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Abstract

Two versions of the connected moments expansion, those commonly known as the CMX-

HW and the CMX-LT, as well as Lanczos tri-diagonalization were computed up to 7th order

for the ground state and first excited state of the anharmonic oscillator with V = x2 + λx4.

There is no exact solution for this potential, and so it can only be approximated numerically.

Trial wave functions for each method were pre-conditioned by using variational analysis.

The results were compared to previously published figures, and the computation times to

each other. Lanczos tri-diagonalization was found to be the most accurate and quickest

method, with CMX-LT matching its accuracy but being far slower, and CMX-HW being

slightly less accurate and taking similar time to CMX-LT. The first excited state for both

connected moments expansions was more accurate and quicker than the ground state, how-

ever the first excited state in Lanczos tri-diagonalization had extremely poor accuracy. The

preconditioning was found to improve the accuracy of the calculation by more than two

orders of magnitude. Additionally, a brief study of trial wave function kurtoses was con-

ducted, which found no systematic effect of kurtosis on the accuracy of the approximation.

All calculations were carried out in Mathematica 9.0 run on a laptop computer.
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Chapter 1

Introduction

One of the greatest successes in quantum mechanics is Schrödinger’s time-dependent

wave equation:[1]

i~
∂

∂t
Ψ(r, t) = ĤΨ(r, t). (1.1)

In this equation Ĥ is the Hamiltonian operator, ~ is Planck’s constant divided by 2π, i is the

imaginary number
√
−1, and Ψ is the wave function of the particle. The absolute square of

the wave function, |Ψ|2 = Ψ∗Ψ, is the probability density of finding the particle at partic-

ular spatial and temporal coordinates, and is the best possible description of any quantum

mechanical object. In principle, this equation can give the wave function of any particle

under any circumstances and predict it for all time. The Hamiltonian in one dimension is

given by

Ĥ = − ~2

2m

∂2

∂x2
+ V (x). (1.2)

Where V (x) is the potential function for this particle. Typically Ψ is taken to be separable

into a spatial part and a temporal part:

Ψ(x, t) = ψ(x)T (t). (1.3)

1
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Substituting both of these into Eq. 1.1 and moving the time functions to the left hand side

and the spatial functions to the right gives:

i~
T (t)

∂

∂t
T (t) = − ~2

2mψ(x)

∂2

∂x2
ψ(x) + V (x). (1.4)

Since the left hand side of this equation depends only on the time and the right hand

side only on the position they must both be equal to some constant, which we call E. The

left hand side can then be readily solved without further information, giving:

T (t) = e−iEt/~. (1.5)

The solution to the right hand side depends on V (x), and this equation is so important

that it has its own name, the time independent Schrödinger equation, and is even sometimes

referred to simply as the Schrödinger equation,

− ~2

2m

d2

dx2
ψ(x) + V (x)ψ(x) = Eψ(x). (1.6)

The solutions of this equation will then be the stationary states of the system, and E will

be the energy of the state.

These equations can give the exact wave function Ψ of any particle under any circum-

stances. However, they are differential equations, and it is quite common for differential

equations to be difficult or even impossible to solve exactly by known methods. In the case

of the Schrodinger Equation, it is possible to find analytic solutions in just a few simple

cases: the ”particle in a box” problem, with a potential which is zero in some range and

infinite elsewhere; the harmonic oscillator, with a potential of the form Ax2; and the Hy-

drogen atom, which is solved in spherical coordinates with a potential of the form −A/r.

For all other cases that proves to be impossible. Instead, the best we can do is to create a
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numerical approximation to what the solutions of that wave function should be.

These approximations are typically very difficult to find to high accuracy. One com-

monly used scheme is that arising out of perturbation theory, which treats the system as

similar to one of those simple ones which can be solved but with a small additional term in

the potential, the perturbation,

H = H0 +H ′. (1.7)

To first order, the energy approximation will then be the energy of the solved system in a

particular state plus the expectation value of the perturbation term in that state, which is

equivalent to the expectation value of the full perturbed Hamiltonian in that state[1]

E0
n + E1

n =

∫ ∞
−∞

ψ0∗
n H

0ψ0
ndx+

∫ ∞
−∞

ψ0∗
n H

′ψ0
ndx. (1.8)

This is also the first order of the methods used in this thesis, which will be seen to be not

very accurate.

The second order correction is not nearly so simple. It is given by,

E2
n =

∑
m 6=n

(∫∞
−∞ ψ

0∗
mH

′ψ0
n

)2
E0

n − E0
m

(1.9)

where ψ0
n is the nth energy state of the solved system, E0

n is the corresponding energy, and

H ′ is the perturbation.[1] The problem with this method should now be obvious: it requires

the computation of a complicated infinite sum to provide even the second order correction,

so that unless we are very lucky and have a perturbation which gives a simple sum it may

be impossible to calculate that term exactly. The higher order terms are even worse, and so,

unless the perturbation is very small so that the first order approximation is very accurate,

this method tends to have limited usefulness.
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Fortunately, this is not the only option. Many other approximation techniques can be

devised. Martin, Castro, and Paz used one of these, which they described as a multi-point

quasi-rational approximation, to produce a full 11 decimal places of accuracy for the system

they were looking at.[2] Here again, however, we run into calculation problems. Merely

defining their method requires dozens of equations, and some of them include infinite sums,

although much simpler ones. The worst part, though, is the fact that, in setting up the

method, they had to calculate approximate solutions to a series of differential equations

by using the shooting method. This method approximates the solution to a differential

equation whose value at some point is known by solving the equation with a series of initial

values and then using the solution which provides the closest match to the known value.

Of course, frequently the initial value problems can only be approximated, and so just this

set up portion will require a great deal of computational effort, before even reaching the

primary calculation. Further, the entire method was derived assuming the potential to have

the form xa + λxb, where a, b, and λ are constants, and so cannot be used for any other

case.

There are alternatives. Techniques which, while less accurate, are much shorter and

easier to calculate. “Less accurate” and “easier to calculate” are disturbingly qualitative

terms, and so the primary goal of this project was to examine three of those techniques and

determine how accurate they are to those longer methods, and how much time is required

to compute their results with Mathematica 9 run on a personal computer.

The techniques selected for inclusion were two variants on what is known as the Con-

nected Moments Expansion, which are referred to throughout the literature as the CMX-

HW and the CMX-LT,[3] along with Lanczos Tri-Diagonalization.[4] All three methods

can also readily generate excited state energies, and so the first two excited states were also

calculated.

Additionally, a relatively novel refinement was added to all three. Each uses a trial wave
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function and converges to the true energy of the system as the order of the approximation

increases. That allows for easy hybridization of these methods with the variational analysis

scheme. This is a well established method which takes a trial wave function, modifies it

with a parameter, and then sets the parameter so that the expectation value of the Hamil-

tonian is a minimum. This is then a better approximation to the true wave function and

energy than the original trial wave function. For this project, that improved wave function

was then fed into the methods listed above, improving their accuracy.



Chapter 2

Theory

In this chapter we will describe each method used in detail, along with some of the

theory and history underlying them.

2.1 Dirac Notation

Before we begin, it will be convenient to introduce Dirac’s bra-ket notation. To motivate

it, note that the expectation value of any property in quantum mechanics, 〈O〉, is given by

〈O〉 =

∫ ∞
−∞

ψ∗(x)Ôψ(x)dx. (2.1)

As is always the case in quantum mechanics, ψ∗ is the complex conjugate of ψ, and Ô is

the operator associated with the quantity O. We have already seen one such operator, the

Hamiltonian given by Eq. 1.2, which is associated with the energy of the system. There

is such an operator for position, momentum, spin in any direction, and any other desired

quantity. Thus, equations of the same form as Eq. 2.1 are extremely common, and so it is

useful to have a shorthand for them.

6



7

In bra-ket notation, that equation can be written as

〈O〉 = 〈ψ|Ô|ψ〉. (2.2)

The bra 〈ψ| indicates that ψ∗ should be used, the ket |ψ〉 that ψ should be used, Ô|ψ〉 that Ô

should act on ψ, and the whole combination that an integral over all space should be taken.

This notation has a further advantage beyond just being short, however.

We have already discussed the Hamiltonian H|ψ〉 = Ĥ(ψ). What we have not men-

tioned is that terms such as Ĥ(Ĥ(ψ)) will become essential to this project. In Dirac nota-

tion we can write this conveniently asH2|ψ〉, and we can write similarly that Ĥ(Ĥ(Ĥ(ψ))) =

H3|ψ〉, and, crucially, the general form Hn|ψ〉. The expectation value of this general form,

〈ψ|Hn|ψ〉, and variations on it, will appear in all three of the methods included, and is

referred to as a Hamiltonian moment.

2.2 The t-expansion

The precursor to the Connected Moments Expansions we will use was the t-expansion,

which was first derived in a 1984 paper by Horn and Weinstein.[5] This is intended for

potentials which can’t be solved analytically, and uses the true Hamiltonian together with

a guess at the wave function, which must not be orthogonal to the true ground state wave

function. They began with the statement that the following equation will converge to the

true ground state energy as t approaches infinity

E(t) =
〈ψ0|Ĥe−tĤ |ψ0〉
〈ψ0|e−tĤ |ψ0〉

. (2.3)
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Here ψ0 is the guess wave function. From this they expanded the exponentials in their

Taylor series

ex = 1 + x+
x2

2!
+
x3

3!
· · · =

∞∑
n=0

xn

n!
. (2.4)

By matching powers of t in this expansion they derived the infinite sum

E(t) =
∞∑
n=0

(−t)n

n!
In+1 (2.5)

where

In = 〈Hn〉 −
n−2∑
k=0

n− 1

k

Ik+1〈Hn−k−1〉 (2.6)

and 〈Hn〉 = 〈ψ|Hn|ψ〉. (2.7)

This uses the choose function given by

n
p

 =
n!

p!(n− p)!
. (2.8)

Explicitly, the first three connected moments are,

I1 = 〈H〉 − 0, (2.9)

I2 = 〈H2〉 − 〈H〉〈H〉, and (2.10)

I3 = 〈H3〉 − 〈H〉〈H2〉 − 3(〈H2〉 − 〈H〉2)〈H〉. (2.11)

From these equations they were able to construct approximations to the true energy of

two complex systems, and found that these approximations were significantly improved

over previously published approximations.
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2.3 Connected-Moments Expansion

In 1987 Cioslowski created a new approximation based on Horn and Weinstein’s.[6]

His approximation, like theirs, relies on the connected moments given by Eq. 2.6. He

expanded Eq. 2.5 as a sum of decaying exponentials,

∞∑
n=0

(−t)n

n!
In+1 =

∞∑
j=0

Aje
−bjt, (2.12)

and was able to match coefficients to eliminate t and give an infinite sum of just the In’s,

E0 = I1 −
I22
I3
−
(

1

I3

)
(I4I2 − I23 )2

I5I3 − I24
− . . . . (2.13)

Deriving further terms in this expansion is no easier than it appears, and so we will rely

on the general form used by Witte for the series up to the nth term,[3]

S1,n = In (2.14)

Sm,n = Sm−1,nSm−1,n+2 − S2
m−1,n+1 (2.15)

E0 = I1 −
n∑

m=1

S2
m,2∏m

k=1 Sk,3

(2.16)

Remarkably, this is not the only approximation based on the connected moments which

is valid. Witte mentions four of these: the CMX-HW, which we have been discussing; the

CMX-SD; the CMX-LT; and the AMX.[3] Mancini et al. published a further variation in

2005 which they named the Generalized Moments Expansion, or GMX, which uses a pair

of parameters in the S functions, Eqs. 2.14 and 2.15, to include the CMX-HW, AMX, and

many other unnamed expansions.[7] They did, however, find that using low values of those

parameters tended to produce better results, with the CMX-HW, followed by the AMX,

being the two lowest valued expansions.
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For this thesis we will use the CMX-HW and the CMX-LT expansions. The CMX-LT

is not included within the GMX, and has a very different appearance: it is based on matrix

multiplication, with the size of the matrices being one less than the order of the expansion.

Two of the earliest derivations of this expansion were published by Knowles.[8] It is given

by the following simple equation[3]

E0 = I1 −
(
I2 I3 . . . In

)


I3 I4 . . . In+1

I4 I5 . . . In+2

...
... . . . ...

In+1 In+2 . . . I2n−1



−1

I2

I3
...

In


. (2.17)

Connected moments expansions have one further advantage: they can be readily used to

calculate the energies of excited states as well as the ground state. The connected moments

require a trial wave function which is not orthogonal to the true wave function. Should the

trial wave function be more closely related to the true wave function of the first excited state

than of the ground state the expansion will converge to the first excited state. The same is

true for any excited state. This stands in stark contrast to many other methods which either

cannot produce the excited states at all or else require a great deal of work to do so.

2.4 Lanczos Tri-Diagonalization

The third approximation technique used here is Lanczos tri-diagonalization. This method

is commonly used to find approximations to the eigenvalues of very large matrices, but is

equally applicable to eigenvalues of differential equations. Using the initial matrix or equa-

tion, together with a trial vector or function, it generates a simplified matrix with non-zero

elements only along the main diagonal and adjacent to it. Because it has these three diago-
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nal lines of non-zero elements, this is referred to as a tri-diagonal matrix. The eigenvalues

of this new matrix will be approximately equal to the eigenvalues of the original matrix or

equation, and will be much easier to calculate since the zeroes eliminate so many terms

of the calculation. It should be noted that this will produce multiple eigenvalues simulta-

neously, specifically, the first n eigenvalues when the final matrix is n × n, and so when

using this process to find the energy of a quantum mechanical system it will automatically

provide approximations to the n lowest energy states.
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The algorithm is as follows[9]:

Let ψ be a starting vector and then define the following:

v1 = ψ

v0 = 0

β1 = 0

with,

wj = Avj

αj = wj · vj

uj = wj − αjvj − βjvj−1

βj+1 = ||vj||

vj+1 = uj/βj+1

and from these form the matrix

α1 β2 0 · · · 0

β2 α2 β3
...

0 β3 α3
. . . 0

... . . . . . . βn

0 · · · 0 βn αn


. (2.18)

To use this to find energy, we make the usual identifications of A as the Hamiltonian oper-

ator, ψ as the trial wave function, Hvj as H(vj), wj · vj as 〈wj|vj〉, and ||vj|| as
√
〈vj|vj〉.

With these identifications, the algorithm functions identically for matrices as it does for

operators.



Chapter 3

Variational Analysis

This chapter describes the primary innovation made in this work.

As an independent technique, variational analysis takes a trial wave function ψ0(x),

and modifies it by inserting a parameter to give ψ(x, a). Then the parameter is set so as to

minimize the expectation value of the energy in this state by expressing it as a function of

the parameter, taking the derivative of the resulting function with respect to the parameter,

and finding the critical points, that is, finding a such that

d

da
〈ψ(x, a)|Ĥ|ψ(x, a)〉 = 0. (3.1)

The result will then be a much better estimate of the true energy and wave function.[1]

This alone provides a simple way to obtain decent estimates of the energy. However, it

could also be used to precondition the trial wave function for any other method which relies

on one. That is a simple matter of performing the variational analysis, and then taking the

improved wave function and inputting it as the trial wave function for the other method.

Since all three methods we will use begin with a trial wave function, they can all be im-

proved with this preconditioning. This thesis is the first work to apply that preconditioning

13
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to a Connected Moments Expansion for the anharmonic oscillator to obtain the ground state

and first excited state energies.

Table 3.1 shows the results of this procedure for CMX-HW. Using CMX-HW alone,

we see that the percent difference ranges between 135% and 49%, but the preconditioning

reduces the difference to between 1.4% and 0.05%, an improvement of almost two orders

of magnitude on the high end and almost three on the low end. This is far greater than the

effects of the simple method of increasing accuracy for these expansions: simply increasing

the order of the expansion, as we see that increasing the order from 1 to 7 provides a less

than one order of magnitude improvement without the preconditioning, and less than two

orders of magnitude with preconditioning. Naturally, combining the two produces the best

results.

Table 3.1: Ground state energies and percent differences for the anharmonic oscillator using
the Gaussian Eq 4.2 in CMX-HW with and without variational analysis.
λ Martin, Castro, Order with V.A. Without V.A.

and Paz Energy % difference Energy % difference
5 2.0183406575 1 2.04704 1.422 4.75 135.342

2 2.02303 0.232 3.58495 77.619
3 2.02009 0.087 3.16409 56.767
4 2.01956 0.060 3.02836 50.042
5 2.01944 0.054 3.0013 48.701
6 2.01942 0.053 2.99793 48.534
7 2.01942 0.053 2.99791 48.533

Table 3.2 is the same comparison but with CMX-LT this time. The high end improve-

ment is again from 135% to 1.4%, but the low end improvement is even greater than it was

before, from 30% to 0.02%, which is more than three orders of magnitude.

Table 3.3 is this comparison again but now for Lanczos Tri-Diagonalization. We see

throughout that the results are identical to those from CMX-LT, only with the first order

removed. Thus the improvement is the same massive two to three orders of magnitude for

conducting this simple procedure.
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Table 3.2: Ground state energies and percent differences for the anharmonic oscillator using
the Gaussian Eq. 4.2 in CMX-LT with and without variational analysis.
λ Martin, Castro, Order with V.A. Without V.A.

and Paz Energy % difference Energy % difference
5 2.0183406575 1 2.04704 1.422 4.75 135.342

2 2.02303 0.232 3.58495 77.619
3 2.02009 0.087 3.16409 56.767
4 2.01934 0.050 2.94032 45.680
5 2.01904 0.035 2.79908 38.682
6 2.01888 0.027 2.70075 33.810
7 2.01876 0.021 2.62777 30.195

Table 3.3: Ground state energies and percent differences for the anharmonic oscillator using
the Gaussian Eq. 4.2 in Lanczos Tri-Diagonalization with and without variational analysis.
λ Martin, Castro, Order with V.A. Without V.A.

and Paz Energy % difference Energy % difference
5 2.0183406575 2 2.02305 0.233 3.59531 78.132

3 2.02009 0.087 3.17653 57.383
4 2.01934 0.050 2.95339 46.328
5 2.01904 0.035 2.81226 39.335
6 2.01888 0.027 2.71382 34.458
7 2.01876 0.021 2.64064 30.832

Since this preconditioning is so highly effective it will be used in all other calculations

in this thesis.



Chapter 4

Applications

All calculations were performed in Mathematica 9.0 running on a 2014 Dell Alienware

14 laptop with 8 GB of DDR3 RAM and a 2.5 GHz dual core Intel Core i5-4200M pro-

cessor. In all cases it was found that Mathematica would crash if asked to perform very

long calculations, roughly those in excess of 2.5 hours. All calculation times given were

obtained using Mathematica’s internal Timing function and averaged over three runs.

4.1 The Code

The basic code used for all calculations performed here is listed in the Appendices for

quick copying and use. This section will go over it line by line to clarify its use.

4.1.1 Connected Moments Expansion Code

We begin with the code in Appendix A. The functions and potentials throughout are

those for a Gaussian wave function and the Anharmonic Oscillator. The first two lines of

this code simply check the normalization of the proposed wave function.

\ [ P s i ] 1 [ x , a ] := ( ( a / Pi ) ˆ 0 . 2 5 ) Exp[−( a ∗ ( x ˆ 2 ) ) / 2 ]

16
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I n t e g r a t e [ \ [ P s i ] 1 [ x , a ]∗\ [ P s i ] 1 [ x , a ] ,

{x , −\[ I n f i n i t y ] , \ [ I n f i n i t y ] } ]

The function, \[Psi]1, is assumed to be real and one dimensional and to include a parameter

a. Running these two lines should output 1, indicating that the wave function is properly

normalized, if not, simply alter the front factor of the function until it does. The Gaussian

function included here has been properly normalized, and is ready to be used in the next

section.

This section begins the selection of the parameter value. To do so it first defines the

wave function \[Psi]0, which should be the final \[Psi]1 as it is here, and the potential V0.

\ [ P s i ] 0 [ x , a ] := ( ( a / Pi ) ˆ 0 . 2 5 ) Exp[−( a ∗ ( x ˆ 2 ) ) / 2 ]

V0 [ x ] := x ˆ2 + ( b )∗ x ˆ4

EE [ a ] :=

I n t e g r a t e [ \ [ P s i ] 0 [ x , a ]∗ (−1) L a p l a c i a n [ \ [ P s i ] 0 [ x , a ] , {x } ] ,

{x , −\[ I n f i n i t y ] , \ [ I n f i n i t y ] } ]

FF [ a ] :=

I n t e g r a t e [ \ [ P s i ] 0 [ x , a ]∗V0 [ x ]∗\ [ P s i ] 0 [ x , a ] ,

{x , −\[ I n f i n i t y ] , \ [ I n f i n i t y ] } ]

EE [ a ] + FF [ a ]

EE and FF are the kinetic and potential energy halves of the Hamiltonian, separated to en-

sure that they will calculate readily to a final expression in a, the parameter, and b, which is

used for the lambda of the anharmonic oscillator. Note that the constants in the Hamiltonian

have been dropped here in order to match the Martin, Castro, and Paz paper.[2]

For the next line input the result of the previous section into the code and it will take

the derivative of it.

D[0 .49999999999999994 ‘ a ˆ 1 . ‘ + ( 0 . 5 ‘ a + 0 . 7 5 ‘ b ) / a ˆ 2 . ‘ , a ]
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The next section solves for the critical points of the Hamiltonian, with the final a values

given as functions of b. Either input the result of the previous section directly and set it

equal to 0, or else simplify it somewhat first, as has been done here to give a simple cubic

polynomial.

So lve [ a ˆ3 − a − 3 b == 0 , a ]

Typically that will generate only one real and positive result, and so that result should

be used in the next section.

aa [ b ] := ( 2 / 3 ) ˆ ( 1 / 3 ) /

(27 b + Sqrt [ 3 ] Sqrt [−4 + 243 b ˆ 2 ] ) ˆ ( 1 / 3 )

+ (27 b + Sqrt [ 3 ] Sqrt [−4 + 243 b ˆ 2 ] ) ˆ ( 1 / 3 ) /

( 2 ˆ ( 1 / 3 ) 3 ˆ ( 2 / 3 ) )

aa will then serve as the parameter function for the rest of the code.

The next line simply sets bb, the lambda value currently of interest, which is entered

after the equal sign.

bb = ;

And now we embark on the Connected Moments Expansions proper. The first three

lines will be quite familiar: \[Psi] is the same one generated in the first section, V has not

changed, and H is simply the Hamiltonian with constants set to 1, much like EE and FF.

\ [ P s i ] [ x ] := ( ( aa [ bb ] / Pi ) ˆ ( 0 . 2 5 ) ) Exp[−( aa [ bb ] ∗ ( x ˆ 2 ) ) / 2 ]

V[ x ] := x ˆ2 + ( bb )∗ x ˆ4

H[ f ] := S i m p l i f y [ ( ( −1) L a p l a c i a n [ f , {x } ] + V[ x ] f ) ]

AA[ n ] :=

I n t e g r a t e [ \ [ P s i ] [ x ]∗

Nest [H, \ [ P s i ] [ x ] , n ] , {x , −\[ I n f i n i t y ] , \ [ I n f i n i t y ] } ]
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J [ 1 ] := J [ 1 ] =

I n t e g r a t e [ \ [ P s i ] [ x ]∗H[ \ [ P s i ] [ x ] ] ,

{x , −\[ I n f i n i t y ] , \ [ I n f i n i t y ] } ]

J [ n ] := J [ n ] =

AA[ n ] − Sum [ ( Binomial [ n − 1 , k ] ) ∗ ( J [ k + 1 ] )∗AA[ n − k − 1 ] ,

{k , 0 , n − 2} ]

S [ 1 , n ] := S [ 1 , n ] = J [ n ]

S [ m , n ] :=

S [m, n ] = ( S [m − 1 , n ]∗S [m − 1 , n + 2 ] )

− ( S [m − 1 , n + 1 ] ) ˆ 2

HW[ n ] :=

J [ 1 ] − Sum [ ( ( S [m, 2 ] ) ˆ 2 ) / ( Product [ ( S [ k , 3 ] ) , {k , 1 , m} ] ) ,

{m, 1 , n − 1} ]

LT [ n ] :=

J [ 1 ] − Det [ ( MatrixForm [ Table [ J [ j ] , { i , 1} , { j , 2 , n } ] ] ) .

( I n v e r s e [ MatrixForm [

Table [ J [1 + i + j ] , { i , n − 1} , { j , n − 1 } ] ] ] ) .

( MatrixForm [ Table [ J [ i ] , { i , 2 , n } , { j , 1 } ] ] ) ]

AA[n ], is new. This gives the Hamiltonian moments 〈ψ|Hn|ψ〉. J[1] is the expectation

value of the Hamiltonian, which is also I1. J[n ] is In, Eq. 2.6, using AA[n ] to generate

all needed moments. Note that here we have used J[n ]:=J[n]=. . . . This is not redundant,

but rather informs Mathematica that it should store numerical values for this function in

memory rather than recalculating them. Since this reduces calculation time by as much as

half it will be used heavily. Using Simplify in the Hamiltonian is similarly unnecessary,

but also greatly speeds lengthy calculations, although it does slow down short ones. S[1,n ]



20

and S[m ,n ] are exactly Eqs. 2.14 and 2.15, and HW[n ] is the final CMX-HW expression,

Eq. 2.16, to nth order. Similarly, LT[n ] is Eq. 2.17 to nth order.

Extracting a final result from the code, once it has all been run, is then a simple matter

of entering the desired approximation and order and then running it, for example,

LT [ 4 ]

Alternatively, if the calculation time is desired, then that command should be placed inside

the timing function, for example,

Timing [HW[ 3 ] ]

4.1.2 Lanczos Tri-Diagonalization Code

The code for the Lanczos Tri-Diagonalization method is in Appendix B. It is intended

to be added to the end of the Appendix I code, and so it does not separately define the

Hamiltonian or the parameter. The code for this approximation is then

\ [ Beta ] [ 1 ] = 0 ;

v [ 0 ] = 0 ;

v [ 1 ] := ( ( aa [ bb ] / Pi ) ˆ ( 0 . 2 5 ) ) Exp[−( aa [ bb ] ∗ ( x ˆ 2 ) ) / 2 ]

w[ j ] := H[ v [ j ] ]

u [ j ] := w[ j ] − \ [ Alpha ] [ j ]∗ v [ j ] − \ [ Beta ] [ j ]∗ v [ j − 1]

\ [ Beta ] [ j ] := \ [ Beta ] [ j ] = ( I n t e g r a t e [

u [ j − 1]∗ u [ j − 1 ] , {x , −\[ I n f i n i t y ] , \ [ I n f i n i t y ] } ] ) ˆ 0 . 5

\ [ Alpha ] [ j ] := \ [ Alpha ] [ j ] =

( I n t e g r a t e [ w[ j ]∗ v [ j ] , {x , −\[ I n f i n i t y ] , \ [ I n f i n i t y ] } ] )

v [ j ] := u [ j − 1 ] / \ [ Beta ] [ j ]
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This code matches Eqs. 2.18 almost exactly. Even the names of the functions are the

same. The only differences arise from the need to make the integrations explicit, the fact

that Mathematica designates functions as f [x] rather than fx, and the desire to make the

program store certain results in memory, but those are little more than typesetting. The

tri-diagonal n× n matrix is then given by

T [ n ] := MatrixForm [

Table [ P i e c e w i s e [{{\ [ Alpha ] [ i ] , j − i == 0} ,

{\ [ Beta ] [ i ] , i − j == 1} , {\ [ Beta ] [ j ] , j − i == 1}} , 0 ] ,

{ i , n } , { j , n } ] ]

and the energies will be given by, for example

Eigenva lues [ T [ 4 ] ]

This will produce a list of n eigenvalues, of which the smallest will be the ground state

energy, the next smallest the first excited state energy, and so on. The computation can be

timed exactly as above,

Timing [ Eigenva lues [ T [ 2 ] ] ]

4.2 Anharmonic Oscillator

The primary problem discussed here is the anharmonic oscillator, for which the poten-

tial is

V (x) = x2 + λx4 (4.1)

where λ is some constant. Martin, Castro, and Paz [2] calculated energies for the ground

state and the first two excited states in this problem, with λ equalling 0.5, 1, 2, 5, and 20, to

11 decimal places, and so all percent difference comparisons are to their values.



22

Martin et al. selected this potential primarily because it serves as a straightforward

test case. That reasoning certainly applies equally well to this project, with the addition

that there are now highly accurate numerical values for the energies. However, this po-

tential also has physical significance. For example, the Higgs potential, related to the fa-

mous Higgs boson, has essentially this form, albeit with additional constants and a different

variable.[10]

Since the anharmonic oscillator is similar to the harmonic oscillator, the trial wave

functions were the exact solutions to the harmonic oscillator problem for the 3 lowest states,

which, normalized and including the parameter, are[11]

ψ0(x) =

(
a0(λ)

π

)0.25

e−
a0(λ)x

2

2 , (4.2)

ψ1(x) =

√
2(a1(λ))3√

π
xe−

a1(λ)x
2

2 , and (4.3)

ψ2(x) = (4πa2(λ))0.25(1− 2a2(λ)x2)e−
a2(λ)x

2

2 . (4.4)

with the an(λ) functions being given by the minimization procedure as the solutions of,

respectively,

a30 − a0 − 3λ = 0, (4.5)

1.5a31 − 1.5a17.5λ = 0, and (4.6)

2.5a32 − 2.5a2 − 19.5λ = 0. (4.7)
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Figure 4.1: Graph of the anharmonic potential with the ground state and first two excited
state wave functions for the harmonic oscillator. λ = 5

which are surprisingly simple equations. These wave functions can be seen overlaid on the

potential in Figure 4.1

4.2.1 Kurtosis Effects

This study also checked whether the kurtosis of the trial wave function has any system-

atic effect on the rate of convergence of the series. Kurtosis is a measure of how strongly

peaked a function is. One formula giving it a numerical value, sometimes referred to as the

excess kurtosis, is [12]

K(f(x)) =
µ4

µ2
2

− 3 =

∫∞
−∞

(
x−

∫∞
−∞ xf(x)dx

)4
f(x)dx(∫∞

−∞

(
x−

∫∞
−∞ xf(x)dx

)2
f(x)dx

)2 − 3 (4.8)

Since the first wave function was a Gaussian, one function with higher kurtosis and one

with lower kurtosis were selected. For higher kurtosis the hyperbolic secant function
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Figure 4.2: Graph of the anharmonic potential with the ground state harmonic oscillator,
hyperbolic secant, and cosine wave functions. λ = 5

ψ0(x) =

√
a(λ)

2
sech(a(λ)x) (4.9)

was selected, while a single lobe of a cosine function was selected for the lower kurtosis

function, given by

ψ0(x) =
1√

3a(λ)

(
1 + cos

(
π

a(λ)
x

))
(4.10)

which required the integration limits throughout to be changed to −a(λ) and a(λ), instead

of ±∞. The simplicity of these limits was the reason for the choice to place the parameter

in the denominator for the cosine-based wave function when it is in the numerator for all

others. These can be seen in Figure 4.2 The a(λ) functions of course had to be recalculated

for each function.
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Results

5.1 Anharmonic Oscillator

5.1.1 Connected Moments Expansion

For the ground state accuracy ranged from 1.75% to 0.0021% difference from the Mar-

tin, Castro, and Paz results. There is minimal difference in calculation time between the

CMX-HW and CMX-LT methods, however the CMX-LT is more accurate. A full listing

of the energy results can be found in Tables C.1 and 5.1. To further prove the stability of

the method third order CMX-HW was run for λ’s ranging from 0.1 to 6 in steps of 0.1.

Any sudden jumps in these values would indicate a serious flaw in the method, as they

would clearly be non-physical. The results are displayed in Figure 5.1, and can be seen to

be nicely continuous. Graphs of energy vs. order are also included as Figures C.1 and 5.2

Finally, the time results for λ = 2 can be found in Tables C.2 and 5.2.

Results improved significantly for the first excited state, and the calculation time dropped.

For the second excited state, however, the results were very poor, with the percent differ-

ence never dropping below 125%. These results can be seen in Tables C.3 and 5.3, and C.5

25
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Table 5.1: Ground state energies and percent differences for the anharmonic oscillator using
the gaussian Eq. 4.2 in CMX-LT.

λ Martin, Castro, Order CMX-LT
and Paz Energy % difference

0.5 1.24185404314 1 1.24803 0.4973
2 1.24239 0.0432
3 1.24201 0.0126
4 1.24194 0.0069
5 1.24191 0.0045
6 1.24189 0.0029
7 1.24188 0.0021

1 1.3923515801 1 1.39363 0.0918
2 1.39363 0.0918
3 1.39276 0.0293
4 1.39258 0.0164
5 1.39251 0.0114
6 1.39247 0.0085
7 1.39244 0.0064

2 1.6075413481 1 1.625 1.0860
2 1.61 0.1529
3 1.6084 0.0534
4 1.60802 0.0298
5 1.60788 0.0211
6 1.60779 0.0155
7 1.60774 0.0124

5 2.0183406575 1 2.04704 1.4219
2 2.02303 0.2323
3 2.02009 0.0867
4 2.01934 0.0495
5 2.01904 0.0346
6 2.01888 0.0267
7 2.01876 0.0208

20 3.0099449478 1 3.0625 1.746
2 3.0195 0.3174
3 3.01367 0.1238
4 3.01212 0.0723
5 3.01148 0.0510
6 3.01112 0.0390
7 3.01089 0.0314
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Figure 5.1: Graph of ground state energy vs. λ for 3rd order CMX-HW from λ = 0.1 to
λ = 6 at intervals of 0.1
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Figure 5.2: Graph of energy approximation vs. order for CMX-LT, with comparison to the
Martin, Castro, and Paz result, for λ = 2.
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Table 5.2: Ground state energies, percent differences, and calculation times for the anhar-
monic oscillator using the gaussian Eq. 4.2 in CMX-LT.

λ Martin, Castro, Order CMX-LT
and Paz Energy % difference Time (s)

2 1.6075413481 1 1.625 1.0860 4.7± 0.8
2 1.61 0.1529 12.9± 2.3
3 1.6084 0.0534 20.8± 4.8
4 1.60802 0.0298 35.8± 7.4
5 1.60788 0.0211 55.1± 2.8
6 1.60779 0.0155 64.5± 8.0
7 1.60774 0.0124 78.3± 0.5

and C.7, with the energy results in Tables C.4 and 5.4 and C.6 and C.8, respectively.

5.1.2 Kurtosis Effects

Both the hyperbolic secant- and cosine-based wave functions produce much poorer re-

sults than the Gaussian one. The hyperbolic secant function, Eq. 4.9, requires the longest

to calculate at first order of any of the approximations listed here, so long that even the

second order cannot be calculated directly for timing, and can only be calculated by storing

the first order results first. Thus only the first order times were extracted, and proved to

be 106.3 ± 0.9 seconds for CMX-HW and 104.6 ± 1.4 seconds for CMX-LT. The cosine

function, Eq. 4.10, does produce significantly better energy results than the secant func-

tion, however it exhibits oscillations around the true energy as the order increases, instead

of a simple monotonic decrease toward it. These results can be seen in Tables C.9 and

5.5, and C.10 and 5.6, with timing results for the cosine function in Tables C.11 and 5.7,

respectively.
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Table 5.3: First excited state energies and percent differences for the anharmonic oscillator
using the the harmonic oscillator first excited state Eq. 4.3 in CMX-LT.

λ Martin, Castro, Order CMX-LT
and Paz Energy % difference

0.5 4.0519323386 1 4.06992 0.4439
2 4.05321 0.0315
3 4.05227 0.0083
4 4.0521 0.0041
5 4.05204 0.0027
6 4.052 0.0017
7 4.05198 0.0012

1 4.6488128272 1 4.67824 0.6330
2 4.65145 0.0567
3 4.64956 0.0161
4 4.6492 0.0083
5 4.64907 0.0055
6 4.64899 0.0038
7 4.64893 0.0025

2 5.4757846463 1 5.51987 0.8051
2 5.48037 0.0837
3 5.47715 0.0249
4 5.47651 0.0132
5 5.47626 0.0087
6 5.47612 0.0061
7 5.47602 0.0043

5 7.0134792987 1 7.08229 0.9811
2 7.02152 0.1146
3 7.01598 0.0357
4 7.01482 0.0191
5 7.01437 0.0127
6 7.01412 0.0091
7 7.01394 0.0066

20 10.6432159591 1 10.7643 1.1377
2 10.6586 0.1445
3 10.6482 0.0468
4 10.6459 0.0252
5 10.645 0.0168
6 10.6445 0.0121
7 10.6442 0.0092
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Table 5.4: First excited state energies, percent differences, and calculation times for the
anharmonic oscillator using the harmonic oscillator first excited state Eq. 4.2 in CMX-LT.

λ Martin, Castro, Order CMX-LT
and Paz Energy % difference Time (s)

2 5.4757846463 1 5.51987 0.8051 0.4± 0.1
2 5.48037 0.0837 8.9± 0.5
3 5.47715 0.0249 15.1± 1.3
4 5.47651 0.0132 25.4± 1.7
5 5.47626 0.0087 30.8± 2.4
6 5.47612 0.0061 37.3± 6.1
7 5.47602 0.0043 29.7± 0.3

Table 5.5: Ground state energies and percent differences for the anharmonic oscillator using
the hyperbolic secant function, Eq. 4.9, in CMX-LT.

λ Martin, Castro, Order CMX-LT
and Paz Energy % difference

0.5 1.2418540431 1 1.38901 11.850
2 1.33341 7.373
3 1.31711 6.060
4 1.30956 5.452
5 1.30524 5.104

1 1.3923515801 1 1.58809 14.058
2 1.52277 9.367
3 1.5027 7.925
4 1.49318 7.242
5 1.48767 6.846

2 1.6075413481 1 1.86551 16.047
2 1.78638 11.125
3 1.76148 9.576
4 1.74952 8.832
5 1.74253 8.397

5 2.0183406575 1 2.38345 18.090
2 2.27891 12.910
3 2.24547 11.253
4 2.22927 10.451
5 2.21976 9.979

20 3.0099449478 1 3.6097 19.926
2 3.44651 14.504
3 3.39378 12.752
4 3.36809 11.899
5 3.35296 11.396
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Table 5.6: Ground state energies and percent differences for the anharmonic oscillator using
the cosine function, Eq. 4.10, in CMX-LT.

λ Martin, Castro, Order CMX-LT
and Paz Energy % difference

0.5 1.2418540431 1 1.26076 1.522
2 1.23735 -0.363
3 1.24519 0.269
4 1.24033 -0.123
5 1.25452 1.020

1 1.3923515801 1 1.41068 1.316
2 1.38807 -0.308
3 1.39571 0.241
4 1.3908 -0.111
5 1.40409 0.843

2 1.6075413481 1 1.62633 1.169
2 1.60305 -0.279
3 1.61097 0.213
4 1.6056 -0.121
5 1.61932 0.733

5 2.0183406575 1 2.04 1.073
2 2.013 -0.265
3 2.02207 0.185
4 2.01644 -0.094
5 2.03152 0.653

20 3.0099449478 1 3.03907 0.968
2 3.00223 -0.256
3 3.01482 0.162
4 3.01027 0.011
5 3.02831 0.610

Table 5.7: Ground state energies, percent differences, and calculation times for the anhar-
monic oscillator using the cosine function Eq. 4.10 in CMX-LT.

λ Martin, Castro, Order CMX-LT
and Paz Energy % difference Time (s)

2 1.6075413481 1 1.62633 1.169 2.70± 0.32
2 1.60305 -0.279 14.0± 1.7
3 1.61097 0.213 40.3± 1.2
4 1.6056 -0.121 84.9± 3.7
5 1.61932 0.733 123.8± 3.6
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5.1.3 Lanczos Tri-Diagonalization

Lanczos tri-diagonalization is the fastest of the methods by a large margin. It also

generates approximations to multiple energy states at the same time, however most of those

approximations are extremely poor, with the second excited state energies being actually

worse than the best ones obtained with CMX, and the first excited state energies being

less accurate still. However, the ground state energies are as good as the CMX-LT results.

Results for the ground and first excited states with this method can be found in Table 5.8.
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Table 5.8: Ground state and first excited state energies, percent differences, and calculation
times for the anharmonic oscillator using the harmonic oscillator ground state, Eq. 4.2,
with Lanczos Tri-Diagonalization.
λ Martin, Castro, Order Lanczos Ground State Excited State

and Paz Energy % difference Time (s) Energy % difference
0.5 Ground: 2 1.24239 0.0432 17.097 321.947

1.2418540431 3 1.24201 0.0126 15.4682 281.749
1st Excited: 4 1.24194 0.0069 14.8309 266.020

4.0519323386 5 1.24191 0.0045 14.3219 253.459
6 1.24189 0.0029 13.6556 237.015
7 1.24188 0.0021 12.6078 211.155

1 Ground: 2 1.39363 0.0918 21.2276 356.624
1.3923515801 3 1.39277 0.0301 18.7216 302.718

1st Excited: 4 1.39258 0.0164 17.7542 281.908
4.6488128272 5 1.39251 0.0114 17.0787 267.378

6 1.39247 0.0085 16.3784 252.314
7 1.39244 0.0064 15.4822 233.036

2 Ground: 2 1.61001 0.154 14.1± 1.0 26.64 386.506
1.6075413481 3 1.6084 0.053 28.1± 0.2 23.0381 320.727

1st Excited: 4 1.60802 0.030 29.8± 1.9 21.6546 295.461
5.4757846463 5 1.60788 0.021 46.3± 9.3 20.7514 278.967

6 1.60779 0.0155 36.0± 1.2 19.9202 263.787
7 1.60774 0.0124 51.3± 1.4 18.9854 246.716

5 Ground: 2 2.02305 0.233 36.1819 415.891
2.0183406575 3 2.02009 0.087 28.6661 338.414

1st Excited: 4 2.01934 0.050 28.6661 308.729
7.0134792987 5 2.01904 0.035 27.3647 290.173

6 2.01888 0.0267 26.2581 274.395
7 2.01876 0.0208 25.1221 258.197

20 Ground: 2 3.01953 0.318 57.6055 441.241
3.0099449478 3 3.01368 0.124 48.2848 353.667

1st Excited: 4 3.01212 0.072 44.7172 320.147
10.6432159591 5 3.01148 0.051 42.5464 299.751

6 3.01113 0.0394 40.7895 283.244
7 3.01089 0.0314 39.0898 267.274
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Conclusions

In almost all of these cases these simple methods were able to produce results accurate

to 2 or 3 significant figures with quite limited computational effort. The exceptions were

the energies generated with the hyperbolic secant-based wave function, the energy of the

second excited state and all excited states generated by the Lanczos tri-diagonalization

method. It is likely that the trial wave functions in these cases were simply too different

from the true ones for the approximation to converge rapidly, and so much higher order

calculations would have been required. Varying the kurtosis of the trial wave function

proved unwise in general, with both options generating much worse results than those

given by the Gaussian function which was expected to be the best match to the true wave

function. More study could be valuable here, examining a potential for which a higher or

lower kurtosis function would be expected to verify that the Gaussian is not simply the best

trial wave function choice in all cases, but rather that the best choice is a function which is

likely to be similar to the true wave function.

Overall, the CMX-HW and CMX-LT had nearly identical calculation times, but the

CMX-LT appears to correct by more with each order, which gives it better results in most

cases, the exception being the cosine-based wave function, for which it results in larger

34
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oscillations. Since all necessary figures to instantaneously process a lower order approxi-

mation will be stored in memory until the program is closed, it will likely be beneficial to

check some of those for such oscillations. Lanczos Tri-Diagonalization was clearly the best

of the methods, however: it matches the accuracy of CMX-LT and computes more rapidly.

Preconditioning with Variational Analysis was also shown to be extremely valuable, im-

proving the accuracy of the approximation by multiple orders of magnitude in the percent

difference and generating a smallest error of just 0.0012%, and so this should certainly be

used whenever possible.

Future work could take several directions. One is simply to apply these same techniques

to other potentials, which we did not have time to do in this project. Another interesting

avenue would be to try to optimize the parameter for other terms, particularly I2, which is

the variance of the energy, and should therefore go to zero if the wave function is exact.

There are also inconsistencies in the computation time, both for the 6th and 7th order of

the first excited state, as well as significant variation with λ, and it would be instructive to

investigate these and try to determine a cause.
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Appendix A

CMX Code

\ [ P s i ] 1 [ x , a ] := ( ( a / Pi ) ˆ 0 . 2 5 ) Exp[−( a ∗ ( x ˆ 2 ) ) / 2 ]

I n t e g r a t e [ \ [ P s i ] 1 [ x , a ]∗\ [ P s i ] 1 [ x , a ] ,

{x , −\[ I n f i n i t y ] , \ [ I n f i n i t y ] } ]

\ [ P s i ] 0 [ x , a ] := ( ( a / Pi ) ˆ 0 . 2 5 ) Exp[−( a ∗ ( x ˆ 2 ) ) / 2 ]

V0 [ x ] := x ˆ2 + ( b )∗ x ˆ4

EE [ a ] :=

I n t e g r a t e [ \ [ P s i ] 0 [ x ,

a ]∗ (−1) L a p l a c i a n [ \ [ P s i ] 0 [ x ,

a ] , {x } ] , {x , −\[ I n f i n i t y ] , \ [ I n f i n i t y ] } ]

FF [ a ] :=

I n t e g r a t e [ \ [ P s i ] 0 [ x , a ]∗

V0 [ x ]∗\ [ P s i ] 0 [ x , a ] , {x , −\[ I n f i n i t y ] , \ [ I n f i n i t y ] } ]

EE [ a ] + FF [ a ]

D[0 .49999999999999994 ‘ a ˆ 1 . ‘ + ( 0 . 5 ‘ a + 0 . 7 5 ‘ b ) / a ˆ 2 . ‘ , a ]
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So lve [ a ˆ3 − a − 3 b == 0 , a ]

aa [ b ] := ( 2 / 3 ) ˆ ( 1 / 3 ) /

(27 b + Sqrt [ 3 ] Sqrt [−4 + 243 b ˆ 2 ] ) ˆ ( 1 / 3 )

+ (27 b + Sqrt [ 3 ] Sqrt [−4 + 243 b ˆ 2 ] ) ˆ ( 1 / 3 ) /

( 2 ˆ ( 1 / 3 ) 3 ˆ ( 2 / 3 ) )

bb = ;

\ [ P s i ] [ x ] := ( ( aa [ bb ] / Pi ) ˆ ( 0 . 2 5 ) ) Exp[−( aa [ bb ] ∗ ( x ˆ 2 ) ) / 2 ]

V[ x ] := x ˆ2 + ( bb )∗ x ˆ4

H[ f ] := S i m p l i f y [ ( ( −1) L a p l a c i a n [ f , {x } ] + V[ x ] f ) ]

AA[ n ] :=

I n t e g r a t e [ \ [ P s i ] [ x ]∗

Nest [H, \ [ P s i ] [ x ] , n ] , {x , −\[ I n f i n i t y ] , \ [ I n f i n i t y ] } ]

J [ 1 ] := J [ 1 ] =

I n t e g r a t e [ \ [ P s i ] [ x ]∗H[ \ [ P s i ] [ x ] ] ,

{x , −\[ I n f i n i t y ] , \ [ I n f i n i t y ] } ]

J [ n ] := J [ n ] =

AA[ n ] − Sum [ ( Binomial [ n − 1 , k ] ) ∗ ( J [ k + 1 ] )∗AA[ n − k − 1 ] ,

{k , 0 , n − 2} ]

S [ 1 , n ] := S [ 1 , n ] = J [ n ]

S [ m , n ] :=

S [m, n ] = ( S [m − 1 , n ]∗S [m − 1 , n + 2 ] )
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− ( S [m − 1 , n + 1 ] ) ˆ 2

HW[ n ] :=

J [ 1 ] − Sum [ ( ( S [m, 2 ] ) ˆ 2 ) / ( Product [ ( S [ k , 3 ] ) , {k , 1 , m} ] ) ,

{m, 1 , n − 1} ]

LT [ n ] :=

J [ 1 ] − Det [ ( MatrixForm [ Table [ J [ j ] , { i , 1} , { j , 2 , n } ] ] ) .

( I n v e r s e [ MatrixForm [

Table [ J [1 + i + j ] , { i , n − 1} , { j , n − 1 } ] ] ] ) .

( MatrixForm [ Table [ J [ i ] , { i , 2 , n } , { j , 1 } ] ] ) ]



Appendix B

Lanczos Tri-Diagonalization Code

\ [ Beta ] [ 1 ] = 0 ;

v [ 0 ] = 0 ;

v [ 1 ] := ( ( aa [ bb ] / Pi ) ˆ ( 0 . 2 5 ) ) Exp[−( aa [ bb ] ∗ ( x ˆ 2 ) ) / 2 ]

w[ j ] := H[ v [ j ] ]

u [ j ] := w[ j ] − \ [ Alpha ] [ j ]∗ v [ j ] − \ [ Beta ] [ j ]∗ v [ j − 1]

\ [ Beta ] [ j ] := \ [ Beta ] [ j ] = ( I n t e g r a t e [ u [ j − 1]∗ u [ j − 1 ] ,

{x , −\[ I n f i n i t y ] , \ [ I n f i n i t y ] } ] ) ˆ 0 . 5

\ [ Alpha ] [ j ] := \ [ Alpha ] [ j ] = ( I n t e g r a t e [ w[ j ]∗ v [ j ] ,

{x , −\[ I n f i n i t y ] , \ [ I n f i n i t y ] } ] )

v [ j ] := u [ j − 1 ] / \ [ Beta ] [ j ]

T [ n ] := MatrixForm [

Table [ P i e c e w i s e [{{\ [ Alpha ] [ i ] , j − i == 0} ,

{\ [ Beta ] [ i ] , i − j == 1} , {\ [ Beta ] [ j ] , j − i == 1}} , 0 ] ,

{ i , n } , { j , n } ] ]
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Appendix C

Further Data Tables
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Figure C.1: Graph of energy approximation vs. order for CMX-HW, with comparison to
the Martin, Castro, and Paz result, for λ = 2.
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Table C.1: Ground state energies and percent differences for the anharmonic oscillator
using the harmonic oscillator ground state Eq. 4.2 in CMX-HW.

λ Martin, Castro, Order CMX-HW
and Paz Energy % difference

0.5 1.24185404314 1 1.24803 0.4973
2 1.24239 0.0432
3 1.24201 0.0126
4 1.24195 0.0077
5 1.24194 0.0069
6 1.24193 0.0061
7 1.24193 0.0061

1 1.3923515801 1 1.40332 0.7878
2 1.39363 0.0918
3 1.39276 0.0293
4 1.39262 0.0193
5 1.39259 0.0171
6 1.39258 0.0164
7 1.39258 0.0164

2 1.6075413481 1 1.625 1.0860
2 1.61 0.1529
3 1.6084 0.0534
4 1.60813 0.0366
5 1.60806 0.0323
6 1.60805 0.0316
7 1.60805 0.0316

5 2.0183406575 1 2.04704 1.4219
2 2.02303 0.2323
3 2.02009 0.0867
4 2.01956 0.0604
5 2.01944 0.0545
6 2.01942 0.0535
7 2.01942 0.0535

20 3.0099449478 1 3.0625 1.746
2 3.0195 0.3174
3 3.01367 0.1238
4 3.01261 0.0885
5 3.01236 0.0802
6 3.01233 0.0792
7 3.01233 0.0792
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Table C.2: Ground state energies, percent differences, and calculation times for the anhar-
monic oscillator using Eq. 4.2 in CMX-HW.

λ Martin, Castro, Order CMX-HW
and Paz Energy % difference Time (s)

2 1.6075413481 1 1.625 1.0860 5.7± 0.4
2 1.61 0.1529 11.5± 1.6
3 1.6084 0.0534 20.2± 3.7
4 1.60813 0.0366 29.2± 0.7
5 1.60806 0.0323 53.4± 2.0
6 1.60805 0.0316 72.0± 7.1
7 1.60805 0.0316 79.7± 1.4
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Table C.3: First excited state energies, percent differences, and calculation times for the
anharmonic oscillator using the harmonic oscillator first excited state Eq. 4.3 in CMX-
HW.

λ Martin, Castro, Order CMX-HW
and Paz Energy % difference

0.5 4.0519323386 1 4.06992 0.4439
2 4.05321 0.0315
3 4.05227 0.0083
4 4.05213 0.0049
5 4.0521 0.0041
6 4.05209 0.0039
7 4.05209 0.0039

1 4.6488128272 1 4.67824 0.6330
2 4.65145 0.0567
3 4.64956 0.0161
4 4.64928 0.0100
5 4.6492 0.0083
6 4.64919 0.0081
7 4.64919 0.0081

2 5.4757846463 1 5.51987 0.8051
2 5.48037 0.0837
3 5.47715 0.0249
4 5.47666 0.0160
5 5.47652 0.0134
6 5.4765 0.0131
7 5.4765 0.0131

5 7.0134792987 1 7.08229 0.9811
2 7.02152 0.1146
3 7.01598 0.0357
4 7.01511 0.0233
5 7.01487 0.0198
6 7.01484 0.0194
7 7.01484 0.0194

20 10.6432159591 1 10.7643 1.1377
2 10.6586 0.1445
3 10.6482 0.0468
4 10.6465 0.0309
5 10.646 0.0262
6 10.646 0.0262
7 10.646 0.0262
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Table C.4: First excited state energies, percent differences, and calculation times for the
anharmonic oscillator using the harmonic oscillator first excited state Eq. 4.3 in CMX-
HW.

λ Martin, Castro, Order CMX-HW
and Paz Energy % difference Time (s)

2 5.4757846463 1 5.51987 0.8051 0.671± 0.063
2 5.48037 0.0837 8.15± 0.77
3 5.47715 0.0249 9.58± 0.73
4 5.47666 0.0160 25.7± 3.3
5 5.47652 0.0134 33.2± 6.4
6 5.4765 0.0131 43.6± 9.2
7 5.4765 0.0131 29.9± 0.3
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Table C.5: Second excited state energies and percent differences for the anharmonic oscil-
lator using the harmonic oscillator second excited state Eq. 4.4 in CMX-HW.

λ Martin, Castro, Order CMX-HW
and Paz Energy % difference

0.5 7.3969068694 1 92.9042 1155.987
2 48.4152 554.533
3 33.6271 354.610
4 28.1057 279.966
5 26.29 255.419
6 25.9148 250.346
7 25.8865 249.964

1 8.6550499823 1 108.662 1155.475
2 56.6446 554.469
3 39.3579 354.739
4 32.9065 280.200
5 30.7861 255.701
6 30.3481 250.640
7 30.3151 250.259

2 10.3585833647 1 129.996 1154.959
2 67.7847 554.382
3 47.1146 354.836
4 39.4036 280.396
5 36.8705 255.942
6 36.3475 250.893
7 36.3081 250.512

5 13.4677303948 1 168.939 1154.398
2 88.1158 554.274
3 61.2674 354.920
4 51.2558 280.582
5 47.9689 256.177
6 47.2906 251.140
7 47.2395 250.761

20 20.6941109272 1 259.481 1153.888
2 135.373 554.162
3 94.1549 354.984
4 78.7908 280.740
5 73.7492 256.378
6 72.7093 251.353
7 72.6311 250.975
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Table C.6: Second excited state energies, percent differences, and calculation times for
the anharmonic oscillator using the harmonic oscillator second excited state, Eq. 4.4, in
CMX-HW.

λ Martin, Castro, Order CMX-HW
and Paz Energy % difference Time (s)

2 67.7847 554.382 8.3± 1.0
3 47.1146 354.836 12.5± 1.6
4 39.4036 280.396 22.1± 3.1
5 36.8705 255.942 31.9± 4.2
6 36.3475 250.893 20.8± 0.1
7 36.3081 250.512 28.4± 1.0
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Table C.7: Second excited state energies and percent differences for the anharmonic oscil-
lator using the harmonic oscillator second excited state, Eq. 4.4, in CMX-LT.

λ Martin, Castro, Order CMX-LT
and Paz Energy % difference

0.5 7.3969068694 1 92.9042 1155.987
2 48.4152 554.533
3 33.6271 354.610
4 26.2652 255.084
5 21.8748 195.729
6 18.9712 156.475
7 16.9182 128.720

1 8.6550499823 1 108.662 1155.475
2 56.6446 554.469
3 39.3579 354.739
4 30.7559 255.352
5 25.6296 196.123
6 22.2432 156.997
7 19.8529 129.379

2 10.3585833647 1 129.996 1154.959
2 67.7847 554.382
3 47.1146 354.836
4 36.833 255.580
5 30.7101 196.470
6 26.6697 157.465
7 23.8228 129.981

5 13.4677303948 1 168.939 1154.398
2 88.1158 554.274
3 61.2674 354.920
4 47.9183 255.801
5 39.9744 196.816
6 34.7388 157.941
7 31.0567 130.601

20 20.6941109272 1 259.481 1153.888
2 135.373 554.162
3 94.1549 354.984
4 73.6689 255.990
5 61.4862 197.119
6 53.4658 158.362
7 47.8356 131.156



51

Table C.8: Second excited state energies, percent differences, and calculation times for
the anharmonic oscillator using the harmonic oscillator second excited state, Eq. 4.4, in
CMX-LT.

λ Martin, Castro, Order CMX-LT
and Paz Energy % difference Time (s)

2 10.3585833647 1 129.996 1154.959 3.61± 0.35
2 67.7847 554.382 8.45± 0.58
3 47.1146 354.836 11.7± 1.1
4 36.833 255.580 16.3± 3.0
5 30.7101 196.470 18.1± 0.3
6 26.6697 157.465 20.8± 0.1
7 23.8228 129.981 28.4± 0.8
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Table C.9: Ground state energies, percent differences, and calculation times for the anhar-
monic oscillator using the hyperbolic secant function, Eq. 4.9, in CMX-HW.

λ Martin, Castro, Order CMX-HW
and Paz Energy % difference

0.5 1.2418540431 1 1.38901 11.850
2 1.33341 7.373
3 1.31711 6.060
4 1.31437 5.839
5 1.31422 5.827

1 1.3923515801 1 1.58809 14.058
2 1.52277 9.367
3 1.5027 7.925
4 1.49919 7.673
5 1.49899 7.659

2 1.6075413481 1 1.86551 16.047
2 1.78638 11.125
3 1.76148 9.576
4 1.75702 9.299
5 1.75676 9.282

5 2.0183406575 1 2.38345 18.090
2 2.27891 12.910
3 2.24547 11.253
4 2.23939 10.952
5 2.23903 10.934

20 3.0099449478 1 3.6097 19.926
2 3.44651 14.504
3 3.39378 12.752
4 3.38408 12.430
5 3.3835 12.410
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Table C.10: Ground state energies and percent differences for the anharmonic oscillator
using the cosine wave function, Eq. 4.10, in CMX-HW.

λ Martin, Castro, Order CMX-HW
and Paz Energy % difference

0.5 1.2418540431 1 1.26076 1.522
2 1.23735 -0.363
3 1.24519 0.269
4 1.24523 0.272
5 1.24508 0.260

1 1.3923515801 1 1.41068 1.316
2 1.38807 -0.308
3 1.39571 0.241
4 1.39575 0.244
5 1.39563 0.235

2 1.6075413481 1 1.62633 1.169
2 1.60305 -0.279
3 1.61097 0.213
4 1.61102 0.216
5 1.61094 0.211

5 2.0183406575 1 2.04 1.073
2 2.013 -0.265
3 2.02207 0.185
4 2.02215 0.189
5 2.02206 0.184

20 3.0099449478 1 3.03907 0.968
2 3.00223 -0.256
3 3.01482 0.162
4 3.01489 0.164
5 3.01464 0.156

Table C.11: Ground state energies, percent differences, and calculation times for the anhar-
monic oscillator using the cosine wave function, Eq. 4.10, in CMX-HW.

λ Martin, Castro, Order CMX-HW
and Paz Energy % difference Time (s)

2 1.6075413481 1 1.62633 1.169 2.00± 0.35
2 1.60305 -0.279 12.11± 0.56
3 1.61097 0.213 33.56± 0.13
4 1.61102 0.216 68.4± 2.6
5 1.61094 0.211 110.6± 8.8
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