
Knowd:
A Tool for Organizing and Recommending

Online Learning Resources

Adam Fanslau
Drew University, 2015

ABSTRACT

Traditional courses and degree programs are well structured with a syllabus or
curriculum that gives students an overview of topics they should be learning. The
internet is home to a vast number of resources for students learning a variety of topics.
Search engines provide a way to find information if the user knows what to search
for. However, with independent learning, there is no such structure to guide learners.
In an attempt to solve this problem, we created a prototype web application called
Knowd. The goal of this system is to guide students along a path of concepts and
provide a place to organize learning resources. The main features of the prototype
are the ability to save, tag and get recommendations for new learning resources and
topics. Through data gathered manually by users as well as automatically from the
web, we build a graph model of relationships between topics, resources and users, and
traverse this graph to deliver personalized recommendations.

Knowd:
A Tool for Organizing and Recommending

Online Learning Resources

Adam Fanslau

B.A. in Computer Science

An Honors Thesis
Submitted in Partial Fulfillment of the

Requirements for the Degree of Bachelor in Arts with Specialized Honors in
Computer Science
at Drew University

May 2015

Copyright by

Adam Fanslau

2015

ACKNOWLEDGMENTS

I would like to thank Dr. Emily Hill for serving as a primary advisor to this project.
She provided extensive help and guidance as well as freedom to explore ideas. I
thank Dr. Minjoon Kouh and Dr. Jon Kettenring for reading drafts and providing
feedback that helped us complete this research. I also want to acknowledge the
time and effort provided by participants who were beta testers and submitted survey
responses. Thank you to Drew University and its Department of Mathematics and
Computer Science for providing me with the opportunity to conduct this research.

ii

Contents

Ch. 1. Introduction 1

1.1 Finding new learning resources . 2

1.2 Keeping track of found learning resources 3

1.3 Proposed Solution . 4

Ch. 2. State of the Art and Practice 5

2.1 State of the Practice . 6
2.1.1 Learning Management Systems 6
2.1.2 Online Courses . 7
2.1.3 Implications . 7

2.2 State of the Art . 8
2.2.1 Recommender Systems . 8
2.2.2 Ontologies . 9

Ch. 3. Knowd: A Tool for Managing Learning Resources 12

3.1 Architecture Overview . 15

3.2 Features of Knowd . 16
3.2.1 Tagging Existing Resources 17
3.2.2 Bookmarking New Resources 20
3.2.3 Viewing Existing Resources 23
3.2.4 Searching for Resources . 24

Ch. 4. Representing the Ontology and Generating Recommendations 25

4.1 Calculating Edge Weights . 28

4.2 Making Recommendations . 34

iii

4.3 Concrete Example . 36

Ch. 5. Evaluation 41

5.1 User Interface Feedback . 42
5.1.1 Initially Populating Knowd Topics 42
5.1.2 User Interface Survey . 43

5.2 Recommendation Algorithm Evaluation 47
5.2.1 Experimental Design . 47
5.2.2 Results . 49
5.2.3 Threats to Validity and Next Steps 51

Ch. 6. Conclusions and Future Work 52

6.1 Planned Updates . 53

6.2 Improving Knowledge Model . 54

6.3 Limitations . 55

6.4 Conclusion . 56

Bibliography 59

iv

Chapter 1

Introduction

Technology has become more and more ingrained in everyday life, and education is no

exception. In the course of learning, many students find themselves looking online for

information. Many times, searching for resources online is like trying to drink from

a firehose. Students are bombarded with information at varying levels of expertise

and prerequisite assumptions. Sifting through this information to find resources at an

appropriate level is difficult. There are two main problems that stem from the massive

size of the internet: (1) finding new and relevant learning resources and (2) keeping

track of learning resources once they are found.

1

2

1.1 Finding new learning resources

To illustrate these problems, imagine a student named Alice. Alice wants to learn

about a web development framework called Ruby on Rails. There are many resources

available online to start learning about the topic. However, they do not take into

account the fact that Alice already has experience with a similar framework called

Django. Ideally, Alice would like something that creates a comprehensive guide to

Ruby on Rails that is personalized based on her previous knowledge.

Currently, Alice might start by searching Google for “Ruby on Rails”. In the

search results would be the official documentation, a getting started guide and maybe

a few tutorials. While this is a good place to start, it is not personalized. Alice

wants to learn quickly and does not need to waste her time doing tutorials aimed at

beginners. She might have to refine her search query several times to find a resource

to learn Ruby on Rails in the context of what she already knows.

Imagine Alice has learned the basics and decides to try her hand at an app idea

she has been thinking about. She runs into a problem setting up her database and

searches the error on Google. She clicks a result from Stack Overflow, a question and

answer site for the programming community. This question describes her problem and

the accepted answer seems to solve it. However, she does not have enough experience

with the technology to understand why it solves her problem. There might be words

or concepts in the answer that she has not learned yet. To understand the context,

she might search Google for each word and look through several resources to find one

at the right level for her current understanding. Eventually after several web queries,

she finds a good explanation, but it takes significant time and effort.

3

1.2 Keeping track of found learning resources

Another problem arises when Alice becomes more experienced and wants to recall

the solution she found previously. After about a month, she finds herself running into

a similar problem to the one described in the prior section. She remembers reading

about it, but trying to find that good explanation again would require a similar

amount of scouring the web. She might have bookmarked the page, but searching

browser bookmarks is not an intuitive experience. Bookmark folders quickly become

a mess and can be overwhelming to try to organize. There are also issues with

accessing these resources from different devices. If Alice could save and search her

own bookmarks alongside web results, she would have a much easier time finding

resources that are specific to her previous experience, and remembering what she

already knows.

In addition to remembering what she already has learned, Alice needs a way

to expand her knowledge by learning from others. When starting to learn a new

topic, Alice would benefit from not just a list of search results, but a coherent lesson

plan about the topic she is searching for. These topic lessons might be curated

by an individual, or by a machine aggregating resources from many different sources.

Instead of having to develop her own curriculum on the fly, she could find the relevant

sub-topics and get suggestions for how to learn them. There are existing tools that

solve some of these problems, but none that bring them together in an intuitive way.

4

1.3 Proposed Solution

To address the challenges of saving and finding personalized resources, we present

a web application called Knowd. We have created a prototype that allows users to

save and organize their resources into topics and provides recommendations based on

what the user has saved.

The remainder of this thesis will describe Knowd in more detail. First we in-

troduce the body of research that surrounds the tool, including areas such as online

learning, recommender systems, semantic ontologies, topic modeling, and knowledge

graphs. These research areas serve as inspiration and context from which to under-

stand Knowd. Then we explain the process and challenges in designing, implementing

and evaluating the current prototype. It is implemented as a web application based

on a graph structure of topics and learning resources. We evaluated the user inter-

face with a survey given to computer science students at Drew. We also developed a

preliminary model for representing a topic ontology and adapting it to user feedback,

which we evaluated using available user data from Stack Overflow. Finally, we will

discuss the larger vision of Knowd and future work in reaching that goal.

Chapter 2

State of the Art and Practice

Knowd is a practical tool designed for life-long learners to help record, retrieve and

share their learning resources. There are existing tools, generally referred to as Learn-

ing Management Systems (LMSs) for teachers to manage and disseminate content

related to their courses. Many universities also adapt their courses for online and

distribute them—freely or for a fee—via sites like Coursera, Udacity and EdX. These

courses are often referred to as Massive Open Online Courses or MOOCs. They have

gained traction recently as people are increasingly using technology to circumvent the

high costs of college.

In addition to the state of the practice, research in areas like semantic web, knowl-

edge graphs, and recommender systems are relevant to the research goals of this

project. To represent and recommend knowledge sources about particular topics,

Knowd uses a graph structure of Topics, Resources, and Users.

5

6

2.1 State of the Practice

2.1.1 Learning Management Systems

Learning Management Systems (LMSs) are widely adopted in schools and universities

as a solution to hosting course content online [16]. Among the most popular are

Moodle,1 Blackboard,2 and Edmodo.3 These systems are used to host course content,

communicate with students, and perform administrative duties. Teachers can build

their syllabi and students can consume and discuss content. LMSs are good for

hosting files like presentation slides, assignment instructions and submissions. They

are also good for keeping track of grades [8].

Despite their wide use, LMSs are designed to be an environment which is closed

to anyone outside the class. While this meets the needs of managing sensitive data

like grades and class-specific data like class activities, the actual content that is being

taught is relevant to many parties other than the students in the course. Students

would benefit from not only the content distributed by their professors, but also

content from external sources on the web, including courses at other institutions

on the same topic. This feature would also be beneficial to teachers to help them

structure their courses based on similar content that already exists.

There is currently no place where experts and novices alike can help create open

source content to teach a topic. Instead of the expert being the curator and the

student being the consumer, both groups should be able to play both roles. In

1http://moodle.com/
2http://www.blackboard.com/
3https://www.edmodo.com/

7

addition, there is no recommendation component that compares resources added by

students and teachers and searches for resources that might help explain the concepts

from a different perspective, or expand into new areas of knowledge. These features

would make it easier for course content to adapt to student needs and the external

context of the topic.

2.1.2 Online Courses

Sites like Coursera and EdX are helping solve the issue of openness of content. These

sites allow universities to host courses referred to as Massive Open Online Courses

(MOOCs) and distribute their content to millions of people. While access to content

has been vastly expanded [19], the conversation between educators and students is still

unidirectional in the sense that the teacher decides what topics are most important to

cover, and this decision holds for every student in the class. In reality, the backgrounds

and intentions of students enrolled in MOOCs are varied [4].

2.1.3 Implications

Each of these existing technologies answers a piece of the question, but leaves others

open. Our end goal is to build an adaptive system that automatically personalizes

learning for the individual instead of relying on a one-size-fits-all model. There are

several areas of research that are relevant to this goal. The following section describes

how the existing body of research is related to Knowd.

8

2.2 State of the Art

2.2.1 Recommender Systems

Currently, there are many academically developed e-learning systems, but very few

are widely implemented and used. Many of these research projects apply traditional

recommender algorithms to educational content [3, 21, 22]. Recommender systems

generally use two main paradigms: content-based similarity [9] and collaborative

filtering [15]. Hybrid methods are also used [2]. These techniques serve as a research

base for this project.

Content-based systems use expert-defined features of the items to find pairwise

similarities, then recommend similar items to those that the user has liked before.

Content-based systems are good for when data exists about each item. For example,

Pandora Radio employs a team of experts to manually label their library of songs

with musical attributes.4 Content-based methods have advantages in their ability to

analyze new items independent of any user ratings. However, the need to manually

extract features from the items poses additional challenges [9].

Collaborative filtering bases its recommendations on the assumption that similar

users like similar things. For example, if user A likes movies 1, 2 and 3, and user

B likes movies 1 and 3, a collaborative filtering algorithm will recommend movie

2 to user B. This fundamental assumption is formalized and used in systems like

Netflix [1]. Collaborative filtering works well when there is a large dataset with many

users and many items. The recommendations are inherently dependent on multiple

4http://www.pandora.com/about/mgp

9

user ratings. Therefore, collaborative filtering suffers with limited data or new items

that have yet to be rated. This is often referred to as the cold start problem. Hybrid

systems attempt to solve some of these problems. For example, Schein et al. [13]

combine the two approaches to alleviate the problem of recommending new items.

In the area of education, there have been many examples of both collabora-

tive filtering and content-based methods being used to recommend resources to stu-

dents [22, 21, 3]. However, one problem that both collaborative and content methods

face is the tendency to avoid diversity in recommendations. The fundamental as-

sumption in traditional recommenders is that users want similar items. In learning

systems, this is especially important because the goal of learning is always to expand

one’s knowledge. In this context, students need content that is different but related

to what they have already learned. To create a successful educational recommender,

we have to address this issue.

2.2.2 Ontologies

In this thesis, we propose a way to recommend resources and present related top-

ics using a content-based method in combination with a domain ontology model.

Categorizing resources into topics and mapping the relationships between topics will

facilitate the ability to recommend similar resources within topics, as well as related

topics and resources that connect topics.

An ontology is a graph data structure used to map relationships between concepts

of a particular domain in a well-defined, machine readable format. Building an ontol-

ogy is often a difficult task [17]. Techniques range from manual, crowdsourced [11], to

10

fully automatic extraction from text [7, 18]. There has also been research on merging

ontologies from different sources [5].

Once the ontology is built, it can be used to recommend learning resources for a

student. For example, Sosnovsky et al. create an ontology extracted from semantic

structure in textbooks and web pages [14] and use it to recommend readings for

students answering questions. In this work, we try to build the ontology from user

bookmarking activity in combination with simple text analysis, then use learned

relationships to recommend learning resources.

Research by Jiang and Tan shows the possibilities of using personalized user on-

tologies to represent user profiles in learning [6]. Their model uses a form of TF-IDF

to represent each document in a keyword and concept vector space. TF-IDF stands

for Term Frequency Inverse Document Frequency and measures the frequency of each

term in each document divided by the frequency over all the documents. Words

that occur many times in all the documents are drowned out so that a high TF-IDF

score signifies relative importance of terms in a given document. A term with a high

document frequency causes the TF-IDF score to decrease. TF-IDF is high when

the frequency in the document is high and the document frequency is low. A more

detailed explanation of TF-IDF can be found in Chapter 4.

Jiang and Tan use keywords as well as domain concepts to categorize documents

into an ontology which is then used as a basis for personalization. The weights of

this ontology are calculated based on user interest. They evaluate their model using

semantic search techniques. They use this personalized ontology model to provide

search results, which is similar to one of our goals. Knowd is an attempt to not only

11

provide search results, but to predict and recommend queries that will expand the

users’ knowledge. Despite extensive academic research in the area, there are not many

practical tools that implement the technology. This research attempts to implement

a recommender system as a practical tool to help learners manage learning resources.

Chapter 3

Knowd: A Tool for Managing
Learning Resources

Knowd is an education tool designed to help students keep track of what they know

and find new topics to learn about. Knowd is currently running live on the web at

https://cs.drew.edu/knowd.

By providing a space for students and teachers to save resources and organize them

into topics, Knowd can learn user preferences for different topics and recommend

resources and topics for students to learn more about. With data gathered from

individual users, Knowd builds a model of what internet resources a student has

explored, then compares it with an aggregated model to decide what is the best

concept to learn next.

To solve the problem of organizing multiple sources and personalizing one’s learn-

ing, we developed an initial prototype that allows students to save resources that they

12

13

find helpful and organize them into topics. The process of students documenting their

learning allows Knowd to build a user profile that serves as a representation of that

student’s knowledge. We have implemented a simplified variation of existing tech-

niques to build an ontology from the content that users contribute as well as content

retrieved from web searches.

Knowd provides a place to store and find resources, but more importantly it serves

as an interface to build an ontology of topics that users care about. As users add and

organize resources, the system incorporates each user’s opinion to form an aggregate

knowledge base. The remainder of this thesis will discuss the challenges and results

of designing and implementing both the interface and the algorithm to aggregate

knowledge gained from many sources.

The goal is to build a knowledge graph that learns from user feedback to enable

personalization. The main research questions of this project are as follows:

1. Can we design a platform that incentivizes students to document and share

their learning resources?

2. Can we create a usable application to organize those learning resources?

3. Can we learn from user activity to create a personalized ontology of topics and

recommend additional useful learning resources?

In order to answer these questions, we built an interface for users to save and

organize learning resources. This prototype acts as an infrastructure to expose the

ontology to users in a way that makes contributing to that ontology intuitive. Because

we need user feedback to learn topic relationships and user preferences, the user

14

interface needs to be easy to use, and it needs to clearly present the value proposition

of Knowd to its users.

Figure 3.0.1 shows a screenshot of the general look and feel of the Knowd web

application. The interface is simple so as to not distract the user. There are four main

features of this prototype: tagging existing resources, bookmarking new resources,

viewing existing resources and recommendations, and searching for resources.

Figure 3.0.1: Knowd UI for Topic Page: Django

15

Figure 3.1.1: Knowd System Architecture

3.1 Architecture Overview

Knowd is built using a web application framework called Django which uses the

programming language Python to create dynamic websites. We host Knowd on a

local server on campus that runs CentOS, which is a Unix-based server operating

system and Apache web server. Data for Knowd is stored in a PostgreSQL database.

Figure 3.1.1 shows the architecture overview of the system. There are two main

ways the user interacts with the system: submitting a new resource, or requesting an

existing resource. When submitting a resource, Knowd will go out and retrieve the

contents of the web page, and save the data to its database. Then, when requesting

an existing resource, Knowd first queries the database for that resource, then it finds

related resources using the recommender algorithm described in Chapter 4.

16

The ontology database stores all users, documents and topics added to the sys-

tem, as well the relationships between them. There are three main entities in Knowd’s

database: User, Relation, and Resource. For the purpose of a mental model and sim-

ple vocabulary, the terms tag and document are used to describe one word resources

and multi-word resources respectively. However, from an implementation standpoint,

these two entities are both instances of the Resource class: a tag is simply a Resource

with only a one word title field. Relations are used to model an edge between two

resources from the perspective of a given user as well as the relationship between a

user and a resource.

Figure 3.1.2 shows our data model with an entity relationship diagram. The arrows

represent a one-to-many relationship, and the circle represents an optional field. Each

relation must have a parent resource and a user perspective. When a particular user

tags a document, the Relation object assigns the tag as its parent resource, and the

document as its child resource. The user is set as the user perspective field, so that

a Relation object exists for each unique user who made that tag action. An empty

child resource represents a user-resource relationship. In this case, the relation object

is used to store a user’s interactions with a resource such as the number of times that

user has visited the resource.

3.2 Features of Knowd

The current prototype enables users to submit resources, tag or pin them to each

other to organize topics, and get recommendations for related topics and resources to

17

Figure 3.1.2: Knowd Data Model

learn from. Relations can be created between any two tags, any two documents, or

one tag and one document. Due to this flexibility, in the context of pinning, the term

“resource” is used to refer to either a document or a tag. The verbs “tag” and “pin”

are also used interchangeably. Both words mean to create a relation object between

two resources.

3.2.1 Tagging Existing Resources

Each user has a home page where he or she can save the resource he or she uses

most. For example, Alice might store tags like “Web Development” or “Databases”

18

so she can access them easily. The screenshot in Figure 3.0.1 shows an example topic

called “Django”, which is the web development framework. The topic page consists

of a section of resources that the user has pinned to this topic and a section with

recommendations. Users can add or remove resources by using the pin button (A)

and the X button (B) located at the corners of each resource. The user interface for

this feature is shown in the screenshot in Figure 3.2.1.

Figure 3.2.1: Interface to manage pins

The pinning feature can be used to connect any resource to any other resource.

For example, a resource called “Django” might have several resources pinned to it,

including web documents such as documentation or code examples. Users might also

pin sub-topics such as “Model View Controller”, which is a design pattern used in

Django to separate data from presentation. In addition to pinning to the current

topic, the user can also pin to their home page, or another resource by clicking the

menu button in the opposite corner of each resource (C). The menu is shown below

19

in Figure 3.2.2. Clicking “Pin to another Topic” brings up a popup where the user

can select a destination topic. This popup box is shown in Figure 3.2.3.

Figure 3.2.2: Resource menu - more options

The relationships between these resources are stored using the data model in

Figure 3.1.2. The topics “Django” and “Model View Controller” are both represented

by the title field in their respective Resource objects. Resources can also store other

data like a url or body text. When the user makes this connection from the UI, Knowd

creates a relation object in the database that holds data about that relationship such

as the parent and child resources, the user who created it, and the time it was created.

Pressing the X button will cause the relation object to be removed. For example,

in learning about “Django”, the user might pin several resources, then decide that

one is irrelevant and remove it from his or her view. These actions are used to

inform the system about a user’s opinion of what topics are related and to improve

the recommendations given to that user. A detailed description of this process is

presented in Chapter 4.

20

Figure 3.2.3: Interface to choose a destination topic

3.2.2 Bookmarking New Resources

Users can save resources from the web by clicking the + button on the top toolbar

(see Figure 3.2.4). Resources can be created using any combination of these fields

including url, tags, title, or custom text. Knowd will attempt to fill in any missing

details by scraping content from the web page. This allows users to save web resources,

as well as save their own notes on a topic. From this form, resources can be saved to

either the user’s home page, or the resource currently being viewed.

When the user submits this form, several processes are triggered on the back end.

First, Knowd will create a resource object with all the provided information. If the

user submitted a URL, the system will then access the url and cache the contents of

the web page. It uses the web page contents to fill in any missing information such

21

Figure 3.2.4: Interface to add a new resource

as title and description. The logged in user is set as the author for that resource and

the resource is saved to the database.

If any tags were provided, a relation object is created between the new resource

and each tag in the list. If the tag does not exist, it gets created on the spot. The

system also uses its recommender engine to predict tags for the new resource. These

relations get created with a user perspective field as the default system user. All

other relations are created from the perspective of the logged in user.

Depending on how the user submits the form, different relations will get created.

If the user clicks the “Save to <Current Resource>” button, or simply presses the

enter key to submit the form, a relation gets created between the new resource and

the resource or tag currently being viewed. The page is then refreshed to reflect this

change. If the form is submitted using the “Pin to Home” button, a relation is created

22

Figure 3.2.5: Implementation of adding a new resource

between that user’s Home tag and the new resource. An alert appears that informs

the user that the resource was saved successfully.

This process is outlined visually in the sequence diagram in Figure 3.2.5. When

the form is submitted, the data is sent to the server as JSON, which is simply a way

to format structured data a textual representation. The server then goes out to fetch

the web page contents if a URL was submitted by the user. It then attempts to fit the

resource into the ontology by predicting relationships to existing tags or documents.

It finally saves all these entities to the database.

23

Figure 3.2.6: Implementation of viewing a resource

3.2.3 Viewing Existing Resources

Figure 3.2.6 is a visual representation of the following process. When users click on

the title of a resource, they are taken to a web page that shows the details of that

resource, any resources that the current user has pinned to it, and recommendations

of related resources. When this page is requested, Knowd accesses this resource in

the database, and follows all relations associated with that resource. The system then

gathers recommended resources and displays them to the user. In the current system,

the recommendation process happens by following relations created by all the users

and gathering search keywords. The database is then searched with these terms, and

the results are sorted by a relevance score. This process is described in Chapter 4.

24

3.2.4 Searching for Resources

The database search process uses the open source Django library django-watson,1

which implements keyword-based search in PostgreSQL. In a simple keyword search,

django-watson ranks the results based on similarity to the query.

When recommending resources, search terms are generated by following Relations

created by all users. For each query, the top ranked results are added to a candidate

set. These candidates are then ranked by a weighted sum of various features including

textual similarity to the current Resource and interactions by users. This prelimi-

nary relevance score is used as a placeholder for a more sophisticated recommender

algorithm that attempts to personalize the recommendations, described in Chapter 4.

1https://github.com/etianen/django-watson

Chapter 4

Representing the Ontology and
Generating Recommendations

With both collaborative filtering and content-based recommenders focused on sim-

ilarity, users get limited diversity in their recommendations [20]. These algorithms

recommend items similar to the ones liked by users in the past. This eliminates the

possibility of stumbling upon loosely related resources to expand the user’s knowledge.

This is especially important for Knowd because of the focus on expanding the stu-

dent’s knowledge. The challenge is to provide users with resources that are similar to

what they know, and yet introduce something new in order to further their learning.

We propose a solution to this problem by using a topic ontology to not only

provide similar recommendations, but to also expand into new areas. To accomplish

this, Knowd uses a data model based on a graph structure where nodes can be a

user, tag, or document. We use the word “topic” to mean a general area of interest.

25

26

“Tag” is an object used to label a document as a particular topic. These two terms

are interchangeable.

Each node in the topic ontology graph can have a weighted edge to any other

node. Weights for relationships between users and tags can be interpreted as that

user’s preference or interest in the topic. Tag-document relationships describe how

much that document is about a particular topic. Edges between the nodes of the same

type represent the similarity between them. Figure 4.0.1 shows an example hierarchy

of tags, users and documents. Each line represents an edge in the graph and has a

weight which measures the strength of that relationship. In practice, the graph is

fully connected, meaning there is a weight between all pairs of nodes. However, for

clarity, the figure only shows the edges where the weight is above some threshold.

These weights are formally defined below in Section 4.1.

For example, the user Bob has a high weight to the tags “Back-End Development”

and “Django”. His weight to the other topics would be close to 0, quantifying his

lack of displayed interest. One goal of this system is to predict the user’s future

interest in a particular topic and guide them to that learning with resources that are

relevant to what they know and what they are trying to learn. The dotted edges in

Figure 4.0.1 show an example of tags or documents that might be recommended to

the user. Since Alice has a high weight to “Front-End Development”, Knowd might

recommend resource number 7, which is about both Javascript—something related

to what she already knows—and Ruby on Rails, which is something new.

Knowd users can privately organize their resources by tagging them. Using this

tagging action, the system creates a relationship between the tags and the resources.

27

Figure 4.0.1: Knowd Data Model Diagram

By remembering user activity like tagging and adding resources, Knowd attempts to

predict how users might tag another resource, or that the user would enjoy learning

about a certain related topic. In the process of organizing, each user creates relation-

28

ships between Tags and Resources from their perspective. For example, our example

user Alice might save a resource under the “Django” tag, but someone else might

think differently and tag it more generally as “Back-end web development”. Each

of these tags creates a relationship in the graph and they are aggregated along with

textual analysis to form an overall opinion about the topic of that document.

Figure 4.0.1 shows an example of how these topics and resources might be orga-

nized. Relationships in the graph represent the organization of topics and resources

from the perspective of different users. By aggregating these relationships in different

ways, we can personalize recommendations as well as model how topics are related

to each other.

The next section describes in more detail how the weights of these relationships

are calculated and how the graph is used to generate recommendations.

4.1 Calculating Edge Weights

From the perspective of the user interface, users take an action to tag a given resource.

For example, a resource that explains how to make a button on a web page trigger

an action might be tagged as “javascript” and “html”. These one-word tags broadly

represent the topics that classify the resource. Because these words also occur in the

text of the documents, we use both user tag actions and the term frequency in the

document itself to assign edge weights. In context of the following section, we will refer

to tags as “terms” and resources as “documents”. This is standard terminology for

text analysis methods. Specific to Knowd, we use the word “topic” to refer generally

29

to what a document is about. “Tag” represents the entity that users interact with

and “term” is the actual word that is counted in the text and that is associated with

the tag or topic. The action of tagging influences the edge weight between the term

and the document.

To determine the weight, or relatedness of a document to a particular term or

topic, we first use a commonly used measure called TF-IDF, or Term Frequency

Inverse Document Frequency [12]. This is commonly used in fields of text mining

and information retrieval [10]. TF-IDF describes term importance in a document by

measuring the frequency of each term in the document relative to the frequency in

all other documents in the system. TF-IDF is calculated by:

tf-idf(tj, di) = freq(tj, di) ∗ idf(tj, D) (4.1.1)

idf(tj, D) = log
‖D‖

1 + nj

(4.1.2)

where freq(tj, di) is the number of times term tj occurs in document di.

IDF stands for inverse document frequency. Document frequency is defined as

df(tj) =
nj

‖D‖ where nj is the number of documents in which the term appears and

‖D‖ is the total number of documents in the set of all documents D. Document

Frequency is simply the percentage of all documents that the term appears in. The

log function is used to smooth out comparisons between very large values and very

small values. Because df is less than one, we invert the fraction to get rid of the

30

resulting negative value from the log function. We also add 1 to nj to prevent

division by zero in the case where the term does not occur in any documents.

The initial vocabulary set is generated by taking k terms with the highest idf

values, which eliminates stop words that are used frequently across all the documents.

For example if the word “code” appears in 90 percent of the documents, it will have

a lower idf than the word “html” which might occur in 20 percent of the documents.

In a set of documents about computer science, the frequency of the word “code” gives

very little information about the contents of that document.

The terms in the resulting vocabulary are then used as features to represent doc-

uments and users as vectors. Document and user vectors are composed with the edge

weights from that document or user to each term in the vocabulary. For example,

document vector di and user vector uk are respectively defined as,

di =

[
WTD(t1, di), WTD(t2, di), ... WTD(tn, di)

]
(4.1.3)

uk =

[
WTU(t1, uk), WTU(t2, uk), ... WTU(tn, uk)

]
(4.1.4)

where the elements of vector di are the weights WTD(tj, di) between that document di

and each term tj in the vocabulary set. These weights are defined in Equation 4.1.5.

WTD(tj, di) = (1− αU) ∗ tf-idf(tj, di) +
αU

‖U(tj, di)‖
∑

uk∈U(tj ,di)

WTU(tj, uk) (4.1.5)

We use tf-idf to initialize the weight WTD between term tj and document di.

31

As users interact with different documents, this weight is updated to reflect that

feedback. For example, if our user Alice is learning about front end web development,

there might be a document that has the same tf-idf score for the terms “html” and

“css”, but Alice as a human knows that this resource is best used for learning “css”.

She explicitly tags it as “css”. We want this human-created feedback to inform the

system’s representation of that topic. If many other users take the same action, we

want to trust the human opinion over the machine opinion generated from tf-idf. To

do this, we use both the tf-idf score and the users’ tagging decisions to calculate the

weight between a term and a document.

The term-document weight is calculated as in Equation 4.1.5, where U(tj, di) is

the set of users that have tagged document di with term tj, and WTU(tj, uk) is the

weight between term tj and user uk (as defined in Equation 4.1.6).

WTU(tj, uk) =
αA

‖A(uk)‖
∑

di∈A(uk)

WTD(tj, di) +
αV

‖V (uk)‖
∑

dm∈V (uk)

WTD(tj, dm) (4.1.6)

The αU parameter is bound between 0 and 1 that determines the relative strength

of the users’ collective opinion. If αU is high, tag actions taken by users hold a higher

weight than the machine text analysis of the document. The second term in this

equation takes the average expertise over all the users who tagged this document

with term tj. The more interest a user has in a particular topic, the system should

trust that user’s tag action more than someone who has no interest in the topic. WTU

measures this interest or expertise and is defined in Equation 4.1.6.

32

As users tag and contribute content to the site, the system calculates their interests

in each topic tj by Equation 4.1.6, where A(uk) is the set of documents that user uk

has added to the system and V (uk) represents the documents the user has viewed.

The intuition here is that a user should have a high weight for a particular topic

if he or she interacts with many resources about that topic. WTD defines the edge

weights between each topic or term and each document. If the user interacts with

documents that have high weight for a particular topic, that user is interpreted to

have high interest in that topic. Again, the α parameters are used to vary the relative

strength of the terms. For example, if αA > αV , WTU will be influenced more by

documents added than documents viewed. We divide each sum by the size of the set

‖A(uk)‖ and ‖V (uk)‖ to get the average WTD over the documents in each set. This

score broadly measures on average how related the topic is to all documents the user

has interacted with. Because this weight is determined by both the documents the

user views and adds to the system, it can be interpreted as both interest and expertise.

The weights between two nodes of the same type, for example, two users, two

topics or two documents, are simply the similarity between the two nodes. We use a

standard cosine similarity measure shown in Equation 4.1.7, where v1 and v2 can be

either a document vector d or a user vector u as defined above.

sim(v1, v2) =
v1 · v2
‖v1‖ ‖v2‖

(4.1.7)

To find the similarity between two terms, we use the same similarity measure,

where v1 and v2 are vectors composed of the weights between the term and all the

33

documents in the system. These are column vectors from the term-document ad-

jacency matrix WTD. The similarity between two terms can be thought of as the

frequency with which they co-occur together in the same documents. If they often

occur together, the WTD values will be high for both terms in many documents, thus

the dot product will be high. Conversely, if they never occur together, the dot product

will be low. Because WTD includes both tf-idf and user tags, the similarity between

two terms or topics includes information from both the content of the documents and

users’ opinions. This similarity is then used to define a term vector where WTT (ti, tj)

is the similarity between term ti and tj.

ti =

[
WTT (ti, t1), WTT (ti, t2), ... WTT (ti, tn)

]
(4.1.8)

Once these weights have been initialized, they will be updated as users continue

to interact with the system. As users interact with content on Knowd, the term-user

weights WTU will be updated. Since the term-document weights WTD also depend on

the term-user weights and vice versa, this becomes a recursive process. If a document

that a user has saved is tagged similarly by other users, the Equation 4.1.5 shows that

the term-document weight will increase. For example, a resource that Alice submits

might start out with a 0.5 weight to the term “html” and a 0.5 weight to “css”. This

initial weighting will come from tf-idf. However, after many users tag it as “css”, the

weight to that term might increase to 0.8. Because this document is now interpreted

as being about “css” more than “html”, in the next iteration, Alice’s term-user weight

to “css” should increase.

34

By interpreting these as edge weights in a graph, the system can now recommend

resources to users by traversing the graph. The following section describes this traver-

sal recommendation process. See Section 4.3 for a concrete example walking through

these equations with actual numbers. Refer to Appendix B for a table listing all the

variables used in this chapter.

4.2 Making Recommendations

Once the graph of document and topic relationships has been created, recommenda-

tions are generated by traversing this graph starting from the current topic tcur being

viewed. In contrast to traditional recommenders like Netflix that recommend items

the user might like, Knowd is trying to recommend topics or documents that the user

might be interested in and that are related to the current context.

Algorithm 1 Recommendation Algorithm for Topics

1: procedure RecommendTopics(tcur, ucur)
2: CandidateTopics ← {tcand ∈ T : WTT (tcand, tcur) > θT}
3: RelTT ← {}
4: for tcand ∈ CandidateTopics do
5:

relevance← WTT (tcur, tcand) ∗WTU(tcand, ucur) (4.2.1)

6: RelTT ← RelTT ∪ {(tcand, relevance)}
7: end for
8: return RelTT

9: end procedure

Algorithms 1 and 2 show the process used to recommend topics and get related

resources. To recommend topics related to the current topic and the current user, we

35

first gather a set of candidate topics by following all edges from the current topic with

weights WTT above some threshold value θT . Then we compute the relevance score

for each candidate topic with Equation 4.2.1. The weight WTT (tcand, tcur) measures

the similarity between the two topics, and the weight WTU(tcand, ucur) represents the

user’s preference for the candidate topic. By multiplying these two values, both of

which are between 0 and 1, we are giving the candidate topic a high relevance if it

is both related to the current topic, and preferred by the user. If either one of those

parameters are low, the relevance will also be low. It may be helpful to think of this

relevance as the combined cost of following a path from topic tcur to tcand to ucur,

each of which are nodes in the graph.

Algorithm 2 Recommendation Algorithm for Documents

1: procedure RecommendDocuments(tcur, ucur)
2: RelTD ← {}
3: for tcand ∈ RecommendTopics(tcur, ucur) do
4: RelatedDocuments ← {dcand ∈ D : WTD(tcand, dcand) > θD}
5: for dcand ∈ RelatedDocuments do
6:

relevance← (1− βdiversity) ∗WTD(tcur, dcand)+

βdiversity ∗WTD(tcand, dcand) ∗WTT (tcand, tcur) ∗WTU(tcand, ucur) (4.2.2)

7: RelTD ← RelTD ∪ {(dcand, relevance)}
8: end for
9: end for
10: return RelTD

11: end procedure

Recommending documents follows a similar pattern. First we get a set of recom-

mended topics using the above method presented in Algorithm 1. Then for each

36

of those candidate topics, we gather a candidate set of documents with weights

WTD(tcand, dcand) greater than some threshold θD. We compute a relevance score

for every document according to Equation 4.2.2. This equation is similar to Equa-

tion 4.2.1 in that it is computing the cost associated with following edges to get from

the current topic tcur to each candidate document dcand. The first term is the weight

or relatedness of the candidate document to the current topic. The second term is the

weight or relatedness of the document to its corresponding related topic combined

with the current user’s interest in that topic. By varying the βdiversity parameter,

we can tune the system to recommend documents related to the current topic, or

documents that are related to a similar topic. A high βdiversity value will lean toward

the latter situation, and a lower value focuses the recommended documents to only

the current topic.

4.3 Concrete Example

To show this in a concrete example, we use a contrived tf-idf matrix and use it to

initialized the weights WTD. The matrix below shows these weights, where each row

represents a document vector, and the columns represent terms. Recall that in our

approach terms are treated as topics. The terms used in this example are as follows,

where the term in position j corresponds to column j in the matrices.

T =

[
WebDevelopment Django HTML Databases Algorithms

]
(4.3.1)

37

WTD =



0.23 0.18 0.27 0.05 0.00

0.28 0.19 0.22 0.00 0.00

0.13 0.03 0.38 0.04 0.00

0.05 0.05 0.38 0.05 0.09

0.03 0.27 0.04 0.28 0.06

0.06 0.21 0.00 0.34 0.00


(4.3.2)

In the example WTD matrix in Equation 4.3.2 above there are 5 columns for the 5

terms in the vector T and 6 rows for the 6 hypothetical documents in our example.

WTT =



1. 0.71 0.76 0.27 0.14

0.71 1. 0.47 0.82 0.43

0.76 0.47 1. 0.21 0.53

0.27 0.82 0.21 1. 0.44

0.14 0.43 0.53 0.44 1.


(4.3.3)

Equation 4.3.3 shows the topic similarity matrix, WTT , for our example. Topic simi-

larity is calculated using cosine similarity as defined in Equation 4.1.7. This produces

a symmetrical matrix. For example, the element at row 2 column 4 represents the

similarity between the topics “Django” and “Databases” (0.82).

Each of the documents in D is added by a user. In our example, we talk about a

user Alice who authors documents 2, 5 and 6. Another user Bob might add documents

1, 3 and 4. Each user’s documents are used to determine their weights to each topic by

taking the average topic-document weight over all the documents that the user adds.

38

The WTU matrix in Equation 4.3.4 shows these weights. Rows one and two represent

Alice’s and Bob’s preferences respectively. Alice’s preferences are represented in the

second row of this matrix. For example, her preference to topic 2 (“Django”) is 0.22.

WTU =

0.12 0.22 0.08 0.21 0.02

0.14 0.09 0.34 0.05 0.03

 (4.3.4)

Figure 4.3.1 shows some of these weights graphically. For example, Alice is cur-

rently viewing a topic “Web Development” (term #1). The bolded circle represents

the current topic, and the bolded hexagon represents the current user. This topic is

related to other topics like “HTML” (term 3), and “Django” (term 2). These edges

might have a higher value for WTT which signifies they are highly related. For ex-

ample, in the WTT matrix above in Equation 4.3.3, the weights are 0.76, and 0.71,

respectively. The terms “Web Development” and “Databases” (terms 1 and 4, re-

spectively) are not as tightly related and thus have a lower weight WTT of 0.27. The

weight to “Algorithms” (term 5), which is mostly unrelated, is 0.14.

To recommend topics following the algorithm described above, we collect related

topics to “Web Development” by following edges over a threshold. If we set θT = 0.2,

our candidate set would consist of “HTML”, “Django”, and “Databases”, but not

“Algorithms”. The figure shows only the edges above this threshold, however the

graph is fully connected in the sense that one can describe a weight between a node

and any other node in the graph. The relevance of each of these candidate topics

to the current topic “Web Development” depends on the weights between the topics

WTT and the current user’s interest WTU in that topic.

39

Figure 4.3.1: Example topic graph with weights

For example, the relevance score for the topic “HTML” would be WTT , which is

0.76, multiplied by WTU , which is 0.08, giving a result of RelTT = 0.06. Because Alice

is not very interested in HTML, the relevance is lower than something she is interested

in, like “Django”, which has a relevance of 0.71 ∗ 0.22 = 0.16. Even though HTML

is more related to the current topic, the user’s preference for “Django” overpowers

this relationship. As the user-topic weight increases, the relevance of that candidate

will also increase, thus personalizing the recommendations to something that is both

40

related to the current topic, and preferable to the current user.

This example shows how relationships between topics, users and documents are

used to personalize recommendations based on what the user likes, as well as expand

into areas that are related by traversing the graph. In the next section we discuss

evaluations for both the user interface and the recommender algorithm.

Chapter 5

Evaluation

To put these ideas into practice, we conducted two preliminary evaluations: one for

the user interface, and one for the recommender algorithm. To test the clarity of the

user interface, we gave the prototype to students in two different computer science

classes at Drew. We asked them to save resources they found helpful in learning

course concepts. We then invited them to fill out a survey to provide feedback on

their user experience using Knowd.

To evaluate the recommender algorithm, we used data from the question and

answer site StackOverflow.com to try and predict terms that each user would ask or

answer about. We found that our algorithm performed significantly better than using

only term similarity or predicting random terms. The following sections describe these

evaluations in more detail.

41

42

5.1 User Interface Feedback

5.1.1 Initially Populating Knowd Topics

To test this idea with real users, we needed to initialize the system with existing

data. We used two main sources of data in addition to manually seeding the system.

To build the ontology, we started by using data from the Wikipedia API. The API

made it easy to grab page content as well as categorical relationships from Wikipedia.

We also used data sourced from Stack Overflow to associate Tags with content from

questions and answers.

Initially, we tried to automatically generate this topic hierarchy by using clustering

algorithms, but found it difficult to find topics that make sense to human users. We

used k-means clustering with cosine similarity between term vectors generated from

Stack Overflow questions. The resulting document clusters were of mixed quality.

Some groups had documents all about the same topic but others were not as coherent.

However, the main problem with this was that there was not a good way to give the

clusters a human readable name that represented that topic. We tried to take the

term with the highest TF-IDF value, but again had mixed results.

Because of these issues, we took a user-centered approach that allows users to cre-

ate their own topics and provide feedback to build the ontology. By relying partially

on user feedback, the system can learn from what users find important. However, it

does create an issue where the system is only as good as the people using it. We seeded

the system with the results of manually crafted sample queries from the Bing Search

API. Documents from these three sources were seen by users in the UI evaluation.

43

5.1.2 User Interface Survey

To evaluate the effectiveness of the user interface in communicating the problem, we

tested Knowd with 22 students at Drew. The initial test was done in the Software

Engineering class. In two class activities, students learned about two different tech-

nologies called Git and Wordpress. Git is a software system that developers use to

manage versions and collaborate on source code. Wordpress is a blogging framework

that is widely used to manage dynamic web content. We also ran the activity in an

Introduction to Java course. Students in that class saved resources to help teach other

students Object Oriented Design, which is a core concept in computer programming.

Students created accounts on Knowd and were asked to save any resources they

found helpful during their learning. After the activities, participants were invited

to complete a survey to provide feedback on their experience. Through these class

activities and the resulting surveys, we got a sense of how students might use Knowd

and how we could improve the prototype.

The survey was designed to gather a general sentiment towards the application

as a whole including questions aimed at specific components of the application such

as adding and pinning resources. A portion of the survey was posed as numerical

response questions on a Likert scale between 1 and 7. In addition, participants were

asked open ended questions designed to evaluate if they were part of Knowd’s target

user base as well as what they liked and disliked about the tool. The full survey can

be found at http://goo.gl/forms/Mjd4rOSvYl and in Appendix A.

Figures 5.1.1 and 5.1.2 show results from the numerical survey questions. Fig-

ure 5.1.1 displays results measured on a 1–7 Likert scale, 7 being the most positive

44

answer. For the questions that ask how easy or complicated was an aspect of the

system, a 1 represents very complicated and a 7 represents very easy. Shown in Fig-

ure 5.1.2, we also asked questions about the likelihood of different future actions like

saving things to Knowd, searching on Knowd, or revisiting the resources saved in this

activity. The box represents the middle 50% of the data, the heavy middle line rep-

resents the median, the small square represents the mean, and “+” indicates outliers.

Figure 5.1.1: Knowd ease of use and enjoyment

These results show that the sentiment toward the concept of Knowd is generally

good. Students found the pinning and saving functionalities easy to use, with mean

responses of 5.6 and 6.2, respectively. In contrast, the means for overall enjoyment

45

Figure 5.1.2: Likelihood learning independently and using Knowd to do so

and overall ease of use were 4.6 and 5.1. Because pinning and adding were described

as easier than the overall tool, we can conclude that other areas of the interface

were more difficult, such as navigating from page to page. Students also said they

were ambivalent about using Knowd again, with a mean of 4.0 for the first three

questions in Figure 5.1.2. Almost all the students said they were very likely to learn

independently (mean of 6.1), which represents the target user audience for Knowd.

The users also gave qualitative responses through open-ended questions. Students

use existing tools like Google and Stack Overflow to find resources, but can’t always

find what they are looking for. One student mentioned a tool specific to learning:

46

“I use Team Treehouse and tutorials I find online for whatever I’m build-

ing. TeamTreehouse is good at taking me step by step, but it only teaches

you to build a simple thing”.

Team Treehouse 1 is a for-profit online school for computer science with video tutorials

for various subjects. These courses, while helpful for starting out, suffer from the same

problem as LMSs in college courses: students cannot contribute content, nor does the

course adapt to students’ previous knowledge. The survey responses have anecdotally

confirmed the existence of this problem as well as shown that a tool such as Knowd

might be able to provide a solution.

In addition to highlighting the problems with existing tools, the survey and activ-

ities provided feedback to inform future updates to Knowd’s user experience (UX).

The general sentiment about the UX was that it was easy to add and pin resources,

but navigating the site was sometimes confusing. One way to alleviate this confu-

sion might be to separate resource recommendations from navigating the topic graph.

This might help communicate more clearly the relationships between topics and allow

users to have more control over how much detail they see.

When asked about the quality of the recommendations, one student said, “They’re

good, but since there’s so much writing it takes a while to read through them. They

should be more simple and clear”. While this survey was not meant to evaluate the

recommender algorithm, it did reveal that users want the recommendations displayed

in a cleaner interface with less text.

Another important and frequent piece of feedback was that students wanted a

1http://teamtreehouse.com/

47

page where they could all post resources as a group that were shared with the class.

This highlights the overall goal of creating a learning management system that is

collaborative and adaptive to student needs.

The main takeaway from this survey is that the concept of Knowd was well received

as a possible solution, but the prototype has room for improvement.

5.2 Recommendation Algorithm Evaluation

To test the theory described in Chapter 4 with real data, we gathered a set of users

and their associated posts from Stack Overflow. This dataset has 1,295,620 different

users and 10,338,371 posts in total. We used only a small fraction of these data points

in our evaluation.

5.2.1 Experimental Design

To get a document set, we took all the posts that were authored by any of the users in

the sample. The posts can be either questions or answers. For each user, we split their

posts into training and testing sets. We trained the system on a set of documents

such that each user owned 10 documents. All the posts were used as a test set.

The vocabulary was initialized using the tags that the user assigned to each ques-

tion, and expanded using terms from the bodies and titles of the posts. The final

vocabulary was chosen by taking the top 500 terms with the highest idf value (i.e.,

the terms used in the fewest documents). The same vocabulary was used for both

training and testing.

48

Once the vocabulary was selected, we learned the weights from the training set and

generated topic recommendations based on the methods described in Chapter 4. To

test the accuracy of these recommendations, we compared the set of recommended

topics that were generated from the training set to the set of topics of interest as

learned from the test set. We were essentially predicting the future interest, or user-

topic weight WTU .

We used a test set that included all posts from the training set plus additional

posts authored by the users. Weights were learned using this expanded test set. We

then compared the recommended topics with the actual topics that the user was

interested in once the additional documents were included. To do this, we used a

standard metric of success from information retrieval called average precision [10].

Our system returns a ranked list of terms that the user might be interested in. For

each of these terms, we calculate precision, which is the ratio of correct predictions

seen up to this point, over the total number of predictions. We then average over the

precision values for correct predictions to get average precision. For example, say we

recommend “HTML”, “Algorithms”, “Django”, “CPU”, “CSS”, where “CPU” and

“Algorithms” are incorrect. We get precision values of 1
1
, 0, 2

3
, 0, 3

5
for each prediction,

respectively. We then average these over only correct predictions. The final AP value

for this user is 0.75. One way to interpret this is the frequency of correct answers.

An AP value of 0.5 means every other prediction was correct, an AP of 0.33 means

every third prediction was correct.

We are attempting to label users with multiple terms they might be interested

in. Essentially the problem reduces to a multi-label classification problem, where

49

the order of the labels matters. This score measures how well our recommendations

match the true sequence of labels. To determine the true labels for each user as a

binary vector, we learned weights from the test set to see what users were interested

in once more data was added. We then used the weight WTU learned from the test set

to get the true labels. If the weight WTU is more than two standard deviations above

the mean, we consider that a true label. In other words, if the weight to a particular

term is higher than most of the other weights, that user is considered interested in

the topic. We then use the average precision score to determine how many of these

term labels the algorithm labelled correctly.

In the algorithm described in Algorithm 1, we rank the candidate topics by the

relevance score defined in Equation 4.2.1, which depends on the similarity of the

candidate topic to the current topic, WTT , and the interest of the user in the candidate

topic, WTU . As a baseline we remove the WTU parameter so that the relevance is

based only on the similarity of the two topics, and not the user preferences. We also

compare to a second baseline where we recommend random topics.

5.2.2 Results

We tested our algorithm with a random sample of 100 users on Stack Overflow who

authored more than 20 posts. We ran our evaluation and measured the average

precision of each user’s term predictions.

Figure 5.2.1 shows the results of this evaluation in a box plot, where the y-axis

measures average precision. The mean average precision (MAP) across all the users

is shown by the small square in the middle of each box. Random predictions, yielded

50

Figure 5.2.1: Evaluation Results with Random Sample

a mean of 0.06. Using only term similarity, the mean average precision goes to 0.33.

Our algorithm achieved a mean average precision of 0.51. This means every other

recommendation was something that the user showed interested in. An AP value of

1 is all correct answers, so with a value of 0.51 there is still room for improvement.

We used a paired sample t-test to determine if these differences were statistically

significant, assuming a normal distribution due to the sample size of 100. This test

shows that including user preferences in the relevance score performed significantly

better (p = 8.29× 10−15) than the topic similarity method alone and random recom-

mendations (p = 1.03× 10−23).

51

5.2.3 Threats to Validity and Next Steps

One threat to validity is that this dataset does not exactly match the format and

use cases of Knowd. For example, Knowd allows many users to tag documents, but

in Stack Overflow, documents can only be tagged by the author. We use these tag

actions as feedback according to Equation 4.1.5, however, because only one user is

tagging, this does not evaluate the effectiveness of aggregating multiple user opinions

into the recommendations.

Also, because the only user activity we consider for this dataset is authoring a

post, we could not use this dataset to test the document recommendations. We cannot

attempt to predict documents that users might interact with because all the correct

posts (ones authored by the user) do not yet exist in the training set. With actual

user data from Knowd in the future, we can use interaction data such as bookmarking

and viewing so that users can interact with existing documents.

A logical next step would be to compare this algorithm with standard recommen-

dation algorithms such as collaborative filtering. In the future, we would like to find

a better way to test the core features of Knowd such as aggregating human opinion

by tagging, and recommending topics in context of what is currently being viewed.

Chapter 6

Conclusions and Future Work

In this thesis, we presented Knowd: an application that allows users to create, orga-

nize, and consume content related to their learning. We have designed, implemented

and tested Knowd. In addition, we have presented a model to learn and recommend

learning resources to users based on their collective and individual activity.

Knowd has laid the foundation necessary to evolve into an LMS that allows both

expert-curated and crowdsourced courses built from freely available content. Existing

learning systems only distribute content to a closed group of students about a closed

group of manually created topics. In contrast, the end goal of Knowd is to present

courses openly to the public about any topic. These courses could be manually created

by experts or dynamically generated from many sources. For example, a professor

can organize course content on Knowd and get recommendations for content from

other sources to fill curriculum gaps or provide an alternative view on a topic. With

52

53

this system, students can learn from varying sources, get a personalized perspective

of the topic and contribute their own resources to the course.

In the future, we would like to improve the user experience by making the process

of saving and organizing resources more streamlined. Since the goal is for this system

to become a full learning management system for independent learners, the process

of creating courses needs to be clear and simple. Feedback received from students

indicate that the UI has room for considerable improvement. In line with this goal,

we also want to include the ability to add files and images.

6.1 Planned Updates

In response to the feedback received in the user evaluation, several updates to the

application are planned. There are two main areas for improvement. The first is

the ability to collaborate on a shared repository of resources. Students expressed

interest in having a place not only to store resources for themselves, but also an easier

way to share those resources with their classmates. Concrete features include direct

recommendations to friends, creating and viewing different user-created “courses” on

a given topic.

The second area is the communication of the data model. We would like to make

it easier to understand the difference between topic to topic relationships and topic

to resource relationships, and make it more clear to the user what is a topic and what

is a resource. Exploring the topic graph without being bombarded with resource

recommendations is important for students to quickly get an overview of their areas

54

of interest. Once they have an idea of what topics they should learn, they can explore

them in more detail.

We expect to add these features and conduct another user study in the future to

better gauge users’ needs and expectations of this problem. In addition to improving

the user interface, improvements will be made to the algorithm for learning topic

relationships and personalizing recommendations.

6.2 Improving Knowledge Model

There are several possible directions to take this research. We want to make the

ontology and recommendation system more focused on the overall goal of exploring

knowledge. One way to move the implementation forward is to use graph centrality

measures in the relevance rankings to suggest topics that help connect that user to

more knowledge at a faster rate. The challenge will be balancing the tendency to

make high level topic recommendations with the need for deep learning in one topic.

Another area to explore is more explicitly measuring prerequisite topics and trying to

predict the order in which students should learn. Using semantic relationships in the

ontology, rather than just numeric weights, will help capture that information as well

as other types of relationships. As the system matures, it would also make sense to

migrate the data to use a graph database like neo4j.1 Graph databases are designed

for this kind of modeling, and will make storage and retrieval more efficient as well

as allow for operations like finding the shortest path between two nodes.

1http://neo4j.com/

55

The research goal of this project is to find a way to design an application that

is useful to learners and invites them to contribute data to help the system learn

relationships between concepts. The main challenge in moving forward is to keep

these two goals in sync with each other as new features are added. The overall goal of

automatically generating personalized course content necessarily involves educators

as well as students. To accomplish that goal, the knowledge graph must integrate

data about both the learning process and the teaching process. Getting that data

will require a focus on acquiring users and better evaluating their needs.

6.3 Limitations

A fundamental assumption we make is that current learning is dependent on past

learning, and that past bookmarking activity is predictive of current knowledge. For

example, suppose a user bookmarks many resources about “HTML” in the past.

When they are attempting to learn “PHP” (a scripting language to embed dynamic

content in HTML), Knowd interprets the past activity as current knowledge, and

might adapt its recommendations to show how the new topic relates to the old topic.

When learning about disparate concepts that are unrelated, this assumption may not

hold, and a different approach might be needed.

One limitation of this approach is that when expanding knowledge, this system

might shy away from some content in an attempt to relate something new to some-

thing you already know. For example, if a student is learning about iOS development,

and has a high weight to a related topic “Front-End Web Development”, that student

56

might get recommendations that combine the two topics such as building an iOS app

with web technologies. However, the student might need to learn native iOS. In other

words, recommendations from this approach have a bias towards new topics which

build on prerequisite knowledge that the user already has.

We also run into a similar problem as collaborative filtering techniques. The

ontology provides a starting point, but to get meaningful data on user preferences,

we need users to interact with the content on the site.

6.4 Conclusion

In the process of self-education, there are limited tools available to organize learning

materials. Without the guiding hand of a professor or curriculum, it is often difficult

to get an overview of a topic. With Knowd, students can explore related concepts to

get a sense of the learning environment for a particular topic. In addition, users can

find new topics to learn about that are related to their interests and find resources

that similar students have found helpful. We are excited to continue developing this

idea into a product that students everywhere can use to facilitate their learning.

57

Appendix A. Full Survey Questions

1. How much did you enjoy using Knowd?

2. How easy or complicated was it to use Knowd?

3. How easy or complicated was it to use the pin functionality?

4. How easy or complicated was it to add a new resource?

5. How likely are you to return to these resources at a later time?

6. How likely are you to save resources to Knowd in the future?

7. How likely are you to search for resources on Knowd in the future?

8. How likely are you to learn independently outside of class work?

9. What tools do you currently use to find good learning resources or tutorials?

10. What do you wish you could change or improve about them?

11. What features do you like best about Knowd?

12. How do they compare to existing tools?

13. What would you change or improve about Knowd?

14. How do you see yourself using Knowd in the future, if at all?

15. What do you think about the quality of the recommendations?

16. Do you have any other comments or concerns about Knowd?

58

Appendix B. Variables used

T set of all tags

U set of all users

tf-idf Term Frequency * Inverse Document Frequency

freq(tj, di) Term Frequency of term tj in document di

idf(tj, D) Inverse Document Frequency of term tj in document set D

di one document

tj one term

D set of all documents

nj number of documents in which term tj appears

WTD matrix of weights between all terms and all documents

WTU matrix of weights between all terms and all users

uk one user

U(tj, di) set of all users who tagged document di as topic tj

αU parameter defining the relative strength of user tags in Equa-

tion 4.1.5

A(uk) set of documents added by user uk

V (uk) set of documents viewed by user uk

αA parameter defining the relative strength of the documents the user

added in Equation 4.1.5

αV parameter defining the relative strength of the user’s viewing history

in Equation 4.1.6

WTT matrix of weights (similarity) between all pairs of terms

θT threshold weight for candidate topics

θD threshold weight for candidate documents

βdiversity parameter defining the balance between recommending documents

related to the current topic vs documents related to related topics

Bibliography

[1] Robert M Bell and Yehuda Koren, Lessons from the Netflix prize challenge, ACM

SIGKDD Explorations Newsletter 9 (2007), no. 2, 75–79.

[2] Robin Burke, Hybrid web recommender systems, The adaptive web, Springer,

2007, pp. 377–408.

[3] Cristian Cechinel, Miguel-ÁNgel Sicilia, Salvador SáNchez-Alonso, and Elena

GarćıA-Barriocanal, Evaluating collaborative filtering recommendations inside

large learning object repositories, Inf. Process. Manage. 49 (2013), no. 1, 34–

50.

[4] Gayle Christensen, Andrew Steinmetz, Brandon Alcorn, Amy Bennett, Deirdre

Woods, and Ezekiel J Emanuel, The MOOC phenomenon: who takes massive

open online courses and why?, Available at SSRN 2350964 (2013).

[5] Dragan Gašević and Marek Hatala, Searching context relevant learning resource

using ontology mappings, 3rd International Workshop on Applications of Seman-

tic Web Technologies for E-Learning, Citeseer, 2005, pp. 45–52.

59

60

[6] Xing Jiang and Ah-Hwee Tan, Learning and inferencing in user ontology for

personalized semantic web search, Information sciences 179 (2009), no. 16, 2794–

2808.

[7] Raymond YK Lau, Dawei Song, Yuefeng Li, Terence CH Cheung, and Jin-Xing

Hao, Toward a fuzzy domain ontology extraction method for adaptive e-learning,

Knowledge and Data Engineering, IEEE Transactions on 21 (2009), no. 6, 800–

813.

[8] Julie M Little-Wiles, Stephen Hundley, Wanda L Worley, and Erich J Bauer, Fac-

ulty perceptions and use of a learning management system at an urban, research

institution, American Society for Engineering Education, American Society for

Engineering Education, 2012.

[9] Pasquale Lops, Marco De Gemmis, and Giovanni Semeraro, Content-based rec-

ommender systems: State of the art and trends, Recommender systems hand-

book, Springer, 2011, pp. 73–105.

[10] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze, Introduc-

tion to information retrieval, Cambridge University Press, New York, NY, USA,

2008.

[11] Jonathan M Mortensen, Crowdsourcing ontology verification, The Semantic

Web–ISWC 2013, Springer, 2013, pp. 448–455.

[12] G. Salton, A. Wong, and C. S. Yang, A vector space model for automatic indexing,

Commun. ACM 18 (1975), no. 11, 613–620.

61

[13] Andrew I. Schein, Alexandrin Popescul, Lyle H. Ungar, and David M. Pennock,

Methods and metrics for cold-start recommendations, Proceedings of the 25th

Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval (New York, NY, USA), SIGIR ’02, ACM, 2002, pp. 253–

260.

[14] Sergey Sosnovsky, I-Han Hsiao, and Peter Brusilovsky, Adaptation “in the wild”:

ontology-based personalization of open-corpus learning material, 21st Century

learning for 21st Century skills, Springer, 2012, pp. 425–431.

[15] Xiaoyuan Su and Taghi M. Khoshgoftaar, A survey of collaborative filtering tech-

niques, Adv. in Artif. Intell. 2009 (2009), 4:2–4:2.

[16] William R Watson and Sunnie Lee Watson, What are learning management

systems, what are they not, and what should they become?, TechTrends 51 (2007),

no. 2, 29.

[17] Wilson Wong, Wei Liu, and Mohammed Bennamoun, Ontology learning from

text: A look back and into the future, ACM Comput. Surv. 44 (2012), no. 4,

20:1–20:36.

[18] Yao-Tang Yu and Chien-Chang Hsu, A structured ontology construction by us-

ing data clustering and pattern tree mining, Machine Learning and Cybernetics

(ICMLC), 2011 International Conference on, vol. 1, July 2011, pp. 45–50.

[19] Li Yuan, Stephen Powell, and JISC CETIS, MOOCs and open education: Impli-

cations for higher education, Cetis White Paper (2013).

62

[20] Tao Zhou, Zoltán Kuscsik, Jian-Guo Liu, Matúš Medo, Joseph Rushton Wake-

ling, and Yi-Cheng Zhang, Solving the apparent diversity-accuracy dilemma of

recommender systems, Proceedings of the National Academy of Sciences 107

(2010), no. 10, 4511–4515.

[21] Leyla Zhuhadar, Olfa Nasraoui, Robert Wyatt, and Elizabeth Romero, Multi-

model ontology-based hybrid recommender system in e-learning domain, Proceed-

ings of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intel-

ligence and Intelligent Agent Technology-Volume 03, IEEE Computer Society,

2009, pp. 91–95.

[22] Hanane Zitouni, Lamia Berkani, and Omar Nouali, Recommendation of learn-

ing resources and users using an aggregation-based approach, Advanced Informa-

tion Systems for Enterprises (IWAISE), 2012 Second International Workshop on,

IEEE, 2012, pp. 57–63.

