Dr. Steven Kass
for his assistance in providing detailed statistical analysis. Additionally, I would like
to thank Dr. Patrick Dolan and Dr. John Muccigrosso for their feedback on writing.
I also want to acknowledge the assistance of Bezalem Lemma for his assistance in the
annotation of the gold sets, and Chris Thurber for his assistance in writing several
scripts to help analyze the data. Finally, I would like to thank Drew University and
the Department of Mathematics and Computer Science for allowing me to conduct
the research presented in this paper.

ii

Contents

Ch. 1. Introduction 1

1.1 Learning to Read Code . 2

1.2 POS Tagging and Comment Generation 3

Ch. 2. Background and Related Work 8

2.1 Identifiers . 9

2.2 POS Taggers . 10

2.3 Comment Generation . 12

2.4 Natural Language Artifacts . 14

2.5 Program Tutors . 16

Ch. 3. Automatically Generating Explanations of Source Code for
Novice Programmers 18

3.1 Selection of Data for Analysis . 19

3.2 Summary Overviews . 21

3.3 Programmatically Summarizing Source Code 25

3.4 Tool Design and Requirements . 27
3.4.1 Extension Points Within Eclipse 28
3.4.2 Overview of Eclipse Architecture 29
3.4.3 Using Code Teacher . 31

3.5 Inclusion of POS information . 34

Ch. 4. POS Tagging Identifiers in Source Code 35

4.1 Selection of Taggers . 36

iii

4.2 Experimental Gold Set . 39

4.3 Experiment Design . 41

4.4 Results & Analysis . 47

4.5 Discussion & Qualitative analysis . 53

Ch. 5. Conclusions and Future Work 59

Bibliography 62

Appendix Ch. A. CodeTeacher Plug-in Source Code 70

Appendix Ch. B. Gold Sets 73

iv

Chapter 1

Introduction

As technology has become more prominent in everyday life, the need for individuals

who are capable of working with code and developing new software has increased

greatly. Due to this increased need, there has been a similar need for improved

education for students in computer science. Additionally, as software has become

more complex, the number of developers working together on even small projects has

become larger, requiring greater collaboration between multiple developers. A major

part of this cooperation is learning to work with code written by other people. This

can be a difficult task to learn, especially for novice programmers, as learning this

requires the programmer to understand the logic of the program, the syntax of the

code, and how the different elements of the code fit together, all of which may be

unfamiliar to a novice programmer.

1

2

1.1 Learning to Read Code

Source code written to be used in software can be difficult for a novice programmer to

understand. Beyond simply coming to terms with the logic of how a program works,

a novice programmer needs to also learn the specific syntax of a language, as well as

specific function calls that are part of the standard library of the language.

Currently, a student could ask a teacher or another student what a piece of code

does, or for assistance in understanding how a section of code works. A student

may have the option to read any comments in the code, but if the code is not well

maintained, this is not always a viable option, as comments may be out of date or

incomplete. Additionally, inserting comments into code can be a time consuming

process for a developer, meaning that inserting these comments into source code can

be a low priority task during the writing of new code, so many projects have little

documentation [37]

However, these are not the only sources of information of how a piece of code is

run. Within the code itself, there exists a fair amount of extra information. This

includes small pieces of linguistic information, such as variable, class, and method

names. Any of this information is useful for a programmer to help figure out what

a piece of code does. However, for the actual execution of the program, a computer

ignores this information, because it is unnecessary to the actual execution. Figure

1.1.1 illustrates several examples of source code natural language artifacts that hint

at what these variables and method names do.

3

Figure 1.1.1: Examples of natural language artifacts in source code

1.2 POS Tagging and Comment Generation

In order to utilize information from natural language artifacts, computers need to be

able to process the natural language artifacts which appear in the code. Fortunately,

there exists a variety of software tools to label the parts of speech of written language,

commonly known as part-of-speech (POS) taggers. The problem with these software

tools is that they were developed for, and trained on, a natural language corpus,

generally the Wall Street Journal corpus. An example of this kind of output can be

seen in figure 1.2.1. Unfortunately, the types of language for which the taggers are

built and trained are very different than the types of language which appear within

source code for software [39].

Another challenge is that source code language uses short phrases, rather than

full, structured sentences as can usually be seen in writings in natural language.

Additionally, a further challenge for part-of-speech tagging source code is that, for

4

Figure 1.2.1: Output of sample POS tagger on a natural language sentence [17]

Figure 1.2.2: Output of sample POS tagger on two method calls from source code

the convenience of the programmers working on it, abbreviations are used frequently.

These make typing statements faster and more convenient for the programmer, but

taggers may treat abbreviations as unknown or foreign words, a tag which provides

little or no syntactic information.

Additionally, as can be seen in figure 1.2.2 the tagging of source code can be

inaccurate. While in the first example, “get current volume”, the tagger recognized

that this was intended to be a full statement, with a verb and an object, in the second

example, “print stack trace”, all three words were interpreted to be nouns. While all

of these words can be nouns, it would be more accurate to say that print is a verb,

with trace being the main object, and stack being an adjective. For this reason, the

automatic tagging in this example is weak.

The difficulties in analyzing natural language artifacts results from the ambiguity

5

Figure 1.2.3: Overview of testing part-of-speech taggers

of many words in natural language. For example, the same word may be a noun or

verb depending on how it is used in the context of other words in the statement,

such as what can be seen in the example of “print stack trace”, in figure 1.2.2,

where all words could be interpreted as nouns, or as other parts of speech. This

problem has largely been approached by researchers who have developed part-of-

speech taggers which can incorporate data from large corpuses, and use statistical

analysis to generate highly accurate tags. However, most of these taggers use the

statistical model for natural language, which is grammatically different from source

code artifacts. For this reason, it becomes necessary for this thesis to evaluate the

effectiveness of existing POS taggers on the corpus of source code artifacts. The

process of testing the part-of-speech taggers is summarized in figure 1.2.3.

The reason that the part-of-speech of words in source code needs to be found is

that this information can help to determine the action that is being performed (by the

verb phrase), and on what the action is performed (noun phrase). This type of under-

standing is something which an individual reading a piece of code will do intuitively,

6

given that they have some experience with reading code. With this information, along

with additional information that is delivered from the source code’s compilation, an

effective summary could be created. The information from the compiler allows for

a program to be able to parse what an individual line of code does at a low level,

while parsing the source code for information from natural language artifacts gives a

higher level summary of what a line of code does, i.e. what is being acted upon, and

what is being done to it. This first piece of information can be recognized from the

verb phrase, and the later comes from the noun phrase, if these pieces exist in the

artifacts.

The novelty of this thesis comes from the fact that while all of these research

programs have focused on automating the generation of comments and documentation

for source code, the solution proposed in this thesis focuses on generating summaries

dynamically. Additionally, the summaries that will be generated are designed to be

helpful to those with little to no experience with programming. Previous work has

illustrated that novices approach the problem of program comprehension differently

from experts. Novice programmers spend significantly longer per line to understand

how code works [10]. Additionally, while a novice will likely need to spend some of

their work time on simply understanding the syntax of a line of code, an expert will be

able to understand most, if not all, code syntax very quickly, and would not struggle

with understanding what a piece of code does in this way. Experts generally need

only high level overviews of code to understand where they should focus their time,

while novice programmers may be less able to isolate these problems and understand

code.

7

This thesis makes the following contributions:

1. The evaluation of preexisting part-of-speech taggers on the nonstandard lan-

guage of source code, which differs from the natural language writings that

part-of-speech taggers are usually evaluated on.

2. The development of software (specifically, an Eclipse plug-in) which can parse,

label, and process the natural language artifacts found in source code to develop

explanatory statements for novice programmers.

3. A proposal for how part-of-speech information could be incorporated into a

summary tool similar to the one we wrote, to improve the accuracy of summaries

of source code.

Chapter 2

Background and Related Work

This thesis draws upon several existing fields of research, and also makes contri-

butions to two of these fields. The first field of research is part-of-speech tagging.

Research has also been carried out in creating tools which can autonomously teach

programing and coding to novice programers. These tools are similar to the program

developed as part of this paper, but focus on a different aspect of learning how to

code. This research has also been applied to the field of software engineering, to help

even experienced programmers learn to work with new code more quickly. Much of

this research is related to the automatic maintenance and documentation of code, us-

ing natural language artifacts to generate documentation and explanatory comments

automatically, without needing additional time and effort from developers.

8

9

2.1 Identifiers

In order to summarize code, it is essential to know both the syntax of the language

in which the code is written, and what, at a high level, the code is intended to do.

The first of these two tasks will be addressed later in this thesis. However, much

of the information about what code does is available to an individual with training

in how to read code. Because programmers name variables, methods, and other

artifacts (which are also known as identifiers) in source code in whatever way they

want, there are no technical reasons why the chosen names must be informative.

However, when Liblit, Begel, and Sweetser studied program source code identifiers

[28], they found that programmers do in fact use informative, meaningful names for

variables and values, particularly in languages such as java that do not limit the

length of names in code. This indicates that using these pieces of information will

return meaningful information. However, it is worth noting that they also found that

abbreviations were common in code, since writing a long name many times quickly

became counterproductive. This is potentially threatening to this thesis because

these abbreviations introduce ambiguity to the tagging process, as an abbreviation

may stand for several different words, and additionally may not be recognized by the

tagger as English words, which would prohibit accurate POS tagging. Furthermore,

in this study, it was found that the more visible an identifier is in the code, the more

likely it is to be informative and expressive. This means that method names, classes,

and other high-level organizational components of code are more likely to possess

informative names than low-level constructs, such as local variables. This suggests

that the most effective way to summarize a piece of code is to focus mostly on high

10

level organization, rather than using local variables, which provide less information.

2.2 POS Taggers

POS tagging is the process of taking a body of text and labeling the part-of-speech

of the individual words. A large variety of tools have been developed for the purpose

of analyzing this automatically [6, 41, 35, 42, 7, 18]. Many of these taggers have

accuracy on their evaluated corpuses that reaches over 90%, making these taggers

highly reliable on natural language. Additionally, some of these tools are developed

for specific languages and purposes, such as parsing and labeling biomedical texts

[43].

Source code artifacts are significantly different than natural language. Source

code artifacts, while following strict syntactical rules, as defined by the language,

tend to not follow strict grammatical rules, and often include abbreviations, which

could interfere with the ability of POS taggers to process the language effectively. A

study into the regularity of source code natural language artifacts reveals that natural

language artifacts in source code have a much lower entropy, or unpredictability, when

compared to more natural language [39]. All of these point towards the conclusion

that there are significant differences between natural language and the artifacts found

within source code.

Some research into tagging natural language artifacts in source code has been

conducted [19, 29, 3]. This research has focused on developing taggers that can

effectively parse and label natural language artifacts within source code, including

11

analysis of how words are used within specific software source code. However, this

research has so far not conclusively demonstrated which taggers are most effective at

recognizing which taggers are most accurate on source code artifacts. In one study,

Sridhara et al. measured the effectiveness of existing natural language processing

tools on source code artifacts. In this study, the focus was on semantic similarity,

rather than on part-of-speech tagging, but it shows the inadequacy of many existing

linguistic tools for source code language [38].

There are also quantifiable differences between source code parts of speech and

the parts of speech that can be found in natural language writings, beyond simple

differences in structure. AlSuhaibani demonstrated that there are differences between

the parts of speech in source code, and that simple heuristics for identifying the parts

of speech in source code (such as saying all method calls are verbs, and all fields are

nouns), while not wholly inaccurate, ignores a large amount of information that can

be derived from the source code [4]. This sort of information is the type that will be

useful for generating summaries about lines of source code. AlSuhaubani creates a

custom set of rules for parts of speech that is primarily reliant upon the function of a

given word in a piece of code (e.g., an identifier is a verb if it makes some meaningful

modification to some object or value within its scope). This difference does have an

impact on the effectiveness of linguistic tools on source code artifacts [38, 22].

The usage of POS taggers and linguistic information in regards to source code is a

well-established trend in various fields of software engineering. The usage of lingusitic

information has been demonstrated to be useful for various purposes. For example,

the usage of words has helped with source code searching [1, 15, 20, 36], program

12

comprehension [2, 6, 12], and error and bug reporting [40]. Despite this prevalence,

to this point there has not been an exploratory study into how effective existing part-

of-speech taggers are on source code. This is partially due to the limited number of

taggers designed for labeling the part-of-speech of source code artifacts [19, 15].

2.3 Comment Generation

As was mentioned previously, comments in source code can be important to help

a programmer to understand the function and implementation of a piece of code.

However, documenting code with comments is a time-consuming process, and is often

expensive, due to the required skill to understand the code to be able to document

it, and since this documentation does not directly affect execution of the software,

maintenance of software is often viewed as less important. However, ignoring the need

for documentation can also lead to expense down the line, as maintenance of code

that is poorly documented takes far longer, so in both cases expense is an issue [30].

For this reason, research has been performed exploring how to generate summaries

and documentation for source code automatically. Some of this research, carried

out by Ying and Robillard, has focused on the ways in which programmers most

effectively summarize and explain code to an unfamiliar audience. The changes that

were made included summarizing, changing formatting, and shortening code when

possible, in order to make these changes as clear as possible [45]. This research was

related to earlier work which tried to generate these sorts of explanatory statements

automatically, based on both textual evidence and control flow of the program [16].

13

Others, including Rodeghero et al. have carried out eye tracking studies in order

to determine what sections of code programmers look at when trying to determine

what a section of code does. The research indicates that programmers primarily look

at methods and field names, rather than control flow in order to understand what a

piece of code does [33]. These results reinforce the ideas presented in Liblit’s research,

because the sections of code that an experienced programmer looks at are likely to

be those with the most information, and will filter out the information that is less

important [28].

Two particular research areas contribute extensively to what this thesis has ex-

plored. First, Sridhara, et al. conducted a study into how summaries can be gen-

erated from Java method signatures. Their solution combined the ideas of software

analysis and natural language processing to generate these summaries [37]. Natural

language processing, such as parsing method names for information, is closely tied

to the part-of-speech tagging research conducted by others. However, in Sridhara’s

paper, different preexisting POS taggers were not used, and several assumptions were

made about the most accurate taggers, which this thesis tests. Furthermore, this the-

sis differs from the work of Sridhara, et al. in that the previous work only performed

summaries for method creation, while this work will summarize any line of code, and

will do so for individual lines as opposed to generating summarizing comments for

a whole method. Secondly, it has been shown that novice programers need different

types of information in summaries than more advanced programmers, and therefore

novice programmers will not benefit as much from the generation of comments that

are intended for more experienced software developers [37]. This thesis will tailor our

14

summaries to specifically fit the needs of novice programmers, further distinguishing

this thesis from the work that has come before.

2.4 Natural Language Artifacts

The second major contributor to this thesis is the work of Hill, et al. into natural

language artifacts within software source code [20, 21]. Hill’s work focuses on parsing

and pulling information from source code based on the natural language artifacts

found within it. This work focuses heavily on understanding the relationships between

words in source code, allowing built-in search tools to return the most accurate results

possible to the user. This is accomplished by treating words in relation to each other,

not simply as a series of unrelated words. This work focused on searching, not on

summaries of code. However, these papers did contribute to research on POS tagging,

as they built upon the notion of the usefulness of natural language analysis in source

code. Hill’s work formed the foundation for the summary generation technique used

by Sridhara et al. in summarizing source code [19]. Of particular note is Hill’s creation

of a “Software Word Usage Model” (SWUM), that allowed for the study and analysis

of syntactic part-of-speech tagging of words in source code.

Summarization of source code has also been performed on Python, turning source

code into “pseudocode”, which is a form of abbreviated, simplified, and informal

language that is designed to be easily understood. Similar to this thesis, this work

summarizes code in a line-by-line manner, and generates statements that can be read

and understood by a novice programmer. However, the pseudocode summary works

15

only on Python, while in this thesis, we have focused on Java. Additionally, the

python pseudocode summarizer works primarily by parsing the abstract syntax tree

(AST) of the compiled code, and relies less on parsing variable and method names

to determine the functionality of the code [32, 13], whereas the research presented in

this thesis relies on both.

Similarly, work has been done to automatically generate comments for source code

that summarize and clarify the code. The lack of extensive comments in existing

software repositories is a known issue, and as such work has been conducted into

generating comments for source code. These efforts are intended to save time and

money for those working on software projects, because adequate comments can help

to clarify what source code does, but developing good documentation requires time

of developers, so automation of the process could be a cost saving measure [37] .

An example of work in comment generation is “Autocomment”, developed by Wong,

Yang, and Tan. This software parses source code and uses its findings to generate

comments and summarize the workings of source code, in much the same way that

this thesis approaches the problem of summarizing source code [44]. The difference

between Wong, Yang, and Tan’s work and this thesis is that their comments are

mostly geared towards experienced programmers, and not novices, and therefore do

less line-by-line summarization, and more big-picture summarization.

16

2.5 Program Tutors

In addition to programs which summarize and annotate source code in comments,

some programs have been developed to teach an individual how to write code. These

tools provide a useful service to students by providing guidance for what needs to be

done to proceed with the creation of software. These tutors have been demonstrated

to be effective in multiple ways, such as providing quick feedback, and improving

students’ confidence [14]. However, this thesis will make contributions to this idea in

other ways. First, these tutors generally focus on the process of writing novel code,

rather than learning to read existing code, which is another part of learning coding.

Additionally, the software developed as part of this thesis will allow users to see a

brief summary of existing code to gain better understanding of working with code.

Many have proposed developing tools which teach debugging, as this is a difficult

skill to learn, especially in large classrooms where individualized attention might

not be sufficient for students [8]. However, these tools, while effective for teaching

how to write new code, are generally not used to teach students how to read code,

particularly code written by others, which is an important part of learning to be an

effective programer, due to the collaborative nature of most, if not all, major software

projects.

Additionally, a variety of tools exist that have tried to improve debugging and

approaches to software engineering. For example, Ko and Myers developed a tool

which allowed programmers to ask questions about what output to expect from pro-

gram execution, to allow for easier debugging. This leverages a variety of automated

analysis, similar to the aim of this thesis [27]. This was a continuation of related work

17

which limited the scope to specific events and commands [31]. More recent research

has been conducted comparing the AST of a student’s program to that of an instruc-

tor’s demonstration program to help create explanations of steps for the student to

follow [47]. Furthermore, other research has been conducted on how to make com-

piler error notifications more easily comprehensible, which can be a barrier to novice

programmers learning to identify errors in their own code [5]. This is related to this

thesis in that both of these forms of research will aim to make the process of learning

to read and write code easier for a novice programmer, though the methodologies are

different.

In this thesis, we propose novel research that allows novices to work with produc-

tion level code. This can teach best programming principles and practices from those

with more experience. Additionally, these other program tutors focus generally on

writing new code, as opposed to working with existing code, which is an additional

task which can be difficult for a student to learn, and does not necessarily follow from

the ability to write and think out novel code.

Chapter 3

Automatically Generating
Explanations of Source Code for
Novice Programmers

Processing source code to generate informative summaries requires several steps. The

first of these is to find and summarize a variety of lines of Java source code. Then it is

necessary to generate more generic summaries of lines based on the type of statement

in the code. Then, once this has been accomplished, it is necessary to develop a way

to parse the source code of a project in order to figure out the type of statement that

was represented by each line of code. From there, using both the generic templates

generated previously, and the part-of-speech tagger, explanations of lines of code can

be made.

As part of this thesis, a tool was created called “Code Teacher”, which is designed

to provide information about what individual lines of code in a project do. Before

18

19

Code Teacher was implemented however, it was necessary to choose how to design it.

A large variety of different tools and frameworks exist for software development and

coding. Early in the process it was decided that Code Teacher would be designed

to extend functionality of the Eclipse integrated development environment (IDE).

There were several reasons for this choice. The major reason was that by leveraging

existing functionality in the IDE, we could focus on the more novel ideas of the code.

Additionally, the Eclipse IDE is widely used, making the evaluation of Code Teacher

easier.

The final methodology for how to generate these types of summaries is as follows:

1. Collected six open source projects.

2. Randomly selected lines from source code.

3. Generated specific line summaries.

4. Generalized specific examples into templates.

3.1 Selection of Data for Analysis

To begin the process of creating summaries of source code, it was first necessary to

find examples of different kinds of source code. This served two purposes. It first

allowed us to conduct research into the more common types of statements that appear

in production level source code. Additionally, it would allow us to examine source

code to determine what kinds of metadata information in source code is helpful for

the generation of summaries.

20

To begin with, we sought out new examples that had not been considered elsewhere

in the study. To do this, we went on Github, and found several open source Java

projects [26, 23, 24, 25]. The first of these projects, Anthelion, is a plugin for a

piece of Apache software which parses HTML to crawl semantic annotations within

the page [26]. The second project, Slide, is an open-source browser for the site reddit,

built as an android app [23]. Timber, a third project, is an open source music/media

player for android devices, built by integrating several existing tools [24]. Plaid was

the final open source project that was used for this thesis. Plaid is a tool designed

for development of user interfaces [25]. These tools were chosen at random to reflect

a variety of different software tools, infrastructures, and design architectures, and

therefore reflect a diversity of design tools.

These projects were selected by searching for open source repositories of code

on Github. The selected repositories were listed as “trending”, indicating that these

were popular projects. These projects all employed production-level coding practices.

After selecting several of these projects, individual files were selected at random. Then

we selected random individual lines from each file, limiting the number of examples

from each file to five, with three files from each project. Eventually, however, in

order to reflect the variety of source code lines that appear in code, we searched for

the types of code statements within other files so that we could find more complete

examples. To protect the validity of these results, randomness was still utilized in the

selection process.

21

3.2 Summary Overviews

Once these sample summaries were generated, it became necessary to generalize the

summaries. Once this was done, it would be possible to program these general sum-

maries into a summary generation methodology. Using the most accurate POS tag-

ger, it would be possible to gather information from words in the code to supplement

these summaries with additional information, and make them better matches for the

specific instance of the code. For a list of these generic phrases, see 3.2.1.

The process for generating generic template summaries involved three steps. First,

examples of each type of statement were collected. Then, several summaries were

compared, and a more generic template was created. Finally, a sample template was

made with variables that contained info that could be extracted from the original

example of the code. Below is a list of all of the templates for types of source code

statements. These statements assume that the part-of-speech information from the

method names is unavailable.

• Exception Handler: This type of code statement determines how a pro-

gram will handle actions which throw exceptions in the event of runtime errors.

Therefore, it was most important to explain that this type of code will execute

if an exception is thrown, and what type of exception will cause its execution.

For this reason, the template which was created was “Executes code if an error

(exception) of type [ExceptionType] occurs”

• Generic Exception Handler: For purposes of simplicity and clarity, this type

of handler, where the exception is of type “exception” was separated from the

22

Figure 3.2.1: Table With Examples of Generic Line Summaries

23

previous example. This summary template was “Executes code if an exception

(error) of any kind occurs”

• Exception Thrower: Similarly to the exception handlers, the most relevant

information for this type of code summary was the type and name of the ex-

ception being thrown, and an explanation of the fact that this code raised an

error. The template for this statement was “Raises an exception (error) [Ex-

ceptionName] due to [ExceptionType]”. The inclusion of the word error in the

previous summaries was included to introduce the concept of what an exception

is in clearer language to someone unfamiliar with the concept.

• Break: This type of statement was fairly unambiguous, and therefore relied

very little on extra information from within the code. Because this type of

statement is simple, a simple summary was needed. The template which we

generated was “Stops execution of a loop”.

• If Statement: This was a simple example of flow control within a program.

The most important part for a summary of this line of code was getting the

boolean condition for when a line of code will execute. The generic template for

this kind of statement was “Executes the following code only if [booleanCondi-

tion] is true”.

• Method Call: Without POS information, this type of statement is hard to

summarize. In this case, all that can be done is to assume that the method

name adequately describes what the method does in its default state. Without

24

POS information, the best summary we can provide is “Executes [method] (on

[object])”

• Method Declaration: Similarly to a method call, a more successful imple-

mentation of such a summary would require POS information about the method

being declared. Without this information, the summary of such a statement

would be “Declares a method that will do [method Name] and return [return-

Type]”

• Return Statement: This type of statement determines what would be passed

from a method to the method that called it. These statements determine how

different methods “communicate” with each other. A good summary of this

type of statement is “Returns the variable [varName] to the calling method”

• Variable Declaration: The summary for how a variable declaration would

appear is one which could benefit from POS tagger information, to determine

what a variable is used for. However, for this thesis, the emphasis was on

method tagging, and not variable name tagging. An example of a summary

without this information would be “Declares a variable of type [varType] that

stores the value for [varName]”

• Variable Value Modifier: Similarly to the above example, POS information

could hypothetically help with generating a more complete summary. However,

without this information, a summary can still be made. Specifically, for this

thesis, the generated summary was “Modifies the value of [varName] to be equal

to [varName2]”

25

• For Loop: A for loop is generally used for iterating over a series of values,

and doing something for each value. A summary of such a statement would be

“Executes the following code once for values of [variable] between [number] and

[value] where [variable] (increases/decreases) by [valueChange] each execution”

• While Loop: A while loop does something as many times as necessary until a

specified condition is met. It may not execute if the condition is met before the

first execution of the loop in the code. A summary of this type of line of code

is “Executes the following code until [boolean] is false”

• Do-While Loop: A do-while loop is similar to a while loop, except that a do-

while loop is guaranteed to run at least once, while a while loop may not execute,

depending on initial conditions. The summary for this type of statement is

“Execute code once, and then if [boolean] is true, continue to execute until

[boolean] is false”

3.3 Programmatically Summarizing Source Code

After the common types of statements that appear in source code were summarized,

it then became necessary to actually generate summaries of arbitrary lines of code.

In order to do this, we leveraged parts of the Eclipse development environment, and

extended these as necessary.

The method of implementing a source code summarizer first required becoming

acquainted with Eclipse’s infrastructure, to see how it was possible to extend and

26

Figure 3.3.1: AST example

modify its default functionality. Ultimately, the decision was made to make the

software work as a custom editor that would execute independently of the default

editor environment. One challenge in this decision was attempting to learn how to

integrate the behavior and interface of the default eclipse editor to make the interface

as intuitive as possible for a new user, as well as for someone more familiar with the

default eclipse editor’s functionality.

The next challenge was determining what type of statement a given line of code

was. For example, a line of code may be an “if” statement, or a variable declaration,

or a method call. All of these different types of code would need to be summarized

27

differently from each other. In order to determine what a given section of code was, we

extended the default editor’s tools to determine a similar issue. Most of our changes

were made by extending the default ASTVisitor class, a class which has methods for

parsing and traversing the AST of arbitrary java source code files. For an example

of an AST, see figure 3.3.1. This figure was found at http://leanovate.github.

io/bedcon/talk/abstract_syntax_tree.html. At the top of this figure, there can

be seen three java-type statements. On the far left, two nodes can be seen which

are a representation of the first statement, an assignment of a literal value “3” to

a variable “a”. This is the type of information which is parsed by the software to

collect information about the execution of code.

3.4 Tool Design and Requirements

Code Teacher is developed as a plugin for the Eclipse IDE, designed as a custom

java editor. This means the only requirements for running this software are that the

user have a working version of eclipse, and that, in Code Teacher’s current state, the

files which are to be worked with are Java files with a .jav extension, as opposed to

the more common .java extension. The editor works by replacing the default pop-

up summaries of the normal java editor with ones that are designed to be easily

comprehensible and useful to novice programmers.

28

Figure 3.4.1: Simple overview of Eclipse’s architecture

3.4.1 Extension Points Within Eclipse

Code Teacher was primarily implemented as a new class, called SummaryVisitor, which

provides the functionality to generate the summaries of source code by visiting nodes

of the AST of the source code. This is an extension of the built-in ASTVisitor class,

and overwrites many of the built-in methods of that class.

The ASTVisitor class was our primary hook into the default environment of Eclipse.

By creating a new instance of the SummaryVisitor class that extended the ASTVisitor

class, and by creating a new instance of this class within the JavaTextHover class of

the custom editor. Specifically, the instance was created and returns a string to the

getHoverInfo2 method, which then returns the string to the method responsible for

29

Figure 3.4.2: In depth summary of the hover support methodology

rendering the string to the screen. The SummaryVisitor class extends ASTVisitor, with

specialized visit methods for many different types of AST Nodes. These methods

return true if the traversal of the tree should continue downward, and false if the

traversal should stop at the given type of node.

3.4.2 Overview of Eclipse Architecture

For a high-level overview of how this tool was developed, see figure 3.4.1. As is shown

in this image, at the foundation of Code Teacher is the existing Eclipse architecture,

which provides a variety of functionality, such as hierarchical organization, and ren-

dering. However, for this tool, much of this is treated as a “black box”, where the

30

Figure 3.4.3: Illustration of functionality provided by the default eclipse editor

implementation is unimportant. The only relevant pieces of the code are the ones

which are responsible for implementing the editors. Editors, in turn, implement a

variety of functionality for the eclipse application, such as syntax highlighting, and

hover support. Figure 3.4.3 illustrates the types of functionality implemented by the

default eclipse editor.

At the end of the diagram in figure 3.4.1, the eclipse editor is implemented by a

custom editor. The infrastructure of this custom editor, and how a hover summary

is generated is shown in figure 3.4.2. The ITextHover interface is at the base of

this functionality. The implementation of this interface is what allows for a hover

annotation to be rendered to the page. However, what is displayed on the screen is

itself implemented by a series of calls to objects and instances of other classes, most

31

Figure 3.4.4: Demonstration of “try” summarization

notably the custom summary visitor class. In this figure, all custom implemented or

modified methods and fields are highlighted in blue text. The elements in black are

either extended from default Eclipse implementation, such as with ASTs, or integrated

from other programs, as is the case with POS tagging.

3.4.3 Using Code Teacher

The source code for Code Teacher is available in a public git repository, found at

https://bitbucket.org/wyatt-olney/codeteacher (see Appendix A for further

information about where the modified code can be found). Additionally, in figures

3.4.4 3.4.5, 3.4.6 and 3.4.7, runtime execution screenshots of Code Teacher can be

seen. The code used in these demonstrations all come from timber [24].

In figures 3.4.4, 3.4.5 and 3.4.6, Code Teacher is working as intended without the

32

Figure 3.4.5: Demonstration of “catch” summarization

Figure 3.4.6: Demonstration of variable declarations

33

Figure 3.4.7: Demonstration of method summarization

need for POS information. However, the inclusion of such information could improve

the summaries that are generated by Code Teacher. In figure 3.4.7, Code Teacher

attempts to summarize a method call, which is possible, but often uninformative and

sub-optimal, without part-of-speech information.

Code Teacher provides functionality and instruction that could prove helpful to a

novice programmer. For example, a novice may not know the purpose of a “try/catch”

statement. Summaries such as the ones presented in figures 3.4.4 and 3.4.5 may

provide a partial, brief explanation of what a given line of code does. Additionally,

especially in an object oriented language such as Java, variable declarations may be

confusing for novices. Distinguishing between the variable name, and the class name

may be a point of confusion for novices. The summary presented in figure 3.4.6 can

help to clarify some of this confusion, by explaining which part of the line is the class.

34

3.5 Inclusion of POS information

Currently there is a limitation to “Code Teacher” in that it currently does not support

integration of POS info. While summaries of lines of source code exist within the

current framework, these are not the optimal summaries, as they consist only of

simple templates, without integration of POS info.

The best way to illustrate the usefulness of POS tagging in generating summaries

for lines of source code would be to illustrate how this type of information could

benefit a summary of source code. For an example of how this information could

be used, consider the method isPlaybackServiceEnabled, from timber [24]. Without

POS information, the summary for such a method declaration would be “Declares a

method that will perform isPlaybackServiceConnected and return a boolean”. This

is both grammatically awkward, and not particularly informative, nor is it useful for

determining what the method actually does.

However, with POS information being included, a more useful summary can be

generated. Specifically, the summary utilizing POS information on this line of code

would be “Declares a method that checks if the playback service is connected, and re-

turns a boolean”. In addition to being more colloquial, this also is a more informative

summary of the method declaration presented here.

Chapter 4

POS Tagging Identifiers in Source
Code

As has been discussed previously, while a variety of different part-of-speech taggers

exist and are used frequently, there has not been a comprehensive study of the accu-

racy of these taggers on the unique corpus of source code identifiers. For this thesis,

the accuracy of taggers on this corpus is essential to creating the most accurate sum-

marizations of lines of source code. For this reason, this thesis presents novel research

that explores the effectiveness of existing part-of-speech taggers on how they work on

source code identifiers, specifically method names.

The study presented here has several parts, explained in greater detail below. The

steps involved in designing and completing the experiment are:

1. Selection of the most relevant POS taggers.

2. Creation and manual labelling of a “gold set”, or set of source code identi-

35

36

fiers which provide us with a consistent standard for comparison which we can

compare all POS taggers against.

3. Implementation of each individual POS tagger, and execution on the gold set.

4. Evaluating the accuracy of each POS tagger, including unification of different

tagsets.

4.1 Selection of Taggers

Due to the large number of different taggers, it became clear early on that it would

be necessary to evaluate only the most relevant and common part-of-speech taggers

for our experiment. The selection process took into consideration several different

factors, including reported accuracy of the tagger (usually on the Wall Street Journal

Corpus, a common natural language corpus used for evaluating taggers and other

linguistic research), the frequency with which the tagger is compared to by other

taggers, and the corpus which the tagger was trained on and what the tagger was

designed to do.

The methodology that we used to select the most relevant taggers was based

on several factors. First among these was apparent relevancy within the research

community. This was usually based on which taggers were frequently examined or

compared to. For this thesis, it was sufficient for our purposes to conclude that if

a particular tagger was compared against frequently, it was one for which a general

consensus existed within the research community as to its effectiveness on traditional

37

natural language sources. This thesis would test this effectiveness on source code

artifacts.

A secondary criterion that was used to determine if a tagger was going to be worth

testing was the corpus for which it was designed. As has been mentioned before, most

taggers which we looked at were trained and developed for a natural language corpus.

Most frequently, the corpus which taggers used for evaluation was the Wall Street

Journal corpus. These taggers were not ruled out of our study, and many of these

were used. However, other corpuses and training sets were used for other taggers.

Two taggers in particular were developed for source code POS tagging specifically,

so those were used [19, 29]. Additionally, taggers which were developed to work on

corpuses that had frequent abbreviations and other similarities to source code were

used [11]. However, other taggers were excluded, because their intended corpus was

too dissimilar from that of source code to be worth investigating [43].

In the following list, an explanation of why each tagger was selected to be eval-

uated is presented, along with some basic information about each tagger’s reported

accuracy and other pertinent information, such as the approach used in tagging, where

applicable.

• Stanford Tagger: This tagger was selected for evaluation because it was the

tagger that was most commonly compared to by other work in the field of

natural language processing. On the corpuses that it was tested on, the Stanford

Tagger had a reported accuracy of 97% [41], which is high compared to many

other taggers. It has also been applied to field names and found to have 88%

accuracy [6] and 90% accuracy on bug reports [40]

38

• GATE’s Twitter Tagger: The Twitter Tagger was designed to work with

sparse and noisy data [11]. While this tagger was designed to parse and label

twitter messages, the nature of that when compared to source code had some

similarities (e.g. frequent abbreviations, loose grammatical rules). The tagger

has a reported accuracy of approximately 91%.

• RASP: This tagger had one of the lower reported accuracies among taggers

that we had tested, with a reported accuracy of 76.3% [7]. However, it was a

tagger that was still fairly often compared against, and has been used in prior

applications of POS tagging to source code [46].

• Apache OpenNLP: OpenNLP is an open source POS tagger that uses a

maximum entropy approach to tag the words.

• SpaCy: SpaCy was written in Python, unlike many other taggers, and is com-

petitive with other taggers in terms of accuracy. Its reported accuracy was

evaluated to be 91.8% on a natural language corpus [9]. SpaCy was also a more

recently developed tagger.

• University of Pennsylvania’s LTAG-Spinal Tagger: The LTAG-Spinal

tagger was reported to have an accuracy of 97.33% on the Penn Treebank corpus

[34]. Additionally, this tagger uses a unique algorithm for developing its part-

of-speech tags.

• POSSE: This was one of the two part-of-speech taggers that was developed to

label and parse the parts of speech of source code artifacts, and draws informa-

39

tion from the source code to help its labeling [29]. On the corpus that it was

originally tested upon, there was an effective accuracy of 192 out of 196 phrases

parsed correctly (98%).

• SWUM: This part-of-speech tagger was designed to be effective at part-of-

speech tagging on source code language artifacts [19]. It was designed by Hill,

and uses a variety of contextual information from source code to inform its

decision making process for POS tagging. It later became the basis for the

work of Malik in developing the POSSE tagger [29].

• Stanford, I-Prepended: In addition to running each tagger, a secondary

experiment was run in order to see if slight, systematic alteration of each tagger

would yield better results. Specifically, for one tagger, Stanford, a secondary

trial was run, where the word “I” was prepended before each identifier’s name.

This was done to test to see if mimicking normal english syntax would improve

the accuracy of the taggers. This approach has also been used to parse source

code identifiers [36].

4.2 Experimental Gold Set

After selecting taggers, the next step was to evaluate the effectiveness of all of the

taggers. However, before we could do so, we needed to create a “gold set”, or a

collection of examples from the corpus for which the tagger is to be evaluated. For

the purpose of this thesis, the gold set is a collection of source code identifiers. A

40

gold set is required to be tagged manually by a human, and these manual tags are

assumed to be correct, so that any other taggers can be compared to this set. This

creates a point of comparison for all of the existing taggers.

For this thesis, the gold set consists of 195 identifiers from source code, all function

names taken from various open-source, publicly available Java projects. This gold set

was designed and explained in greater depth by Sana Malik [29]. This was considered

to be a random, representative sample collected from 22 different open source software

projects.

Additionally, after an initial study of the accuracy of taggers, a secondary testing

set was created for the purpose of evaluating the most effective taggers. The reason

for this was that the original gold set, which was used for our initial evaluation,

was used by Malik to train one of the taggers that was tested in this experiment.

Therefore, a secondary testing set was needed, in order to get a fair evaluation of the

taggers. For this, we selected an additional 41 method names from the source code of

four open-source projects. These were then parsed and annotated manually, and then

were used as input for the taggers that had been evaluated to be the most effective

in our initial study of method identifiers.

This gold set’s design is important for the purpose of this study because it helps

to determine what kind of data will be produced. The choice to focus on method

names does limit the scope of identifiers that were evaluated, because artifacts such

as variable names are not taken into consideration by this gold set. However, as

was discussed previously, research by Liblit, Begel and Sweetser indicated that more

visible code is more likely to be informatively named than less visible elements of code

41

such as variable names [28]. This implies that local variables are less likely to have

names which could be parsed for additional information, or return meaningful results.

Additionally, according to AlSuhaibani, a simple heuristic rule such as labeling all

variables as nouns may be reasonable [4].

4.3 Experiment Design

Broadly speaking, the central measure of how effective a given tagger was in labeling

parts of speech was how closely the output of a tagger matched the annotation of

the same phrase by human evaluators. The first task for this evaluation was unifying

different tagsets. This is necessary because different taggers use different tagsets,

which vary in robustness and the number of possible tags. However, the robustness

of the tagset used by a tagger should not be a factor in how accurate a tagger is

evaluated to be, so for this reason it becomes necessary to create a relation between

the different tagsets, so that the tags correctly correspond to each other. For this

thesis, the tagsets that had to be considered were the Penn Treebank tagset, the

CLAWS7 tagset, and the tagset that was proposed by Hill for her “SWUM” tagger

[19]. A table with a summary of the unification of the different tagsets is presented

in figure 4.3.1. Additionally, figures 4.3.1, 4.3.2, 4.3.3 and B.0.4 show more in-depth

analysis and comparisons for tagset unification.

Once the experimental gold set was created, and the tagsets were unified, we ran

the taggers on the corpus and compare the outputs to the original gold set. A good

tagger will have a high frequency of matching tags compared to the gold set. There

42

Figure 4.3.1: Unified Tagset

43

Table 4.3.1: CLAWS7 Tagset: Nouns

Tag Definition Gold Set
Equivalent

MC cardinal number (two, three...) D
MC1 singular cardinal number (one) D
MC2 plural cardinal number (sixes, sevens) D
MCGE genitive cardinal number (two’s, 100’s) D
MCMC hyphenated number (40-50, 1770-1827) D
MD ordinal number (first, second, next,

last...)
D

MF fraction (quarters, two-thirds) D
AT article (the, no) DT
AT1 singular article (a, an, every) DT
BCL before-clause marker (in order to) DT
DA after-determiner (such, former, same) DT
DA1 singular after-determiner (little, much) DT
DA2 plural after-determiner (few, several,

many)
DT

DAR comparative after-determiner (more,
fewer)

DT

DAT superlative after-determiner (most,
fewest)

DT

DB before determiner or pre-determiner (all,
half)

DT

DB2 plural before-determiner (both) DT
DD determiner (any, some) DT
DD1 singular determiner (this, that, another) DT
DD2 plural determiner (these,those) DT
DDQ wh-determiner (which, what) DT
DDQGE wh-determiner, genitive (whose) DT
DDQV wh-ever determiner (whichever, what-

ever)
DT

EX existential there DT
APPGE possessive pronoun (my, your, our) N
ND1 singular noun of direction (north, south-

east)
N

NN common noun (sheep, cod, headquarters) N
NN1 singular common noun (book, girl) N
NNA following noun of title (M.A.) N
NNB preceding noun of title (Mr., Prof.) N
NNL1 singular locative noun (Island, Street) N
NNO numeral noun (dozen, hundred) N
NNT1 temporal noun, singular (day, week, year) N
NNU unit of measurement (in, ml) N
NP proper noun (IBM, Andes) N
NP1 singular proper noun (London, Jane,

Frederick)
N

NPD1 singular weekday noun (Sunday) N
NPM1 singular month noun (October) N
JB attributive adjective (main, chief) NM
JJ general adjective NM
JJR comparative adjective (older, better,

stronger)
NM

JJT superlative adjective (oldest, best,
strongest)

NM

JK catenative adjective (able to, willing to) NM
NN2 plural common noun (books, girls) NP
NNL2 plural locative noun (Islands, Streets) NP
NNO2 numeral noun, plural (hundreds, thou-

sands)
NP

NNT2 temporal noun, plural (days, weeks,
years)

NP

NP2 plural proper noun (Browns, Reagans,
Koreas)

NP

NPD2 plural weekday noun (Sundays) NP
NPM2 plural month noun (Octobers) NP

44

Table 4.3.2: CLAWS7 Tagset: Verbs & Prepositions

Tag Definition Gold Set
Equivalent

IF for (as preposition) P
II general preposition P
IO of (as preposition) P
IW with, without (as prepositions) P
VHD had (past tense) PP
VHN had (past participle) PP
VVD past tense of lexical verb (gave, worked) PP
VVN past participle of lexical verb (given,

worked)
PP

FO formula UN
FU unclassified word UN
FW foreign word UN
XX not, n’t UN
ZZ1 singular letter of the alphabet (A, b) UN
VB0 be, base form (finite imperative, subjunc-

tive)
V

VD0 do, base form (finite) V
VH0 have, base form (finite) V
VM modal auxiliary (can, will, would, etc.) V
VV0 base form of lexical verb (give, work) V
VVZ -s form of lexical verb (gives, works) V3
VHG having V3
VVG -ing participle of lexical verb (giving,

working)
V3

REX appositional adverb (namely, e.g.) VM
RL locative adverb (alongside, forward) VM
RR general adverb VM
CC coordinating conjunction (and, or) CJ
CCB adversative coordinating conjunction (

but)
CJ

CS subordinating conjunction (if, because,
so, for)

CJ

CSA as (as conjunction) CJ
CSN than (as conjunction) CJ
CST that (as conjunction) CJ
CSW whether (as conjunction) CJ

45

Table 4.3.3: Penn Treebank Tagset

Tag Definition Gold Set
Equivalent

DT Determiner DT
PDT Predeterminer DT
WDT Wh-determiner DT
NN Noun, singular or mass N
NNP Proper noun, singular N
JJ Adjective NM
JJR Adjective, comparative NM
JJS Adjective, superlative NM
NNS Noun, plural NP
NNPS Proper noun, plural NP
PRP Personal pronoun PR
PRP$ Possessive pronoun PR
WP$ Possessive wh-pronoun PR
IN Preposition or subordinating conjunction P
TO to P
WP Wh-pronoun PN
VBD Verb, past tense PP
VBN Verb, past participle PP
MD Modal V
VB Verb, base form V
VBP Verb, non-3rd person singular present V
VBZ Verb, 3rd person singular present V3
VBG Verb, gerund or present participle V3
RB Adverb VM
RBR Adverb, comparative VM
RBS Adverb, superlative VM
WRB Wh-adverb VM
RP Particle VPR
CC Coordinating conjunction CJ
CD Cardinal number D
EX Existential there UN
FW Foreign word UN
LS List item marker UN
POS Possessive ending UN
SYM Symbol UN
UH Interjection UN

46

Table 4.3.4: Mapping part-of-speech tags across tagsets

Description Gold set
tag

Penn Tree-
bank

CLAWS7 SWUM/POSSE

Noun N NN, NNP NN, NN, NNA, NNB, NNL1,
NPM1, ND1, APPGE

N, NI, NM

Plural Noun NP NNS, NNPS NN2, NNL2, NNO2, NNT2,
NP2, NPD2, NPM2

NP, NPL

Pronoun PN PRP, PRP$,
WP$

PN, PN1, PNQO, PNQS,
PNQV, PNX1, PPGE,
PPH1, PPHO1, PPHO2,
PPHS1, PPHS2, PPIO1,
PPIO2, PPIS1, PPIS2,
PPX1, PPX2, PPY

PN

Determiner DT DT, PDT,
WDT

AT, AT1, BCL, DA, DA1,
DA2, DAR, DAT, DB, DB2,
DD, DD1, DD2, DDQ,
DDQGE, DDQV, EX

DT

Adjective ADJ JJ, JJR, JJS JB, JJ, JJR, JJT, JK ADJ
Preposition P IN, TO IF, II, IO, IW P
Past Tense Verb PP VBD, VBN VHD, VHN, VVD, VVN PP
Verb V MD, VB, VBP VB0, VD0, VH0, VM, VV0 V, VING, VB, VI
3rd Person Present Verb V3 VBG, VBZ VHG, VVG, VVZ V3
Adverb VM RB, RBR,

RBS, WRB
REX, RL, RR VM

Verb Particle VPR RP RP VPR
Conjunction CJ CC CC, CCB, CS, CSA, CSN,

CST, CSW
CJ

Digit D CD MC, MC1, MC2, MCGE,
MCMC, MD, MF

D

Unknown UN EX, FW, LS,
POS, SYM,
UH

FO, FU, FW, XX, ZZ1 UN, ABV

47

are a few different aspects to consider when evaluating these taggers, mostly per-word

accuracy and per-identifier accuracy. Per-word accuracy is how accurate a tagger is on

any given word. Per-identifier accuracy is based on how often a tagger will accurately

label a whole method name’s part-of-speech tags. These two measures are related,

but slightly different, so it is important to measure both factors to evaluate a tagger’s

accuracy.

4.4 Results & Analysis

After generating the two gold sets, running all of the selected taggers on both of them,

then comparing outputs to the gold set, we analyzed the results of the taggers. For

the purposes of comparing each tagger, we converted each tag, including the gold set

tags, to their SWUM tagset equivalency, and then compared those equivalent tags.

Here, we present box plots of the accuracy of each tagger. The mean for each of the

taggers is denoted by the red plus, while the interquartile range is represented by the

top and bottoms of the rectangles, with the median represented by the thicker, bold

line. The taggers are listed in order of increasing mean.

Figures 4.4.1 and 4.4.2 show the per-word accuracy in the original gold set, and the

second gold set respectively. These graphs indicate the accuracy of each word taken

independent of what phrase they are in. The most accurate taggers for this section

were POSSE for the POSSE gold set, while on the other gold set, the I-prepended

Stanford tagger achieved the highest accuracy, despite the fact that it was the 4th

most accurate on POSSE’s gold set.

48

●●●●● ●●

●●

●

●●

●●●

●●●●

●●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

O
pe

nN
LP

Tw
itt

er

S
pa

C
y

S
ta

nf
or

d

LT
A

G
−

S
pi

na
l

R
A

S
P

S
ta

nf
or

d+
I

S
W

U
M

P
O

S
S

E

0.0

0.2

0.4

0.6

0.8

1.0

%
 c

or
re

ct
 p

er
_w

or
d

Figure 4.4.1: Mean word-level accuracy per identifier for POSSE’s gold set

● ●

●

●

●

●

●

●

●

●●

O
pe

nN
LP

S
ta

nf
or

d

S
pa

C
y

LT
A

G
−

S
pi

na
l

Tw
itt

er

R
A

S
P

S
ta

nf
or

d+
I

P
O

S
S

E

S
W

U
M

0.0

0.2

0.4

0.6

0.8

1.0

%
 c

or
re

ct
 p

er
_w

or
d

Figure 4.4.2: Mean word-level accuracy per identifier for supplemental gold set

49

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

O
pe

nN
LP

S
pa

C
y

Tw
itt

er

R
A

S
P

LT
A

G
−

S
pi

na
l

S
ta

nf
or

d

S
ta

nf
or

d+
I

S
W

U
M

P
O

S
S

E

0.0

0.2

0.4

0.6

0.8

1.0

%
 c

or
re

ct
 p

er
_i

d

Figure 4.4.3: Mean identifier accuracy for POSSE’s gold set

●●●●●●●

O
pe

nN
LP

S
ta

nf
or

d

LT
A

G
−

S
pi

na
l

S
pa

C
y

Tw
itt

er

R
A

S
P

S
ta

nf
or

d+
I

P
O

S
S

E

S
W

U
M

0.0

0.2

0.4

0.6

0.8

1.0

%
 c

or
re

ct
 p

er
_i

d

Figure 4.4.4: Mean identifier accuracy for supplemental gold set

50

●●●●●●

●

●●

●●●

●

●●

●

●●

●●●

●●●●

●●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

O
pe

nN
LP

S
pa

C
y

Tw
itt

er

S
ta

nf
or

d

LT
A

G
−

S
pi

na
l

R
A

S
P

S
ta

nf
or

d+
I

S
W

U
M

P
O

S
S

E

0.0

0.2

0.4

0.6

0.8

1.0

%
 c

or
re

ct
 p

er
_w

or
d

Figure 4.4.5: Overall per word accuracy across both sets

Additionally, figures 4.4.3 and 4.4.4 indicate the accuracy of taggers on phrases as

a whole. For these figures, a tagger was evaluated to be accurate if it correctly tagged

100% of the words in a method name, and the scores given are the percent of the

method names that were accurate. For the POSSE gold set, POSSE was once again

the most accurate, followed by SWUM, and then “I” prepended Stanford. On the

alternative gold set, POSSE also scored highest, followed closely by “I” prepended

Stanford, and then by RASP.

As can be seen by looking at figures 4.4.1, 4.4.2, 4.4.3, and 4.4.4, prepending

“I” to the method name appears to improve overall accuracy, compared to running

the Stanford tagger on the same method names without being prepended. However,

this difference is not statistically significant compared to the default behavior of the

Stanford tagger.

In figure 4.4.5, the overall, per-word accuracy for each tagger can be seen, across

51

Taggers Difference Lower Bound Upper Bound P Score
Twitter-OpenNLP 0.0103540904 -0.077828427 0.09853661 0.9999913
SpaCy-OpenNLP 0.0132478632 -0.074934654 0.10143038 0.9999417

Stanford-OpenNLP 0.0390720391 -0.049110478 0.12725456 0.9068862
LTAG-Spinal-OpenNLP 0.0393284493 -0.048854068 0.12751097 0.9036242

RASP-OpenNLP 0.0532112332 -0.034971284 0.14139375 0.6319073
Stanford+I-OpenNLP 0.1041514042 0.015968887 0.19233392 0.0077278

SWUM-OpenNLP 0.1649816850 0.076799168 0.25316420 0.0000003
SpaCy-Twitter 0.0028937729 -0.085288744 0.09107629 1.0000000

Stanford-Twitter 0.0287179487 -0.059464568 0.11690047 0.9848829
LTAG-Spinal-Twitter 0.0289743590 -0.059208158 0.11715688 0.9839945

RASP-Twitter 0.0428571429 -0.045325374 0.13103966 0.8514344
Stanford+I-Twitter 0.0937973138 0.005614797 0.18197983 0.0271342

SWUM-Twitter 0.1546275946 0.066445078 0.24281011 0.0000021
Stanford-SpaCy 0.0258241758 -0.062358341 0.11400669 0.9924867

LTAG-Spinal-SpaCy 0.0260805861 -0.062101931 0.11426310 0.9919720
RASP-SpaCy 0.0399633700 -0.048219147 0.12814589 0.8952371

Stanford+I-SpaCy 0.0909035409 0.002721024 0.17908606 0.0374185
SWUM-SpaCy 0.1517338217 0.063551305 0.23991634 0.0000037

LTAG-Spinal-Stanford 0.0002564103 -0.087926107 0.08843893 1.0000000
RASP-Stanford 0.0141391941 -0.074043323 0.10232171 0.9999041

Stanford+I-Stanford 0.0650793651 -0.023103152 0.15326188 0.3474244
SWUM-Stanford 0.1259096459 0.037727129 0.21409216 0.0003352

RASP-LTAG-Spinal 0.0138827839 -0.074299733 0.10206530 0.9999166
Stanford+I-LTAG-Spinal 0.0648229548 -0.023359562 0.15300547 0.3529904

SWUM-LTAG-Spinal 0.1256532357 0.037470719 0.21383575 0.0003492
Stanford+I-RASP 0.0509401709 -0.037242346 0.13912269 0.6862889

SWUM-RASP 0.1117704518 0.023587935 0.19995297 0.0027732
SWUM-Stanford+I 0.0608302808 -0.027352236 0.14901280 0.4445575

Table 4.4.1: P-Scores and Bounds of Tukey range separation test on original data set,
using per word accuracy

52

Taggers Difference Lower Bound Upper Bound P Score
Stanford-OpenNLP 0.133730159 -0.08888204 0.3563424 0.6318257
SpaCy-OpenNLP 0.137471655 -0.08514054 0.3600838 0.5954805

LTAG-Spinal-OpenNLP 0.153571429 -0.06904077 0.3761836 0.4392195
Twitter-OpenNLP 0.191836735 -0.03077546 0.4144489 0.1553494
RASP-OpenNLP 0.246031746 0.02341955 0.4686439 0.0180091

Stanford+I-OpenNLP 0.286281179 0.06366898 0.5088934 0.0023428
POSSE-OpenNLP 0.313435374 0.09082318 0.5360476 0.0004924
SWUM-OpenNLP 0.403741497 0.18112930 0.6263537 0.0000011
SpaCy-Stanford 0.003741497 -0.21887070 0.2263537 1.0000000

LTAG-Spinal-Stanford 0.019841270 -0.20277092 0.2424535 0.9999989
Twitter-Stanford 0.058106576 -0.16450562 0.2807188 0.9964081
RASP-Stanford 0.112301587 -0.11031061 0.3349138 0.8183825

Stanford+I-Stanford 0.152551020 -0.07006117 0.3751632 0.4488444
POSSE-Stanford 0.179705215 -0.04290698 0.4023174 0.2262901
SWUM-Stanford 0.270011338 0.04739914 0.4926235 0.0055664

LTAG-Spinal-SpaCy 0.016099773 -0.20651242 0.2387120 0.9999998
Twitter-SpaCy 0.054365079 -0.16824712 0.2769773 0.9977475
RASP-SpaCy 0.108560091 -0.11405210 0.3311723 0.8448913

Stanford+I-SpaCy 0.148809524 -0.07380267 0.3714217 0.4846367
POSSE-SpaCy 0.175963719 -0.04664848 0.3985759 0.2519635
SWUM-SpaCy 0.266269841 0.04365765 0.4888820 0.0067401

Twitter-LTAG-Spinal 0.038265306 -0.18434689 0.2608775 0.9998281
RASP-LTAG-Spinal 0.092460317 -0.13015188 0.3150725 0.9321501

Stanford+I-LTAG-Spinal 0.132709751 -0.08990244 0.3553219 0.6416390
POSSE-LTAG-Spinal 0.159863946 -0.06274825 0.3824761 0.3815449
SWUM-LTAG-Spinal 0.250170068 0.02755787 0.4727823 0.0148386

RASP-Twitter 0.054195011 -0.16841718 0.2768072 0.9977969
Stanford+I-Twitter 0.094444444 -0.12816775 0.3170566 0.9237793

POSSE-Twitter 0.121598639 -0.10101355 0.3442108 0.7436097
SWUM-Twitter 0.211904762 -0.01070743 0.4345170 0.0762841

Stanford+I-RASP 0.040249433 -0.18236276 0.2628616 0.9997488
POSSE-RASP 0.067403628 -0.15520857 0.2900158 0.9901686
SWUM-RASP 0.157709751 -0.06490244 0.3803219 0.4009319

POSSE-Stanford+I 0.027154195 -0.19545800 0.2497664 0.9999876
SWUM-Stanford+I 0.117460317 -0.10515188 0.3400725 0.7783433

SWUM-POSSE 0.090306122 -0.13230607 0.3129183 0.9405077

Table 4.4.2: P-Scores and Bounds of Tukey range separation test on supplemental data
set, using per word accuracy

53

both of the data sets. By comparing this with figures 4.4.2 and 4.4.1, it can be seen

that little changes when the two data sets are compared. SWUM and POSSE still

rank highest, along with “Stanford+I”.

In table 4.4.2, the output of a Tukey Range Test can be seen. For p<.05, it can be

seen that there is not a statistically significant difference between Spacy, Open-NLP,

Twitter, Stanford, and LTAG-Spinal. RASP did perform significantly better than

Open-NLP, but not more than any of the other taggers. The I-prepended Stanford

tagger did not perform significantly better than the default case of Stanford. This

implies that the strategy of prepending “I” to a method name would not significantly

improve accuracy, but further study may be needed to confirm this across different

taggers.

Finally, both POSSE and SWUM outperform every tagger to a statistically signif-

icant degree, except for Stanford+I. In the case of Stanford+I, POSSE significantly

outperforms Stanford+I, but SWUM does not. Additionally, between POSSE and

SWUM, there does not exist a statistically significant difference.

4.5 Discussion & Qualitative analysis

As can be seen from the preceding figures, SWUM and POSSE consistently had

the highest accuracy across the two sets, while OpenNLP had the lowest. However,

for most taggers, the change in accuracy was not large. It is worth noting that

consistently one of the better taggers across the two sets was the Stanford tagger,

with each method prepended with an “I”. In all cases, this approach outperformed

54

the default behavior of the Stanford tagger. For a detailed breakdown of the number

and kinds of errors, see table 4.5.1. These tables present a summary of the types of

mistakes each tagger made, and how frequently the mistakes were made.

The most common error was mislabeling a verb as a noun, which occurred 277

times across the two data sets. Additionally, nouns were mislabeled as verbs 148

times. These two mistakes are very similar. There are two types of this error which

appear in the experiments that were run. The first is in the case of single word

methods. An example of this is the method called exit. In normal language, this

word can be either a verb or a noun. However, in source code, such a single word

method name will generally be a verb, because it is an action to be taken. However,

each tagger, except for RASP, SWUM and I-prepended Stanford, labeled it as a noun.

A second type of error which appeared frequently was when a phrase began with

a word that could be either a verb or a noun. An example of this is configureWeb-

Connection. This method begins with a verb, as “configure” is the main action being

taken by the method. However, in this case, the only two taggers to get this correct

were SWUM and I-prepended Stanford.

The opposite case, with a noun being mislabeled as a verb was less common, but

still fairly frequent. This error occurred 148 times across all taggers. The tagger

that most frequently made this mistake was the I-prepended Stanford. The purpose

of prepending I to a method name was to try to force the tagger to recognize the

first word as a verb by mimicking more traditional English grammatical structure,

as a proper noun (“I”) will usually be followed by a verb. The downside to this is

that the assumption is made that the first word of the normal method is a verb. This

55

Error-> Expected Tag POSSE Stanford Stanford+I Twitter RASP OpenNLP SpaCy SWUM LTAG-Spinal Total
N->V 16 38 2 56 17 50 40 13 45 277

NP->N 0 30 29 28 25 30 31 0 33 206
V->N 1 21 36 13 26 12 10 20 9 148

PP->V 0 20 12 2 9 23 21 0 17 104
N->ADJ 22 7 4 9 4 8 6 30 7 97
ADJ->N 2 10 8 10 20 11 21 0 7 89
V3->V 0 11 11 12 10 10 11 0 10 75

ADJ->V 1 6 3 7 5 13 10 0 9 54
UN->N 0 5 5 3 11 0 2 2 0 28

PP->ADJ 1 2 3 4 5 3 3 0 3 24
V3->N 0 2 2 4 7 2 1 0 1 19
N->V3 4 1 1 2 1 1 1 5 2 18
N->PP 2 1 2 0 0 0 2 7 0 14
P->N 0 3 2 1 0 3 1 0 3 13

V->ADJ 0 0 2 0 3 0 0 6 0 11
P->V 1 1 1 1 1 1 1 1 1 9

VM->N 0 1 0 3 1 3 0 0 1 9
PP->N 0 1 1 1 2 1 2 0 1 9
N->P 5 0 0 0 0 0 0 3 0 8

N->NP 4 0 0 0 0 0 0 4 0 8
DT->N 0 0 0 0 0 1 2 1 2 6
V->PP 4 0 0 0 0 0 0 0 0 4

VM->ADJ 0 1 1 0 2 0 0 0 0 4
UN->V 0 0 0 4 0 0 0 0 0 4
PR->N 0 0 0 1 0 1 1 0 1 4
P->VM 0 1 0 1 1 0 0 0 0 3

VPR->VM 0 0 1 0 0 0 1 0 1 3
VPR->N 0 0 1 0 1 1 0 0 0 3
NP->V3 0 0 1 0 0 1 1 0 0 3

D->N 0 0 0 1 0 1 0 0 1 3
N->VM 1 0 0 0 0 0 0 1 0 2
VM->V 0 0 1 0 1 0 0 0 0 2
CJ->P 0 0 0 0 2 0 0 0 0 2

DT->ADJ 0 0 0 0 0 1 0 1 0 2
NP->V 0 0 0 0 0 1 0 0 1 2

NP->PP 0 0 0 0 0 2 0 0 0 2
UN->ADJ 0 0 0 0 0 0 0 2 0 2

N->DT 1 0 0 0 0 0 0 0 0 1
N->D 1 0 0 0 0 0 0 0 0 1

NP->ADJ 0 0 0 0 0 0 1 0 0 1
Total 66 162 129 163 154 180 169 96 155

Table 4.5.1: Errors by tagger in both data sets

56

leads to increased accuracy overall, as I-prepended Stanford outperformed the default

Stanford behavior across all experiments and measures, but it does carry a risk of

creating new errors in the edge cases of methods beginning with nouns. An example

of this risk is in the method called doubleArray, where double should be labeled as a

noun, but I-prepended Stanford labeled it as a verb.

A second very common mistake was to mislabel a noun as a plural noun. While this

is a mistake, and worth noting, it is unlikely to significantly impact the performance

of an application designed to utilize POS information and process it. For example,

in ReversedPreferencesMax, POSSE and SWUM both mislabeled Preferences as part

of the noun phrase, but identified it as a singular noun, rather than a plural.

In table 4.5.1, several trends can be observed. First, despite the fact that they

achieved the highest overall accuracy, SWUM and POSSE were the most likely to

mistakenly label a noun as an adjective, one of the most common mistakes in the

evaluation of the first data set. However, outside of this particular error, SWUM

and POSSE had relatively few mistakes, while others had a number of other common

mistakes. For example, every tagger other than SWUM and POSSE mistakenly

labeled verbs as past-participles, a small but important distinction. In the new data

set, the most common mistakes, were mislabeling verbs as nouns, and mislabeling

adjectives as nouns.

In figure 4.5.1, a pattern of per-identifier accuracy can be seen. Each horizontal

line represents an identifier. A blue line indicates that the tagger got this tag correct,

while an orange line indicates that particular tagger got the tag wrong. This is

useful as it allows us to see both the overall accuracy of each tagger, as well as the

57

Figure 4.5.1: Color-coded accuracy table for different part-of-speech taggers

prominence of phrases that either no tagger got correct, or which only one tagger got

correct. Additionally, it allowed us to begin to see patterns where different taggers

complement each other, allowing for potentially greater accuracy.

By looking at figure 4.5.1, and table 4.5.1, it is possible to see why SWUM and

POSSE outperformed the other taggers. In addition to having the highest accu-

racy on a per-identifier basis, (as established in figures 4.4.1 and 4.4.2), SWUM and

POSSE were often able to avoid mistakes that were made by other taggers, such as

the complete absence of verbs being labelled as past-participles, a common mistake

in this experiment. The only types of errors that were more prominent in SWUM’s

and POSSE’s outputs were mislabeling adjectives as nouns. Additionally, SWUM

made only 96 mistakes across all tags, and POSSE made only 66 mistakes across

all tags, significantly less than what were made by each other tagger. Interestingly,

on the types of mistakes that SWUM and POSSE made relatively frequently, Stan-

ford+I, a slightly less effective tagger, tended to avoid making mistakes. For example,

Stanford+I mislabeled adjectives as nouns four times, tied for the least frequent oc-

currence of these mistakes with RASP. The only other frequent mistake for POSSE

58

Figure 4.5.2: Groupings of taggers into equivalency groups

and SWUM was mislabelling verbs as nouns. Stanford+I made this mistake the least

frequently, having only two instances of this mistake. This implies that it may be pos-

sible to combine these two taggers in a way that maximized the effectiveness of them

both. For an illustration of the groupings of equivalent POS taggers, see 4.5.2. In this

figure, the horizontal lines illustrate groups of taggers which do not differ statistically

significantly from each other. For an illustration of the groupings of equivalent POS

taggers, see 4.5.2. In this figure, the horizontal lines illustrate groups of taggers which

do not differ statistically significantly from each other.

Chapter 5

Conclusions and Future Work

This thesis made a tool which could summarize statements of source code for a novice

programmer. This tool, while functional, has several shortcomings as well. Most

notably, Code Teacher, in its current state, only utilizes natural language for sum-

marization of method calls and declarations. It may be possible to generate further,

and more detailed summaries of source code artifacts by extending POS tagging to

other types of artifacts in source code. Additionally, Code Teacher could be improved

by pulling in information from other parts of the source code, such as comments and

variable names.

While in chapter 3, this thesis demonstrated the possibility of summarizing source

code without POS information, this can be improved with the inclusion of this type of

information. For example, consider the summary of the methods String getCompare-

String(Track track) and int compare(Object arg0, Object arg1). Without part of speech

59

60

information, the summary generated is “Declares a method to perform getCompare-

String” and “Declares a method to perform compare”, respectively. With accurate

POS information, the generated summaries would resemble “Declares a method to

get a compare string, using the Track provided”, and “Declares a method to compare

two objects”, respectively.

Thus, this thesis also conducted a study of the effectiveness of part-of-speech tag-

gers on the corpus of source code method names. This is novel research that included

the process of unifying the tagsets of different part-of-speech taggers, a process which

required studying and comparing divergent tagsets into a simple comparison. Addi-

tionally, part-of-speech tagging was conducted on a gold set of method names, and

the accuracy of each tagger on this set was evaluated. Then, after this research was

conducted, the usefulness of this research was demonstrated by developing a tool

that could be used to generate summaries of source code for novice programmers, in

a way that utilized part-of-speech information to make the summaries as detailed and

accurate as possible.

In summary, this thesis made the following contributions:

• Conducted a comparative study of part-of-speech taggers on source code method

names

• Developed a tool capable of parsing source code and generating explanatory

statements of source code for novice programmers

• Illustrated the viability of using part-of-speech information in generating more

detailed explanations of source code

61

This thesis provided evaluation of several part-of-speech taggers on the corpus of

source code natural language artifacts. However, this was not an exhaustive study,

and several taggers were not considered as part of the experiment. Further analysis of

these taggers could be performed. Additionally, as illustrated by the “I-prepended”

Stanford data set, it may be possible to improve upon the accuracy of taggers on the

corpus of source code artifacts by mimicking natural language structure. Furthermore,

further research could be conducted into studying what types of taggers make what

kinds of mistakes more often, and if it would be possible to combine different taggers

to make even more accurate results than either tool could achieve independently.

For the POS tagger implemented into Code Teacher, the decision was made to use

SWUM. There were several reasons for this decision. SWUM was a high-performing

and competitive tool, compared to other taggers. Additionally, for ease of implemen-

tation, SWUM provided high level method summaries without needing additional

work. This will be implemented into “Code Teacher” as a future contribution.

Bibliography

[1] Surafel Lemma Abebe, Anita Alicante, Anna Corazza, and Paolo Tonella, Sup-

porting concept location through identifier parsing and ontology extraction, J.

Syst. Softw. 86 (2013), no. 11, 2919–2938.

[2] Surafel Lemma Abebe and Paolo Tonella, Natural language parsing of program

element names for concept extraction, ICPC ’10: Proceedings of the 2010 IEEE

18th International Conference on Program Comprehension (Washington, DC,

USA), IEEE Computer Society, 2010, pp. 156–159.

[3] Reem S. AlSuhaibani, Christian D. Newman, Michael L. Collard, and Jonathan I.

Maletic, Heuristic-based part-of-speech tagging of source code identifiers and com-

ments, 2015 IEEE 5th Workshop on Mining Unstructured Data (2015), 1–6.

[4] Reem Saleh AlSuhaibani, Part-of-speech tagging of source code identifiers using

programming language context versus natural language context, Master’s thesis,

Kent State University, 2015.

62

63

[5] Titus Barik, Jim Witschey, Brittany Johnson, and Emerson Murphy-Hill, Com-

piler error notifications revisited: An interaction-first approach for helping de-

velopers more effectively comprehend and resolve error notifications, Companion

Proceedings of the 36th International Conference on Software Engineering (New

York, NY, USA), ICSE Companion 2014, ACM, 2014, pp. 536–539.

[6] Dave Binkley, Matthew Hearn, and Dawn Lawrie, Improving identifier infor-

mativeness using part of speech information, Proceedings of the 8th Working

Conference on Mining Software Repositories (New York, NY, USA), MSR ’11,

ACM, 2011, pp. 203–206.

[7] Ted Briscoe, John Carroll, and Rebecca Watson, The second release of the rasp

system, Proceedings of the COLING/ACL on Interactive Presentation Sessions

(Stroudsburg, PA, USA), COLING-ACL ’06, Association for Computational Lin-

guistics, 2006, pp. 77–80.

[8] Elizabeth Carter and Glenn D. Blank, A tutoring system for debugging: Status

report, J. Comput. Sci. Coll. 28 (2013), no. 3, 46–52.

[9] Jinho D Choi, Joel Tetreault, and Amanda Stent, It depends: Dependency parser

comparison using a web-based evaluation tool.

[10] Martha E Crosby, Jean Scholtz, and Susan Wiedenbeck, The roles beacons play

in comprehension for novice and expert programmers.

[11] Leon Derczynski, Alan Ritter, Sam Clark, and Kalina Bontcheva, Twitter part-

of-speech tagging for all: Overcoming sparse and noisy data.

64

[12] J.-R. Falleri, M. Huchard, M. Lafourcade, C. Nebut, V. Prince, and M. Dao,

Automatic extraction of a wordnet-like identifier network from software, 18th

Int’l Conf. on Program Comprehension, IEEE, jun. 2010, pp. 4 –13.

[13] Hiroyuki Fudaba, Yusuke Oda, Koichi Akabe, Graham Neubig, Hideaki Hata,

Sakriani Sakti, Tomoki Toda, and Satoshi Nakamura, Pseudogen: A tool to au-

tomatically generate pseudo-code from source code, (2015).

[14] Alex Gerdes, Johan Jeuring, and Bastiaan Heeren, An interactive functional pro-

gramming tutor, Proceedings of the 17th ACM Annual Conference on Innovation

and Technology in Computer Science Education (New York, NY, USA), ITiCSE

’12, ACM, 2012, pp. 250–255.

[15] S. Gupta, S. Malik, L. Pollock, and K. Vijay-Shanker, Part-of-speech tagging

of program identifiers for improved text-based software engineering tools, Pro-

gram Comprehension (ICPC), 2013 IEEE 21st International Conference on, 2013,

pp. 3–12.

[16] Sonia Haiduc, Jairo Aponte, and Andrian Marcus, Supporting program compre-

hension with source code summarization, Proceedings of the 32Nd ACM/IEEE

International Conference on Software Engineering - Volume 2 (New York, NY,

USA), ICSE ’10, ACM, 2010, pp. 223–226.

[17] Jiayun Han, Free part-of-speech tagger.

[18] , Building an efficient, scalable, and trainable probability and rule based

part-of-speech tagger of high accuracy, (2009).

65

[19] Emily Hill, A model of software word usage and its use in searching source code,

(2010).

[20] Emily Hill, Lori Pollock, and K. Vijay-Shanker, Automatically capturing source

code context of nl-queries for software maintenance and reuse, Proceedings of the

31st International Conference on Software Engineering (Washington, DC, USA),

ICSE ’09, IEEE Computer Society, 2009, pp. 232–242.

[21] , Improving source code search with natural language phrasal representa-

tions of method signatures, Proceedings of the 2011 26th IEEE/ACM Interna-

tional Conference on Automated Software Engineering (Washington, DC, USA),

ASE ’11, IEEE Computer Society, 2011, pp. 524–527.

[22] Emily Hill, Shivani Rao, and Avinash C. Kak, On the use of stemming for

concern location and bug localization in java, 12th IEEE International Working

Conference on Source Code Analysis and Manipulation (SCAM 2012), IEEE

Computer Society, 2012, pp. 184–193.

[23] https://github.com/ccrama/Slide, Slide.

[24] https://github.com/naman14/Timber, Timber.

[25] https://github.com/nickbutcher/plaid, Plaid.

[26] https://github.com/yahoo/anthelion, Anthelion.

66

[27] Andrew J. Ko and Brad A. Myers, Extracting and answering why and why not

questions about java program output, ACM Trans. Softw. Eng. Methodol. 20

(2010), no. 2, 4:1–4:36.

[28] Ben Liblit, Andrew Begel, and Eve Sweetser, Cognitive perspectives on the role

of naming in computer programs, 2006.

[29] Sana Malik, Parsing java method names for improved software analysis, Master’s

thesis, University of Delaware, 2011.

[30] Paul W. McBurney, Cheng Liu, Collin McMillan, and Tim Weninger, Improving

topic model source code summarization, Proceedings of the 22Nd International

Conference on Program Comprehension (New York, NY, USA), ICPC 2014,

ACM, 2014, pp. 291–294.

[31] Brad A. Myers, David A. Weitzman, Andrew J. Ko, and Duen H. Chau, Answer-

ing why and why not questions in user interfaces, Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems (New York, NY, USA),

CHI ’06, ACM, 2006, pp. 397–406.

[32] Yusuke Oda, Hiroyuki Fudaba, Graham Neubig, Hideaki Hata, Sakriani Sakti,

Tomoki Toda, and Satoshi Nakamura, Learning to generate pseudo-code from

source code using statistical machine translation, (2015).

[33] Paige Rodeghero, Collin McMillan, Paul W. McBurney, Nigel Bosch, and Sidney

D’Mello, Improving automated source code summarization via an eye-tracking

67

study of programmers, Proceedings of the 36th International Conference on Soft-

ware Engineering (New York, NY, USA), ICSE 2014, ACM, 2014, pp. 390–401.

[34] Libin Shen, Statistical ltag parsing, Ph.D. thesis, Citeseer, 2006.

[35] Libin Shen and Aravind K. Joshi, Incremental ltag parsing, Proceedings of the

Conference on Human Language Technology and Empirical Methods in Natural

Language Processing (Stroudsburg, PA, USA), HLT ’05, Association for Com-

putational Linguistics, 2005, pp. 811–818.

[36] David Shepherd, Zachary P. Fry, Emily Hill, Lori Pollock, and K. Vijay-Shanker,

Using natural language program analysis to locate and understand action-oriented

concerns, AOSD ’07: Proceedings of the 6th International Conference on Aspect-

Oriented Software Development, 2007, pp. 212–224.

[37] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori Pollock, and K. Vijay-

Shanker, Towards automatically generating summary comments for java methods,

Proceedings of the IEEE/ACM International Conference on Automated Software

Engineering (2010), 43–52.

[38] Giriprasad Sridhara, Emily Hill, Lori Pollock, and K Vijay-Shanker, Identify-

ing word relations in software: A comparative study of semantic similarity tools,

Program Comprehension, 2008. ICPC 2008. The 16th IEEE International Con-

ference on, IEEE, 2008, pp. 123–132.

[39] Giriprasad Sridhara, Vibha Singhal Sinha, and Senthil Mani, Naturalness of

natural language artifacts in software, Proceedings of the 8th India Software

68

Engineering Conference (New York, NY, USA), ISEC ’15, ACM, 2015, pp. 156–

165.

[40] Yuan Tian and David Lo, A comparative study on the effectiveness of part-of-

speech tagging techniques on bug reports, SANER ERA, 2015, pp. 570–574.

[41] Kristina Toutanova, Dan Klein, Christopher D. Manning, and Yoram Singer,

Feature-rich part-of-speech tagging with a cyclic dependency network, Proceed-

ings of the 2003 Conference of the North American Chapter of the Association for

Computational Linguistics on Human Language Technology - Volume 1 (Strouds-

burg, PA, USA), NAACL ’03, Association for Computational Linguistics, 2003,

pp. 173–180.

[42] Yoshimasa Tsuruoka, Yusuke Miyao, and Jun’ichi Kazama, Learning with looka-

head: Can history-based models rival globally optimized models?, Proceedings

of the Fifteenth Conference on Computational Natural Language Learning

(Stroudsburg, PA, USA), CoNLL ’11, Association for Computational Linguis-

tics, 2011, pp. 238–246.

[43] Yoshimasa Tsuruoka, Yuka Tateishi, Jin-Dong Kim, Tomoko Ohta, John Mc-

Naught, Sophia Ananiadou, and Jun’ichi Tsujii, Developing a robust part-of-

speech tagger for biomedical text, Proceedings of the 10th Panhellenic Conference

on Advances in Informatics (Berlin, Heidelberg), PCI’05, Springer-Verlag, 2005,

pp. 382–392.

69

[44] Elaine Wong, Jinqiu Yang, and Lin Tan, Autocomment: Mining question and

answer sites for automatic comment generation, Automated Software Engineer-

ing (ASE), 2013 IEEE/ACM 28th International Conference on, IEEE, 2013,

pp. 562–567.

[45] Annie T. T. Ying and Martin P. Robillard, Selection and presentation practices

for code example summarization, Proceedings of the 22Nd ACM SIGSOFT In-

ternational Symposium on Foundations of Software Engineering (New York, NY,

USA), FSE 2014, ACM, 2014, pp. 460–471.

[46] B. Zhang, E. Hill, and J. Clause, Automatically generating test templates from

test names (n), Automated Software Engineering (ASE), 2015 30th IEEE/ACM

International Conference on, Nov 2015, pp. 506–511.

[47] Kurtis Zimmerman and Chandan R. Rupakheti, An automated framework for

recommending program elements to novices, 2015 30th IEEE/ACM International

Conference on Automated Software Engineering (2015), 283–288.

Appendix A

CodeTeacher Plug-in Source Code

In this appendix, snapshots are provided of the integration of new functionality into

an Eclipse plugin. These are only the files modified as part of the research, where

functionality was added.

70

71

Figure A.0.1: Code responsible for hooking new SummaryVisitor class into existing
framework (See https://goo.gl/gBy5vk for full code)

72

Figure A.0.2: Sample of code for new SummaryVisitor class, responsible for generating
summaries and parsing AST (See https://goo.gl/WC3je1 for full code)

Appendix B

Gold Sets

See goo.gl/OASpmn and goo.gl/FG26JN for the data from the original and supple-

mental gold sets, including POS tags from each tagger. To evaluate accuracy, we took

each phrase which we tagged manually, and converted it to its equivalent SWUM tag

using table B.0.6. Each other tagset was also converted to their SWUM equivalency.

73

74

Table B.0.1: Original Gold Set with Tags

phrase POS tagged gold set
get button layers get-V button-N layers-NP
create using ctor create-V Using-V3 Ctor-N
get single citation get-V Single-ADJ Citation-N
round round-V
experiment index exists expiriment-N Index-N Exists-V
in progress in-P Progress-N
is aiming at location is-V Aiming-V3 At-P Location-N
is colonist is-V Colonist-N
is consumer is-V Consumer-N
is multiline is-V Multiline-ADJ
is network enabled is-V Network-N Enabled-VP
need swap saves need-V Swap-VM Saves-NP
get instance get-V Instance-N
double array double-N Array-N
get orphans get-V Orphans-NP
ordered map ordered-AVP map-N
get major grid color get-V major-ADJ grid-N color-N
get property pen color get-V property-N pen-N color-N
get compiler env get-V compiler-N env-N
action action-N
cd scan view cd-N scan-N view-N
color swatch color-N swatch-N
confirm check box dialog confirm-V check-N box-N dialog-N
drag tracker drag-V tracker-N
hack hack-N
help dialog help-N dialog-N
move row down action move-V row-N down-ADV action-N
move to front action move-V to-P front-N action-N
nation nation-N
out degree function out-N degree-N function-N
report requirements action report-VM requirements-NP action-N
smb connection smb-N connection-N
start socket start-V socket-N
tool error reporter tool-N error-N reporter-N
torso twist action torso-N twist-VM action-N
warehouse goods panel warehouse-N goods-NP panel-N
sub sub-N
update existing node update-V existing-AV3 node-N
get display get-V display-N
get std dev points visited get-V std-N dev-N points-NP visited-VP
poisson poisson-N
rev rev-V
get exception get-V exception-N
find source find-V source-N
get next file get-V next-ADJ file-N
get new project action get-V new-ADJ project-N action-N
count colors count-V colors-NP
get furniture icon step state get-V furniture-N icon-N step-N state-N
place indian settlement place-V indian-N settlement-N
arg max arg-N max-N
bid bid-V
compare to compare-V to-P
convert from type convert-V from-P type-N
first index of char first-ADJ index-N of-P char-N
get cell status get-V cell-N status-N
get f get-V f-N
get index visible columns get-V index-N visible-ADJ columns-NP
get maximum number of requests get-V maximum-ADJ number-N of-P requests-NP

75

Table B.0.2: Original Gold Set with Tags

phrase POS tagged gold set
get min value get-V min-ADJ value-N
get m price list get-V m-N price-N list-N
get price get-V price-N
get sig data size get-V sig-N data-N size-N
get status get-V status-N
get tab index get-V tab-N index-N
get usable width get-V usable-ADJ width-N
get y get-V y-N
get year get-V year-N
index of outermost node index-N of-P outermost-ADJ node-N
number of collection removals number-N of-P collection-N removals-NP
remove nulls remove-V nulls-NP
reversed preferences max reversed-AVP preferences-NP max-N
get last get-V last-N
create italic style toggle model create-V italic-ADJ style-N toggle-N model-N
get tokens get-V tokens-NP
get side pane plugin extension get-V side-N pane-N plugin-N extension-N
get device stats get-V device-N stats-NP
get munition type get-V munition-N type-N
get L get-V l-N
extract get method extract-V get-VM method-N
get menu get-V menu-N
search search-V
get player base get-V player-N base-N
get relative label point get-V relative-ADJ label-N point-N
get print writer get-V print-VM writer-N
get usable screen bounds get-V usable-ADJ screen-N bounds-NP
get user obj for region get-V user-N obj-N for-P region-N
get user obj for region get-V user-N obj-N for-P region-N
calculate default download location calculate-V default-N download-N location-N
get check select get-V check-N select-N
acuity tip text acuity-N tip-N text-N
get attach line get-V attach-N line-N
get az style client name get-v az-N style-N client-N name-N
get label get-V label-N
get menu title get-V menu-N title-N
get method fqn get-V method-N fqn-N
get prefix get-V prefix-N
get request key get-V request-N key-N
get root table name get-V root-N table-N name-N
get string for sentence get-V string-N for-P sentence-N
insert record name insert-V record-N name-N
literalize literalize-V
show gui tip text show-V gui-N tip-N text-N
show input dialog show-V input-N dialog-N
new table new-ADJ table-N
get step icon get-V step-N icon-N
authenticate authenticate-V
accept training set accept-V training-AV3 set-N
activate components activate-V components-NP
add add-V
add deletion listener add-V deletion-N listener-N
add fragment add-V fragment-N
add handler add-V handler-N
add new lines add-V new-ADJ lines-NP
add option info add-V option-N info-N
add add-V
c label padding c-N label-N padding-N
clear case delegate clear-V case-N delegate-N

76

Table B.0.3: Original Gold Set with Tags

phrase POS tagged gold set
close button action performed close-VM button-N action-N performed-VP
close download bars close-V download-N bars-N
close queue dispatch close-V queue-N dispatch-N
compute third area compute-V third-ADJ area-N
configure configure-V
connect connect-V
data source changed data-N source-N changed-VP
dispose component dispose-V component-N
dispose data source dispose-V data-N source-N
do second pass do-V second-ADJ pass-N
duration colors set enabled duration-N colors-N set-V enabled-VP
end schema definition end-V schema-N definition-N
engine init engine-N init-N
engine update engine-N update-V
error list pane error-N list-N pane-N
find closest contacts find-V closest-ADJ contacts-NP
fire activity started fire-V activity-N started-VP
fire event fire-V event-N
game board new game-N board-N new-ADJ
improve solutions improve-V solutions-NP
init root logger init-V root-N logger-N
insert insert-V
j menu item tile anondine action performed j-N menu-N item-N tile-N anodine-N Action-N Performed-VP
j unit test listener junit-N test-N listener-N
log j unit start log-V junit-N start-N
log no new line log-V no-DT new-ADJ line-N
make menu item make-V menu-N item-N
make smb key make-V smb-N Key-N
new task color option new-ADJ task-N color-N option-N
parse char array parse-V char-N array-N
parse filter def parse-V filter-N def-N
popup help popup-N help-N
prepare for phase prepare-V for-P phase-N
process root return process-V root-N return-N
process word process-V word-N
refresh activity refresh-V activity-N
remove property change listener remove-V property-N change-N listener-N
remove remove-V
remove walls remove-V walls-NP
render render-V
replace att replace-V att-N
report progress report-V progress-N
request write select request-V write-VM select-N
restore item status restore-V item-N status-N
safe j unit static inner class safe-ADJ j-N unit-N static-ADJ inner-ADJ class-N
secure colony secure-V colony-N
send have send-V have-AV
set basic y pos set-V basic-ADJ y-N pos-N
set bookmarks set-V bookmarks-NP
set buddies set-V buddies-NP
set collapsed paths set-V collapsed-AVP paths-NP
set default batch fetch size set-V default-ADJ batch-N fetch-VM size-N
set default font set-V default-ADJ Font-N
set deployment complete set-V deployment-N complete-ADJ

77

Table B.0.4: Original Gold Set with Tags

phrase POS tagged gold set
set file set-V file-N
set method to call set-V method-N to-INF call-V
set num folders mi option set-V num-N folders-NP mi-N option-N
set pie dataset set-V pie-N dataset-N
set q name set-V q-N name-N
set resource color set-V resource-N color-N
set shape set-V shape-N
set split point set-V split-N point-N
set spotlight state set-V spotlight-N state-N
set stops set-V stops-NP
set style set-V style-N
set tc mapping set-V tc-N mapping-N
set transform set-V transform-N
set x set-V x-N
test clear current test-V clear-V current-N
test indent common cases test-V indent-V common-ADJ cases-NP
tree nodes changed tree-N nodes-NP changed-VP
update font update-V font-N
update preview update-V preview-N
update update-V
update source image update-V source-N image-N
visit ancestors visit-V ancestors-NP
create cllrm15 create-V CLLRM15-N
create isherppc create-V ISHERPPC-N
create word create-V word-N

78

Table B.0.5: Supplemental Gold Set with Tags

phrase POS tagged gold set
populate populate-V
populate Tree populate-V tree-N
populate Tree By Style populate-V tree-N by-P style-N
run run-V
equals equals-V
get Name 2 get-V name-N 2-#
get Style get-V style-N
compare compare-V
get Compare String get-v compare-VM string-n
Track Comparator Track-N Comparator-N
get Comparator get-V comparator-N
Track Manager track-N manager-N
set Comparator set-V Comparator-N
I Report Compiler I-N Report-N Compiler-N
run run-V
start start-V
get Translated Compile Directory get-V Translated-VM Compile-VM Directory-N
is Using Current Files Directory For Compiles is-V Using-V Current-ADJ Files-N Directory-N For-P Compiles-V3
j Button Compiler Action Performed j-ADJ Button-N Compiler-N Action-N Performed-VP
j Button Run 1 Action Performed j-ADJ Button-N Run-V 1-# Action-N Performed-VP
drop New Text Field drop-V New-ADJ Text-N Field-N
drop drop-V
Text Field Report Element Text-N Field-N Report-N Element-N
Text Report Element Text-N Report-N Element-N
Search Result Search-N Result-N
to String Search to-P String-N Search-N
search search-V
get Resu get-V Resu-N
reload reload-V
Configure Web Connection Configure-V Web-N Connection-N
start start-V
Movie Item Movie-N Item-N
find Shows find-V Shows-NP
Compiler Environs Compiler-N Environs-N
is Reserved Keyword As Identifier is-V Reserved-ADJ Keyword-N as-P Identifier-N
set Reserved Keyword As Identifier set-V Reserved-ADJ Keyword-N As-P Identifier-N
call call-V
enter enter-V
exit exit-V
has Feature has-V Feature-N
decompile decompile-V

79

Table B.0.6: Conversion Table for Gold to SWUM tagsets

Tag SWUM Equivalent
Adjectival Verb Past tense (AVP) ADJ
Conjunction (CJ) CJ
Digit (#) D
Determiner (DT) DT
Noun (N) N
Adjectival Noun (AN) N
Pronoun (PR) N
Adjective (ADJ) NM
Plural Noun (NP) NP
Adjectival Plural Noun (ANP) NP
Preposition (P) P
Past tense verb (VP) PP
Unknown (UN) UN
Abreviation (ABV) UN
Verb (V) V
Adjectival Verb (AV) V
Infinitive (to) V
Third Person Verb (V3) V3
Adjectival third person verb
(AV3)

V3

Adverb (ADV) VM

